# ENGR 4011 Resistance & Propulsion of Ships Assignment 4: 2017

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Question 1a. Values of forward speed, propeller thrust and torque measured during a propeller open water performance test are presented in the table below. The model propeller was 0.21 meters in diameter and tested at a constant shaft speed of 10 rps. The water temperature was 16.4 C. For each measurement, calculate the following: K T, K Q, C TH, η o, J A, and R n0.75. Plot K T -10K Q -η o -J A curves for the propeller. Note that c 0.75 is 0.093m at model scale. Solution D 0.21 m temp 16.4 Deg C n 10 rps visc 1.1E-06 M^2/s ρ kg/m^3 measured measured measured V T Q J K T 10K Q η o C TH R n (0.75R) [m/s] [N] [Nm] [-] [-] [-] [-] [-] [-] E E E E E E E E E E E E E E E E E K T-10K Q- η o J [-]

3 FACE AND BACK: The backward faced surface of the propeller blade is called face (high pressure side). The opposite surface is called back (low pressure side). (see Fig ) PRESSURE AND SUCTION SIDES: The side of the propeller blade which faces the sea is called pressure side and the side which faces the ship hull is called suction side. (see Fig. B2) RADIUS FRACTION: The value r/r is called Radius fraction where r is the radius of any section and R is the propeller radius. HUB RADIUS: The radius of the propeller hub is called the hub radius CAMBER: The curvature of the propeller blade is called the camber. (see Fig. B2) PITCH ANGLE: The angle between the pitch line and the propeller reference line is called pitch angle. (see Fig. 9) SKEW BACK: Skew-Back is the displacement between the generator and the propeller reference line. (see Fig. B3) (HARVALD)

4 (HARVALD)

5

6

7

8

9

10 Question 3a. Draw a velocity diagram for a blade section including induced velocities. Question 3b. Show lift and drag force vectors on a blade section. Resolve the forces into thrust and tangential force components.

11

### Potsdam Propeller Test Case (PPTC) Test Case Description

Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Workshop: Propeller performance Potsdam Propeller Test Case (PPTC) Test Case Description Ulf Barkmann 1, Hans-Jürgen

### ENGR 4011 Resistance & Propulsion of Ships Assignment 5: A dimensional analysis of propeller thrust starting with the functional expression

ENGR 40 Resistance & Propulsion of Ships ssignment 5: 07. -dimensional hydrofoil section is shown below. It has an incidence velocity V incidence at an angle of attack α E. For the case shown: sketch the

### Machinery Requirements for Polar Class Ships

(August 2006) (Rev.1 Jan 2007) (Corr.1 Oct 2007) Machinery Requirements for Polar Class Ships.1 Application * The contents of this Chapter apply to main propulsion, steering gear, emergency and essential

### Deliverable D.6.1. Application of CFD tools to the development of a novel propulsion concept

TRIple Energy Saving by Use of CRP, CLT and PODded Propulsion Grant Agreement Number: 265809 Call identifier: FP7-SST-2010-RTD-1 Theme SST.2010.1.1-2.: Energy efficiency of ships WP 1 Deliverable D.6.1

### Numerical Analysis of Unsteady Open Water Characteristics of Surface Piercing Propeller

Third International Symposium on Marine Propulsors smp 13, Launceston, Tasmania, Australia, May 2013 Numerical Analysis of Unsteady Open Water Characteristics of Surface Piercing Propeller Kohei Himei

### Numerical Investigation of the Hydrodynamic Performances of Marine Propeller

Numerical Investigation of the Hydrodynamic Performances of Marine Propeller Master Thesis developed at "Dunarea de Jos" University of Galati in the framework of the EMSHIP Erasmus Mundus Master Course

### Tasmania 7250, Australia. nd K t --- Shaft thrust coefficient by traditional propeller definition

Third International Symposium on Marine Propulsors smp 13, Launceston, Tasmania, Australia, May 2013 Parametric Analysis of Horizontal Axis Tidal Turbine Hydrodynamics for Optimum Energy Generation Pengfei

### Aerodynamic Performance 1. Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk.

Aerodynamic Performance 1 1 Momentum Theory Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk. 1. The flow is perfect fluid, steady, and incompressible.

### ADVANCES IN FULL-SCALE WAKE-FIELD PREDICTIONS AND THE IMPLICATIONS FOR THE PROPELLER DESIGN

ADVANCES IN FULL-SCALE WAKE-FIELD PREDICTIONS AND THE IMPLICATIONS FOR THE PROPELLER DESIGN Gert-Jan Zondervan*, Bram Starke Maritime Research Institute Netherlands PO Box 28, 67 AA Wageningen, The Netherlands

### Aerodynamic Design of VTOL MAV

Aerodynamic Design of VTOL MAV Sergey Shkarayev The University of Arizona, Tucson, AZ, USA Jean-Marc Moschetta and Boris Bataille SUPAERO, Toulouse, France This work is sponsored by AFRL, Eglin AFB and

### A simplified model for a small propeller with different airfoils along the blade

A simplified model for a small propeller with different airfoils along the blade Kamal A. R. Ismail 1) and *Célia V. A. G. Rosolen 2) 1), 2) State University of Campinas, Faculty of Mechanical Engineering,

### Mechanical Engineering for Renewable Energy Systems. Dr. Digby Symons. Wind Turbine Blade Design

ENGINEERING TRIPOS PART IB PAPER 8 ELECTIVE () Mechanical Engineering for Renewable Energy Systems Dr. Digby Symons Wind Turbine Blade Design Student Handout CONTENTS 1 Introduction... 3 Wind Turbine Blade

### Reliability assessment of ship powering performance extrapolations using Monte Carlo methods

Third International Symposium on Marine Propulsors smp 13, Launceston, Tasmania, Australia, May 2013 Reliability assessment of ship powering performance extrapolations using Monte Carlo methods Iwan M.

### Generally, there exists an optimum tip-speed-ratio, λ that maximized C p. The exact λ depends on the individual wind turbine design

Summary Chapter 6-End 1 Wind Turbine Control The control system on a wind turbine is designed to: 1. seek the highest efficiency of operation that maximizes the coefficient of power, C p, 2. ensure safe

### DUAL-MODE CONTRAPROPELLER WITH CURVE STACKING LINE FOR BLADE

Anatolij-Branko R. Togunjac, Ph.D, Research and Design Institute for Fishing Fleet, GIPRORYBFLOT, M. Morskaya str.,18-20, St. Petersburg, 190000 Russia Leonid I. Vishnevsky, D.Sc,Krylov Shipbuilding Research

### GyroRotor program : user manual

GyroRotor program : user manual Jean Fourcade January 18, 2016 1 1 Introduction This document is the user manual of the GyroRotor program and will provide you with description of

### Thermal Properties of a Prototype Permanent Magnetized Electrical Motor Embedded in a Rim Driven Thruster

Thermal Properties of a Prototype Permanent Magnetized Electrical Motor Embedded in a Rim Driven Thruster Øystein Krøvel Knut Andresen Normann Sandøy Abstract For machine designs it is usually the thermal

### Aerodynamics SYST 460/560. George Mason University Fall 2008 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH. Copyright Lance Sherry (2008)

Aerodynamics SYST 460/560 George Mason University Fall 2008 1 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH Copyright Lance Sherry (2008) Ambient & Static Pressure Ambient Pressure Static Pressure 2 Ambient

### Forces on a banked airplane that travels in uniform circular motion.

Question (60) Forces on a banked airplane that travels in uniform circular motion. A propeller-driven airplane of mass 680 kg is turning in a horizontal circle with a constant speed of 280 km/h. Its bank

### Written in August 2017 during my holiday in Bulgaria, Sunny Coast

Electric ucted Fan Theory This paper describes a simple theory of a ducted fan. It is assumed that the reader knows what it is an electric ducted fan (EF), how it works, and what it is good for. When I

### Lecture-10 Tutorial -2 Solved Problems and Tutorial Problems On Three Dimensional flow in Axial Flow Compressor

1 Lecture-10 Tutorial -2 Solved Problems and Tutorial Problems On Three Dimensional flow in Axial Flow Compressor 2 Recap of simple 3-D flow theories (These are mainly used for design) Lect-10 1)Free Vortex

### A simplified method for calculating propeller thrust decrease for a ship sailing on a given shipping lane

POLISH MARITIME RESEARCH 2(82) 2014 Vol 21; pp. 27-33 10.2478/pomr-2014-0015 A simplified method for calculating propeller thrust decrease for a ship sailing on a given shipping lane Katarzyna Zelazny,

### VERIFICATION AND VALIDATION OF RESISTANCE AND PROPULSION COMPUTATION

VERIFICATION AND VALIDATION OF RESISTANCE AND PROPULSION COMPUTATION G. Deng, A. Leroyer, E. Guilmineau, P. Queutey, M. Visonneau & J. Wackers (ECN-LHEEA,CNRS, France) A. del Toro Llorens (Spanish Institution

### The effect of a foul release coating on propeller performance

The effect of a foul release coating on propeller performance M. Atlar and E.J. Glover M. Candries and R.J. Mutton University of Newcastle upon Tyne C.D. Anderson International Coatings Ltd. SYNOPSIS With

### We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

### EFFECT OF FORCED ROTATING VANELESS DIFFUSERS ON CENTRIFUGAL COMPRESSOR STAGE PERFORMANCE

Journal of Engineering Science and Technology Vol. 6, No. 5 (2011) 558-574 School of Engineering, Taylor s University EFFECT OF FORCED ROTATING VANELESS DIFFUSERS ON CENTRIFUGAL COMPRESSOR STAGE PERFORMANCE

### Wall treatments and wall functions

Wall treatments and wall functions A wall treatment is the set of near-wall modelling assumptions for each turbulence model. Three types of wall treatment are provided in FLUENT, although all three might

### Propellers and Ducted Fans

Propellers and Ducted Fans Session delivered by: Prof. Q. H. Nagpurwala 1 To help protect your privacy, PowerPoint prevented this external picture from being automatically downloaded. To download and display

### DETERMINING OPTIMUM GEOMETRY FOR A BOW THRUSTER PROPELLER

DEERMINING OPIMUM GEOMERY FOR A BOW HRUSER PROPELLER Y.H. OZDEMIR, S. BAYRAKAR,. YILMAZ, M.GUNER Yildiz echnical University, Dept. of Naval Architecture and Marine Engineering, 34349 Besiktas, Istanbul,

### Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude.

Definitions Chapter 3 Standard atmosphere: A model of the atmosphere based on the aerostatic equation, the perfect gas law, an assumed temperature distribution, and standard sea level conditions. Temperature:

### Lecture No. # 09. (Refer Slide Time: 01:00)

Introduction to Helicopter Aerodynamics and Dynamics Prof. Dr. C. Venkatesan Department of Aerospace Engineering Indian Institute of Technology, Kanpur Lecture No. # 09 Now, I just want to mention because

### PREDICTION OF STEADY AND UNSTEADY PERFORMANCE OF MARINE PROPELLERS WITH OR WITHOUT CAVITATION BY NUMERICAL LIFTING-SURFACE THEORY CHANG-SUP LEE

PREDICTION OF STEADY AND UNSTEADY PERFORMANCE OF MARINE PROPELLERS WITH OR WITHOUT CAVITATION BY NUMERICAL LIFTING-SURFACE THEORY by CHANG-SUP LEE B.S. Seoul National University (1970) S.M. Massachusetts

### VIBRATION ANALYSIS IN SHIP STRUCTURES BY FINITE ELEMENT METHOD

Proceedings of COBEM 2007 Copyright 2007 by ABCM 19th International Congress of Mechanical Engineering November 5-9, 2007, Brasília, DF VIBRATION ANALYSIS IN SHIP STRUCTURES BY FINITE ELEMENT METHOD Luiz

### Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS

Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget

### Transactions on the Built Environment vol 24, 1997 WIT Press, ISSN

Comparison of model test with ship sea trial results for a given vessel series C.Behrendt & T.Kucharski Institute of Marine Plant Operation, Maritime University of Szczecin, 70-500 Szczecin, Poland Abstract

EWEA 2013: Europe s Premier Wind Energy Event, Vienna, 4-7 February 2013 Figures 9, 10, 11, 12 and Table 1 corrected VORTEX METHOD APPLICATION FOR AERODYNAMIC LOADS ON ROTOR BLADES Hamidreza Abedi *, Lars

### ASSESSMENT OF DESIGN METHODOLOGY AND THREE DIMENSIONAL NUMERICAL (CFD) ANALYSIS OF CENTRIFUGAL BLOWER

ASSESSMENT OF DESIGN METHODOLOGY AND THREE DIMENSIONAL NUMERICAL (CFD) ANALYSIS OF CENTRIFUGAL BLOWER D. R. Chaudhari 1, H. N. Patel 2 1,2 Mechanical Department, Government Engineering College Dahod, (India)

### OUTCOME 1 MECHANICAL POWER TRANSMISSION SYSTEMS TUTORIAL 2 SCREW DRIVES. On completion of this short tutorial you should be able to do the following.

Unit 60: Dynamics of Machines Unit code: H/601/1411 QCF Level:4 Credit value:15 OUTCOME 1 MECHANICAL POWER TRANSMISSION SYSTEMS TUTORIAL 2 SCREW DRIVES 1. Be able to determine the kinetic and dynamic parameters

### PHYSICS 220 LAB #6: CIRCULAR MOTION

Name: Partners: PHYSICS 220 LAB #6: CIRCULAR MOTION The picture above is a copy of Copernicus drawing of the orbits of the planets which are nearly circular. It appeared in a book published in 1543. Since

### Helical Gears n A Textbook of Machine Design

1066 n A Textbook of Machine Design C H A P T E R 9 Helical Gears 1. Introduction.. Terms used in Helical Gears. 3. Face Width of Helical Gears. 4. Formative or Equivalent Number of Teeth for Helical Gears.

### Comparison of EFD and CFD investigations of velocity fields for selected body-propeller configurations

Comparison of EFD and CFD investigations of velocity fields for selected body-propeller configurations P. HOFFMANN S. JAWORSKI A. KOZŁOWSKA * * Ship Design and Research Centre S.A., Ship Hydromechanics

### Analysis of Wind Turbine Pressure Distribution and 3D Flows Visualization on Rotating Condition

IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 06, Issue 02 (February. 2016), V1 PP 18-30 www.iosrjen.org Analysis of Wind Turbine Pressure Distribution and 3D Flows

### θ α W Description of aero.m

Description of aero.m Determination of the aerodynamic forces, moments and power by means of the blade element method; for known mean wind speed, induction factor etc. Simplifications: uniform flow (i.e.

### Phys 270 Final Exam. Figure 1: Question 1

Phys 270 Final Exam Time limit: 120 minutes Each question worths 10 points. Constants: g = 9.8m/s 2, G = 6.67 10 11 Nm 2 kg 2. 1. (a) Figure 1 shows an object with moment of inertia I and mass m oscillating

### A LOW ORDER METHOD FOR CO-AXIAL PROPELLER AND ROTOR PERFORMANCE PREDICTION

A LOW ORDER METHOD FOR CO-AXIAL PROPELLER AND ROTOR PERFORMANCE PREDICTION P. Beaumier ONERA The French Aerospace Lab Keywords: Co-axial, Propeller, Rotor, Aerodynamics, Performance. Abstract Rotary wings

### Axial Flow Compressors and Fans

5 Axial Flow Compressors and Fans 5.1 INTRODUCTION As mentioned in Chapter 4, the maximum pressure ratio achieved in centrifugal compressors is about 4:1 for simple machines (unless multi-staging is used)

### Simulation-driven Design of a Rim Drive for an Autonomous Vehicle

Fifth International Symposium on Marine Propulsors smp 17, Espoo, Finland, June 2017 Simulation-driven Design of a Rim Drive for an Autonomous Vehicle Heinrich Grümmer 1, Stefan Harries 2 and Andrés Cura

### Rotor design and matching for horizontal axis wind turbines

Rotor design and matching for horizontal axis wind turbines report KD 35 ing. Adriaan Kragten 2 Rotor design and matching for horizontal axis wind turbines Report number KD 35 Published by: Engineering

### Flexible Elliptic Oscillating Duct. Taking the FOD one step further.

Third International Symposium on Marine Propulsors smp 13, Launceston, Tasmania, Australia, May 213 Flexible Elliptic Oscillating Duct. Taking the FOD one step further. Gerasimos Politis 1,Theodoros Ioannou

### Torsion Stresses in Tubes and Rods

Torsion Stresses in Tubes and Rods This initial analysis is valid only for a restricted range of problem for which the assumptions are: Rod is initially straight. Rod twists without bending. Material is

Ventilation 5 Fans Vladimír Zmrhal (room no. 814) http://users.fs.cvut.cz/~zmrhavla/index.htm Dpt. Of Environmental Engineering 1 Introduction Fans air pump that creates a pressure difference and causes

### Flight Vehicle Terminology

Flight Vehicle Terminology 1.0 Axes Systems There are 3 axes systems which can be used in Aeronautics, Aerodynamics & Flight Mechanics: Ground Axes G(x 0, y 0, z 0 ) Body Axes G(x, y, z) Aerodynamic Axes

### Tutorial 10. Boundary layer theory

Tutorial 10 Boundary layer theory 1. If the velocity distribution law in a laminar boundary layer over a flat plate is assumes to be of the form, determine the velocity distribution law. At y = 0, u= 0

### The Influence of Radial Area Variation on Wind Turbines to the Axial Induction Factor

Energy and Power Engineering, 2014, 6, 401-418 Published Online October 2014 in SciRes. http://www.scirp.org/journal/epe http://dx.doi.org/10.4236/epe.2014.611034 The Influence of Radial Area Variation

### Review on Aerodynamic Characteristics of Helicopter Tail Rotor Propeller Using Quasi-Continuous Vortex Lattice Method

Review on Aerodynamic Characteristics of Helicopter Tail Rotor Propeller Using Quasi-Continuous Vortex Lattice Method Firdaus, a, Jaswar Koto, a,b,*, M.S Ammoo, a, I.S.Ishak, a and Nofrizal, b a) Department

### Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France OMAE2013-10599 CALCULATION OF SHIP HYDRODYNAMIC PROPULSION

### HYDRAULIC TURBINES. Hydraulics and Hydraulic Machines

HYDRAULIC TURBINES Introduction: The device which converts h ydraulic energy into mechanical energy or vice versa is known as Hydraulic Machines. The h ydraulic machines which convert h ydraulic energy

### Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently 9 7. Determine the normal stress and shear stress acting

### Graph-theoretic Modeling and Dynamic Simulation of an Automotive Torque Converter

Graph-theoretic Modeling and Dynamic Simulation of an Automotive Torque Converter Joydeep M. Banerjee and John J. McPhee Department of Systems Design Engineering University of Waterloo, Waterloo, Ontario

### DETERMINATION OF HORIZONTAL AXIS WIND TURBINE PERFORMANCE IN YAW BY USE OF SIMPLIFIED VORTEX THEORY

5 th INTERNATIONAL MULTIDISCIPLINARY CONFERENCE DETERMINATION OF HORIZONTAL AXIS WIND TURBINE PERFORMANCE IN YAW BY USE OF SIMPLIFIED ORTEX THEORY Piotr Strzelczk, PhD Eng. Dept. Of Fluid Mechanics and

### DESIGN AND ANALYSIS METHODS FOR UAV ROTOR BLADES

SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE AFASES2017 DESIGN AND ANALYSIS METHODS FOR UAV ROTOR BLADES Alexandru DUMITRACHE*, Mihai-Victor PRICOP **, Mihai-Leonida NICULESCU **, Marius-Gabriel

### Homework 6. Solution 1. r ( V jet sin( θ) + ω r) ( ρ Q r) Vjet

Problem 1 Water enters the rotating sprinkler along the axis of rotation and leaves through three nozzles. How large is the resisting torque required to hold the rotor stationary for the angle that produces

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 212/13 Exam 2ª época, 2 February 213 Name : Time : 8: Number: Duration : 3 hours 1 st Part : No textbooks/notes allowed 2 nd Part :

### Ice Class Regulations and the Application Thereof

1 (65) Date of issue: 14 Nov. 2017 Entry into force: 1 Dec. 2017 Validity: indefinitely Legal basis: Act on the Ice Classes of Ships and Icebreaker Assistance (1121/2005), section 4.1 Implemented EU legislation:

### TutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?

1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2

### UNIT 4 FLYWHEEL 4.1 INTRODUCTION 4.2 DYNAMICALLY EQUIVALENT SYSTEM. Structure. Objectives. 4.1 Introduction

UNIT 4 FLYWHEEL Structure 4.1 Introduction Objectives 4. Dynamically Equivalent System 4.3 Turning Moment Diagram 4.3.1 Turning Moment Diagram of a Single Cylinder 4-storke IC Engine 4.3. Turning Moment

### Lab Reports Due on Monday, 11/24/2014

AE 3610 Aerodynamics I Wind Tunnel Laboratory: Lab 4 - Pressure distribution on the surface of a rotating circular cylinder Lab Reports Due on Monday, 11/24/2014 Objective In this lab, students will be

### Numerical Investigation of the Impact of SES-Waterjet Interactions and Flow Non-uniformity on Pump Performance

11 th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Numerical Investigation of the Impact of SES-Waterjet Interactions and Flow Non-uniformity on

### RANS calculations of the flow past inclined propellers

Copy No. Defence Research and Development Canada Recherche et développement pour la défense Canada DEFENCE & DÉFENSE RANS calculations of the flow past inclined propellers Paul-Edouard Leras ENSIETA, Brest,

### A Physical Insight into Counter-Rotating Open Rotor In-Plane Loads

21ème Congrès Français de Mécanique Bordeaux, 26 au 3 août 213 A Physical Insight into Counter-Rotating Open Rotor In-Plane Loads Ignacio Gonzalez-Martino a, Benjamin François a,b, Benoit Rodriguez c a.

### Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

### Design and Dynamic Analysis on Composite Propeller of Ship Using FEA

Design and Dynamic Analysis on Composite Propeller of Ship Using FEA Ahmed Abdul Baseer Assistant Professor, Nizam Institute of Engineering and Technology. ABSTRACT: Ships and underwater vehicles like

### Study of the hydrodynamic flow around a 70m sailing boat for powering, wave pattern and propeller efficiency prediction

Study of the hydrodynamic flow around a 70m sailing boat for powering, wave pattern and propeller efficiency prediction Romain Baudson Supervisor: Prof. Dario Boote (UNIGE) External Reviewer: Prof. Pierre

### AP Physics QUIZ Chapters 10

Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5-kilogram sphere is connected to a 10-kilogram sphere by a rigid rod of negligible

### CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

### Advanced Higher Physics. Rotational motion

Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

### Turbine Blade Design of a Micro Gas Turbine

Turbine Blade Design of a Micro Gas Turbine Bhagawat Yedla Vellore Institute of Technlogy, Vellore 632014, India Sanchit Nawal Vellore Institute of Technlogy, Vellore 632014, India Shreehari Murali Vellore

### The Calculations of Propeller Induced Velocity by RANS and Momentum Theory

J. Marine Sci. Appl. (2012) 11: 164-168 DOI: 10.1007/s11804-012-1118-1 The Calculations of Propeller Induced Velocity by RANS and Momentum Theory Qiuxin Gao *, Wei Jin and Dracos Vassalos Department of

### CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

4-1 CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 4.1 In order to compute the fraction of atom sites that are vacant in copper at 1357 K, we must employ Equation

### Gyroscopic Couple and Precessional Motion

480 l Theory of Machines 14 Fea eatur tures es 1. Introduction.. Precessional Angular Motion. 3. Gyroscopic Couple. 4. Effect of Gyroscopic Couple on an Aeroplane. 5. Terms Used in a Naval Ship. 6. Effect

### (3) BIOMECHANICS of LOCOMOTION through FLUIDS

(3) BIOMECHANICS of LOCOMOTION through FLUIDS Questions: - Explain the biomechanics of different modes of locomotion through fluids (undulation, rowing, hydrofoils, jet propulsion). - How does size influence

### The Pennsylvania State University. The Graduate School. College of Engineering. Inviscid Wind-Turbine Analysis Using Distributed Vorticity Elements

The Pennsylvania State University The Graduate School College of Engineering Inviscid Wind-Turbine Analysis Using Distributed Vorticity Elements A Thesis in Aerospace Engineering by Blair J. Basom 2010

### Study on the Performance of a Sirocco Fan (Flow Around the Runner Blade)

Rotating Machinery, 10(5): 415 424, 2004 Copyright c Taylor & Francis Inc. ISSN: 1023-621X print / 1542-3034 online DOI: 10.1080/10236210490474629 Study on the Performance of a Sirocco Fan (Flow Around

### Fluid Mechanics III. 1. Dimensional analysis and similarity

Fluid Mechanics III 1. Dimensional analysis and similarity Similarity The real world is non-dimensional. The proposition the Eiffel Tower is tall has no sense unless we state what is the object we compare

### Physics 218: Midterm#1

Physics 218: Midterm#1 February 25 th, 2015 Please read the instructions below, but do not open the exam until told to do so. Rules of the Exam: 1. You have 75 minutes to complete the exam. 2. Formulae

### Interaction of impeller and guide vane in a seriesdesigned

IOP Conference Series: Earth and Environmental Science Interaction of impeller and guide vane in a seriesdesigned axial-flow pump To cite this article: S Kim et al 212 IOP Conf. Ser.: Earth Environ. Sci.

### An Extrapolation Method Suitable for Scaling of Propellers of any Design

Fourth International Symposium on Marine Propulsors smp 5, Austin, Texas, USA, June 205 An Extrapolation Method Suitable for Scaling of Propellers of any Design Dr. Stephan Helma Stone Marine Propulsion

### INPUT DATA FOR TORSIONAL VIBRATION CALCULATIONS (TVC)

INPUT DATA FOR TORSIONAL VIBRATION CALCULATIONS (TVC) (POWER UNIT FOR MARINE INSTALLATIONS) Name of Vessel / New Building No. Name of Shipyard / Yard No. Name of Owner / Shipping Company Address of Owner

### AERODYNAMIC ANALYSIS OF THE HELICOPTER ROTOR USING THE TIME-DOMAIN PANEL METHOD

7 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AERODYNAMIC ANALYSIS OF THE HELICOPTER ROTOR USING THE TIME-DOMAIN PANEL METHOD Seawook Lee*, Hyunmin Choi*, Leesang Cho*, Jinsoo Cho** * Department

### Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

### Development of an Analysis and Design Optimization Framework for Marine Propellers

Old Dominion University ODU Digital Commons Mechanical & Aerospace Engineering Theses & Dissertations Mechanical & Aerospace Engineering Spring 2017 Development of an Analysis and Design Optimization Framework

### PROPELLER THRUST ANALYSIS USING PRANDTL S LIFTING LINE THEORY, A COMPARISON BETWEEN THE EXPERIMENTAL THRUST AND THE THRUST PREDICTED BY

PROPELLER THRUST ANALYSIS USING PRANDTL S LIFTING LINE THEORY, A COMPARISON BETWEEN THE EXPERIMENTAL THRUST AND THE THRUST PREDICTED BY PRANDTL S LIFTING LINE THEORY by Steven R. Kesler A thesis submitted

### 2.00AJ / 16.00AJ Exploring Sea, Space, & Earth: Fundamentals of Engineering Design Spring 2009

MIT OpenCourseWare http://ocw.mit.edu 2.00AJ / 16.00AJ Exploring Sea, Space, & Earth: Fundamentals of Engineering Design Spring 2009 For information about citing these materials or our Terms of Use, visit:

### Nominal vs. Effective Wake Fields and Their Influence on Propeller Cavitation Performance

Journal of Marine Science and Engineering Article Nominal vs. Effective Wake Fields and Their Influence on Propeller Cavitation Performance Pelle Bo Regener 1, * ID, Yasaman Mirsadraee 1,2 ID and Poul

### DTIC. JM UIII i (; 034 I II Uli/flfl AD-A / P. D. Taylor ELECTE D.C E 1W. b W. C. Zierke. A.

AD-A273 844 / JM UIII i i The Pennsylvania State University APPLIED RESEARCH LABORATORY P.O. Box 30 State College, PA 16804 DTIC ELECTE D.C17 1993 THE HIGH REYNOLDS NUMBER FLOW THROUGH AN AXIAL-FLOW PUMP

### CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY OUTLINE 1. Angular Position, Velocity, and Acceleration 2. Rotational

### FINITE ELEMENT ANALYSIS AND OPTIMIZATION DESIGN OF ALUMINIUM AXIAL FAN BLADE

FINITE ELEMENT ANALYSIS AND OPTIMIZATION DESIGN OF ALUMINIUM AXIAL FAN BLADE Ebrahim Mustafa 1,4, Danardono 2, Triyono 2, Agus Dwi Anggono 3 and Abdussalam Ali Ahmed 4 1 Post Graduate Program of Mechanical