CT4471 Drinking Water 1

Size: px
Start display at page:

Download "CT4471 Drinking Water 1"

Transcription

1 CT4471 Drinking Water 1 Coagulation & flocculation Dr.ir. J.Q.J.C. Verberk Room September,

2 Contents 1. Introduction 2. Coagulation: theory 3. Coagulation: practice 4. Flocculation: theory 5. Flocculation: practice 6. Special constructions 25 September,

3 Introduction 25 September,

4 Why coagulation and flocculation? Removal of turbidity (clay) and colour (humic acids) public health and aesthetics Public health: Removal of heavy metals and organic compounds Aesthethics: Attractiveness of water 25 September,

5 Classification Colour Turbidity dissolved compounds colloids suspended solids m Settling solids Organic material Salts Gases Clay Silt Sand Gravel 25 September,

6 Settling velocity of particles particle diameter (mm) particle ρ = 2,650 kg/m 3 gravel coarse sand fine sand silt bacteria clay colloids Sedimentation time (over 30 cm) 0.3 seconds 3 seconds 38 seconds 33 minutes 35 hours 230 days 63 years 25 September,

7 Principle of coagulation & flocculation Colloids and humic acids are negatively charged stability Adding coagulant (coagulation) destabilisation Flocculation Growth of aggregates After coagulation and flocculation removal of floc aggregates by sedimentation and/or filtration 25 September,

8 Quality of surface water Suspended matter [mg/l] Turbidity Colour [FTU] [mg Pt/l] DOC [mg/l] Rhine Meuse Biesbosch reservoirs Lake IJssel Drentse Aa Tropical river 10,000 5,000 1, Standards for drinking water < 0.05 < 0.1 < 20 (<10) 25 September, (3)

9 Quality of surface water, worldwide 25 September,

10 Coagulation: theory 25 September,

11 Turbidity and humic acids Turbidity clay particles/colloids size μm charge = negative Color Humic compounds size 0.01μm charge of humic acids depends on the ph C n H 2n OH + H 2 O C n H 2n O - + H 3 O + 25 September,

12 Coagulants The appearance of iron salts in water depends on ph. Calculation of Fe 3+ concentration Fe(OH) 3 Fe OH - K = H 2 O H 3 O + + OH - K = K w [Fe = 3+ [H 3 O + ] [OH ] [OH ] 3 = 10 ] 38 [OH [Fe ] = [H ] = 3 O (10 ] ) 3 [H 3 O + ] 3 = [H 3 O + ] 3 log[fe 3+ ] = log( ) + 3 log(h 3 O + ) = 4 3 ph 25 September,

13 Coagulants A concentration of Fe 3+ ions of 0.05 mg/l is desired Only at ph of the water is 3.3 [Fe 3+ ] = 0.05 mg/l = mmol/l log[fe 3+ ] = log[ ] = 4-3 ph ph = 3.3 ph < 3.3 then more Fe 3+ ph > 3.3 then less Fe 3+ Surface water has a ph of approximately 7. The consequence is that mol/l Fe 3+ can maximally be dissolved. If there are more Fe 3+ ions in the water, they will precipitate with OH- ions and form Fe(OH) September,

14 Coagulants 25 September,

15 Coagulants dosing in practice 10-4 mol/l Fe = 5.6 mg/l Fe = 27 mg/l FeCl 3 6H 2 O dosing of iron is done with FeCl 3 FeCl 3 6H 2 O Fe Cl H 2 O Fe OH - Fe(OH) 3 Result of dosing coagulants = ph decrease, thus conditioning 25 September,

16 Coagulants Reaction coefficients Solubility products of iron salts Fe H 2 O Fe(OH) 2+ + H 3 O + K = Fe(OH) H 2 O Fe(OH) 2+ + H 3 O + K = Fe(OH) H 2 O Fe(OH) 3 + H 3 O + K = Fe(OH) 3 + 2H 2 O Fe(OH) 4- + H 3 O + K = September,

17 Coagulants 25 September,

18 log(al x (OH) y 3x-y ) [mol/l] Coagulants Al(OH) 2+ Al 3+ Al(OH) Al 13 (OH) ph 25 September,

19 Coagulants: Pre-polymerized Aluminium Chloride (PAC) Part of the coagulation reaction already finished Very good results at low temperatures OH Cl - OH OH Cl Cl - +Al-OH-Al-OH-Al-O-Al-O-Al-OH + OH OH OH Cl - OH 25 September,

20 Destabilisation Three mechanisms electrostatic coagulation adsorptive coagulation precipitation coagulation 25 September,

21 Electrostatic coagulation Dosage mmol/l Fe 3+ ph 3 25 September,

22 Adsorptive coagulation < 1 sec Fe 3+ + H 2 O Fe(OH) 2+ Adsorptive coagulation occurs at a low ph, because positive hydrolysis products are needed. restabilisation: - under-dosage of coagulants - over-dosage of coagulants 25 September,

23 Precipitation (sweep) coagulation At low turbidites Fe(OH) 3 floc is neutral, flocs can collide 25 September,

24 Polyelectrolytes (flocculant aid): long organic polymers Stronger flocks larger flocks Used at low temperatures 25 September,

25 Conclusions coagulation electrostatic coagulation: not of importance in drinking water treatment adsorptive coagulation colour at low ph, dosing proportional with removal of organic compounds low dosing high dosing results in re-stabilisation optimum with low ph mostly for colour (organic compounds) precipitation coagulation no re-stabilisation high dosing for turbidity removal evident optimum ph 8 with iron ph 6 with aluminum 25 September,

26 Coagulation: practice 25 September,

27 Jar test apparatus Variation in: ph, dosage, flocculation time, sedimentation time, stirring energy 25 September,

28 Optmising dosage 25 September,

29 Optimising ph 25 September,

30 Coagulation Braakman polder water = humic acids 25 September,

31 WRK I-II WRK III Rhine water <-> Lake IJssel water 25 September,

32 Rapid mixing - mechanical mixers -static mixers parameters: - residence time (T) -velocity gradient (G c ) 25 September,

33 Weir mixer 25 September,

34 Example weir mixing ΔH static mixer G c = ρ w g ΔH τ μ c Example: ΔH = 0.75 m; Q = 4500 m 3 /h; V = 2 m 3 T = 20 C μ = N s/m 2 Q = 4500 m 3 /h = 1.25 m 3 /s τ c = 2/1.25 = 1.60 sec G c = = s 1 25 September,

35 Variation in velocity gradient G c 25 September,

36 Construction forms of static mixers Coagulant dosing v v Coagulant dosing Main flow coagulant dosing through 6 holes 25 September,

37 Construction forms of static mixers 25 September,

38 Coagulation: practice mechanical mixer G c P = μ V 25 September,

39 Mixing: Dutch practice WRK I-II WRK III Braakman Type mixer constriction hydraulic jump cascade Energy loss over mixer [m] Mixing time [s] G c value at 20 C [s -1 ] Type of coagulant FeCl 3 Fe SO 4 Al 2 (SO 4 ) 2 Dosing [mg/l] September,

40 Flocculation: theory 25 September,

41 Perikinetic flocculation driving force = Brownian movement Von Smoluchowski: dn 4 k T n 2 =α dt 3 μ solution: n n0 = α k T 3 μ 25 September,

42 Orthokinetic flocculation driving force = turbulence dn 4 = n n R G dt v Plug flow n n o = e k c G t a v v Complete mixing n 1 = n 1 + k c G t o a v v 25 September,

43 25 September, dx dy dz dz dz dv v + v V P G V G dz dy dx dz dv dv dy dx dz dv dv F P dy dx dz dv F 2 2 = = = = = = μ μ μ μ μ Velocity gradient

44 Flocculation: practice 25 September,

45 Construction forms of flocculation tanks parameters: - residence time T - residence time distribution n -velocity gradient - floc volume concentration c v G v residence time: seconds 25 September,

46 Residence time (distribution) Plug flow Completely mixed no mixing, thus particle concentration differences no residence time distribution particles perfectly mixed, thus no particle concentration differences residence time distribution particles 25 September,

47 Residence time distribution complete mixing: J( Θ) = 1 exp ( Θ ) plug flow: t < T J(Θ) = 0; t T J(Θ) = 1 mixers in series: J( Θ) = 1 exp(-n Θ) n i= 1 i 1 (n Θ) (i 1)! Θ = t/t t = time T = calculated residence time 25 September,

48 Residence time distribution cumulative frequency distribution [%] 1 0,8 0,6 0,4 0, plugflow perfect mixing 4 in serie 20 in serie 25 September,

49 Optimal design flocculators L/B ratio (L/B >= 3) Vertical, deep and narrow or horizontal, long and narrow 25 September,

50 Non optimal design 25 September,

51 Velocity gradient Energy input turbulence collision of particles flocs Degree of energy supply = velocity gradient G v P = V η Velocity gradient in practice: s -1 Considering floc break up: tapered flocculation 25 September,

52 Variation in velocity gradient G v 25 September,

53 Flocculators P = V η P = ρ π (1 k ) N C L r r ( 4 4 w 2 d blad u i ) G v G = constant N 3 Design parameters: L blade, C d, r u, r i, k 2 L blade Operating parameters: N r u 25 September, r i

54 Tip velocity v = 2 π r N N = 4 rotations/min v max = 1 m/s v 1 r < < < 2 π N 4 2 π m 25 September,

55 Short circuit flow due to flocculators flow parallel to stirring axis = no short circuit flow 25 September,

56 Short circuit flow due to flocculators flow perpendicular to stirring axis = short circuit flow flow velocity = 0.03 m/s, tip velocity = 1 m/s water velocity 0.97 tot 1.03 m/s 25 September,

57 Floc break-up avoiding floc break-up: - more compartments with different G v value - tip velocity less than 1 m/s results in maximum width of 5 m approaching plug flow: - compartments with large L/B ratio (L/B >= 3) - water flow parallel to axis of stirring device 25 September,

58 Well designed flocculator 25 September,

59 Well designed flocculator 25 September,

60 Flocculation: practice transport rapid filtration floc removal Lek flocculation 25 September,

61 Flocculation: practice Dutch practice WRK I-II WRK III Braakman Flocculation time minimum [min] Flocculation time maximum [min] Number of compartments Width [m] Depth [m] Length [m] Direction of flow vertical horizontal vertical Rotations of stirring device [rpm] G v value [s -1 ] per comp Direction axis to flow perpendicular parallel parallel 25 September,

62 Optimal design parameters flocculation installations Coagulation mixing time 1-10 sec velocity gradient mixing > 1,500 sec -1 Flocculation flocculation time = 30 minutes 3-4 compartments Length/width ratio = 3 to 6 axis stirring device parallel to water flow velocity gradient flocculation sec -1 rotations: 1-8 rpm maximum tip velocity 0.9 m/s 25 September,

63 Special constructions 25 September,

64 Sludge blanket installation Berenplaat 25 September,

65 Sludge blanket installation Bombay 25 September,

66 Sludge blanket installation Bombay 25 September,

67 Hydraulic flocculation 25 September,

COAGULATION AND FLOCCULATION

COAGULATION AND FLOCCULATION COAGULATION AND FLOCCULATION Course, Zerihun Alemayehu COAGULATION AND FLOCCULATION Remove infectious agents, Remove toxic compounds that have adsorbed to the surface of particles, Remove precursors to

More information

Water Treatment: Coagulation

Water Treatment: Coagulation Water Treatment: Coagulation and Flocculation 1 Surface Water Treatment Removal of turbidity rapid mix tank flocculation tanks settling (sedimentation) tanks 2 Rapid Mixing Used to blend chemicals and

More information

L-17 Coagulation and Flocculation Part-I. Environmental Engineering-I

L-17 Coagulation and Flocculation Part-I. Environmental Engineering-I L-17 Coagulation and Flocculation Part-I Environmental Engineering-I Content Part-I Coagulation, Types of Coagulant, Part-II dosing, rapid mixing, Flocculation-design parameters. Purpose The primary purpose

More information

CEE 371 Water and Wastewater Systems

CEE 371 Water and Wastewater Systems Updated: 1 November 009 CEE 371 Water and Wastewater Systems Print version Lecture #16 Drinking Water Treatment: Coagulation, mixing & flocculation Reading: Chapter 7, pp.5-9, 10-13 David Reckhow CEE 371

More information

Sanitary Engineering. Coagulation and Flocculation. Week 3

Sanitary Engineering. Coagulation and Flocculation. Week 3 Sanitary Engineering Coagulation and Flocculation Week 3 1 Coagulation and Flocculation Colloidal particles are too small to be removed by sedimentation or by sand filtration processes. Coagulation: Destabilization

More information

Lecture 3: Coagulation and Flocculation

Lecture 3: Coagulation and Flocculation Islamic University of Gaza Environmental Engineering Department Water Treatment EENV 4331 Lecture 3: Coagulation and Flocculation Dr. Fahid Rabah 1 3.1 Definition of Coagulation and Flocculation Coagulation

More information

Delvin DeBoer, Ph.D., PE. MN/ND/SD SWTW April 29, 2014 OUTLINE

Delvin DeBoer, Ph.D., PE. MN/ND/SD SWTW April 29, 2014 OUTLINE Physical/Chemical Process FUNDAMENTALS Delvin DeBoer, Ph.D., PE MN/ND/SD SWTW April 29, 2014 OUTLINE Properties of turbidity and organic matter Mechanisms of coagulation, coagulant chemicals and jar testing

More information

Treatment Processes. Coagulation. Coagulation. Coagulation. Coagulation. Coagulation and Flocculation

Treatment Processes. Coagulation. Coagulation. Coagulation. Coagulation. Coagulation and Flocculation CIVL 1112 Water Treatment - and 1/7 Treatment Processes and and flocculation consist of adding a flocforming chemical reagent to a water to enmesh or combine with nonsettleable colloidal solids and slowsettling

More information

Water Quality - Condensed Version 1999

Water Quality - Condensed Version 1999 9.0 COAGULATION Virtually all surface water sources contain turbidity. ost of the suspended matter in water are present as finally divided or colloidal particles and these do not settle due to gravitational

More information

Coagulant Overview. Tom Coughlin Chemtrade 2015

Coagulant Overview. Tom Coughlin Chemtrade 2015 Coagulant Overview Tom Coughlin Chemtrade 2015 Outline Coagulation Overview Purpose of Coagulation Coagulant types and characteristics Coagulant Options Understanding the role of Coagulation Optimizing

More information

ENVE 411 Water Engineering Design

ENVE 411 Water Engineering Design ENVE 411 Water Engineering Design Design of Coagulation & Flocculation Units Fall 2012 07 Nov 2012 Assist. Prof. A. Evren Tugtas Orhaniye WTP 2 Mixing Mixing liquids is used to: Blending of two immiscible

More information

ENVIRONMENTAL ENGINEERING. Chemical Engineering department

ENVIRONMENTAL ENGINEERING. Chemical Engineering department ENVIRONMENTAL ENGINEERING Chemical Engineering department WATER TREATMENT Many aquifers and isolated surface waters are of high water quality and may be pumped from the supply and transmission network

More information

Sedimentation. Several factors affect the separation of settleable solids from water. Some of the more common types of factors to consider are:

Sedimentation. Several factors affect the separation of settleable solids from water. Some of the more common types of factors to consider are: Sedimentation Sedimentation, or clarification, is the process of letting suspended material settle by gravity. Suspended material may be particles, such as clay or silts, originally present in the source

More information

건축사회환경공학과홍승관교수. potency Cost rank b Harmful. (ph < 7) Chloramines High Yes Fair 2 Maybe not. Ozone Limited No Best 3 Yes, but limited

건축사회환경공학과홍승관교수. potency Cost rank b Harmful. (ph < 7) Chloramines High Yes Fair 2 Maybe not. Ozone Limited No Best 3 Yes, but limited 6.D CHEMICAL AND PHYSICOCHEMICAL TREATMENT METHODS 6.D.1 Disinfection - The central aim of disinfection is to limit the risk of disease transmission associated with potable water and wastewater. - Two

More information

Polyaluminum Chloride and Chitosan Composite Coagulant for Natural Organic Matter Removal

Polyaluminum Chloride and Chitosan Composite Coagulant for Natural Organic Matter Removal Polyaluminum Chloride and Chitosan Composite Coagulant for Natural Organic Matter Removal 1,A. Liana 1, S. Liu 1, M. Lim 1, C. Chow 2, D. Wang 3, M. Drikas 2, R. Amal 1 1 ARC Centre of Excellence for Functional

More information

ADVANCED SEPARATION TECHNOLOGY APPLICATION FOR NOM REMOVAL FROM A FRESHWATER SUPPLY

ADVANCED SEPARATION TECHNOLOGY APPLICATION FOR NOM REMOVAL FROM A FRESHWATER SUPPLY Costa Mesa, July 27, 2011 -, July 29, 2011 ADVANCED SEPARATION TECHNOLOGY APPLICATION FOR NOM REMOVAL FROM A FRESHWATER SUPPLY Andrea G. Capodaglio,, Arianna Callegari and Philippe Sauvignet 650th Anniversary

More information

PRIMARY TREATMENT NATURE

PRIMARY TREATMENT NATURE PRIMARY TREATMENT NATURE Physical and chemical processes. Physical: sedimentation based in density differences Chemical: coagulation and flocculation, ph adjustment, precipitation (formation of insoluble

More information

Membrane for water reuse: effect of pre-coagulation on fouling and selectivity

Membrane for water reuse: effect of pre-coagulation on fouling and selectivity Membrane for water reuse: effect of pre-coagulation on fouling and selectivity Y. Soffer*, R. Ben Aim** and A. Adin* *Division of Environmental Sciences, The Hebrew University of Jerusalem, Jerusalem 91904,

More information

TECHNOLOGIES THAT TRANSFORM POLLUTANTS TO INNOCUOUS COMPONENTS: CHEMICAL AND PHYSICOCHEMICAL METHODS

TECHNOLOGIES THAT TRANSFORM POLLUTANTS TO INNOCUOUS COMPONENTS: CHEMICAL AND PHYSICOCHEMICAL METHODS TECHNOLOGIES THAT TRANSFORM POLLUTANTS TO INNOCUOUS COMPONENTS: CHEMICAL AND PHYSICOCHEMICAL METHODS HUANG Xia Tsinghua University, Beijing, P.R. China Keywords: Pollutants, Innocuous Components, Chemical

More information

Coagulation Chemistry: Effects on the Acid/Base Balance

Coagulation Chemistry: Effects on the Acid/Base Balance Coagulation Chemistry: Effects on the Acid/Base Balance Via chemical equilibrium reactions, consumption of OH in the precipitation step has a domino effect on the concentrations of H +, OH, H 2 CO 3, HCO

More information

What do I need to know to pass an Advanced Industrial Wastewater License Test?

What do I need to know to pass an Advanced Industrial Wastewater License Test? What do I need to know to pass an Advanced Industrial Wastewater License Test? [Activated sludge, metals finishing, sedimentation/clarification with chemicals, DAF] All of the Basic Industrial Wastewater

More information

What is physical treatment? What is chemical treatment?

What is physical treatment? What is chemical treatment? What is physical treatment? What is chemical treatment? Physical : having material existence and subject to the laws of nature. Chemical : any material used in, or produced by chemistry. Chemistry : is

More information

( ) ( s) ( ) ( ) ( ) Coagulation Chemistry: Effects on the Acid/Base Balance. Coagulation Chemistry: Effects on the Acid/Base Balance

( ) ( s) ( ) ( ) ( ) Coagulation Chemistry: Effects on the Acid/Base Balance. Coagulation Chemistry: Effects on the Acid/Base Balance Coagulation Chemistry: Effects on the Acid/Base Balance Via chemical equilibrium reactions, consumption of H in the precipitation step has a domino effect on the concentrations of H +, H, H C, HC, and

More information

1 Turbidity = NTU 2 ph = Alkalinity = 34 mg/l as CaCO 3 4 Temperature = 5 Fe = 2 mg/l 6 Mn = mg/l 7 Total Hardness = 50mg/l as CaCO 3

1 Turbidity = NTU 2 ph = Alkalinity = 34 mg/l as CaCO 3 4 Temperature = 5 Fe = 2 mg/l 6 Mn = mg/l 7 Total Hardness = 50mg/l as CaCO 3 DESIGN CALIFIER TANK (SLUDGE BLANKET CLARIFIER TYPE : SLUDGE RECIRCULATION) 1. Flow Rate Q 150 m 3 /hr. Raw Water Quality input 1 Turbidity NTU ph 8.3 3 Alkalinity 3 mg/l as CaCO 3 Temperature 5 Fe mg/l

More information

Chemical coagulants and flocculants

Chemical coagulants and flocculants Chemical coagulants and flocculants SEDIMENT CONTROL TECHNIQUE Type 1 System Sheet Flow Sandy Soils [1] Type 2 System Concentrated Flow Clayey Soils Type 3 System Instream Works Dispersive Soils [1] Chemical

More information

Optimizing Coagulation with Streaming Current Plant Operations Conference Presented by the VA AWWA Plant Operations Committee

Optimizing Coagulation with Streaming Current Plant Operations Conference Presented by the VA AWWA Plant Operations Committee Optimizing Coagulation with Streaming Current 2016 Plant Operations Conference Presented by the VA AWWA Plant Operations Committee Outline Coagulation Background Benefits of SCMs Theory of Operation System

More information

AJCHE 2012, Vol. 12, No. 1, Water Treatment by Coagulation-Flocculation Using Ferric Sulphate as Coagulant

AJCHE 2012, Vol. 12, No. 1, Water Treatment by Coagulation-Flocculation Using Ferric Sulphate as Coagulant AJCHE 212, Vol. 12, No. 1, 42 5 Water Treatment by Coagulation-Flocculation Using Ferric Sulphate as Coagulant Hary Sulistyo * Suprihastuti Sri Rahayu Wahyudi Budi Sediawan Sarto Yusuf Ronald Nainggolan

More information

1 Turbidity = NTU 2pH = 3 Alkalinity = mg/l as CaCO 3 4 Temperature = 5 Fe mg/l 6 Mn mg/l 7 Total Hardness mg/l as CaCO 3

1 Turbidity = NTU 2pH = 3 Alkalinity = mg/l as CaCO 3 4 Temperature = 5 Fe mg/l 6 Mn mg/l 7 Total Hardness mg/l as CaCO 3 DESIGN CALIFIER TANK (SLUDGE BLANKET CLARIFIER TYPE : VERTICAL SLUDGE BLANKET) 1. Flow Rate Q = 150 m /hr. Raw Water Quality input 1 Turbidity = NTU ph = Alkalinity = mg/l as CaCO Temperature = 5 Fe mg/l

More information

See us (live!) at Pittcon Booth 1039

See us (live!) at Pittcon Booth 1039 See us (live!) at Pittcon Booth 1039 Meeting Green Goals with Zeta Potential and the SZ100 will start soon. Jeffrey Bodycomb, Ph.D. HORIBA Scientific www.horiba.com/us/particle Meeting Green Goals with

More information

Optimizing Coagulation with the Streaming Current Meter. Chuck Veal Micrometrix Corp

Optimizing Coagulation with the Streaming Current Meter. Chuck Veal Micrometrix Corp Optimizing Coagulation with the Streaming Current Meter Chuck Veal Micrometrix Corp Charged Particles Repel Neutral Particles Flocculate Coagulant Particles Al 3+ Monomeric hydrolysis products e.g. Al(OH)

More information

Chapter 6: Solid-Liquid Separation in WWTPs. Raúl Muñoz Pedro García Encina

Chapter 6: Solid-Liquid Separation in WWTPs. Raúl Muñoz Pedro García Encina Chapter 6: Solid-Liquid Separation in WWTPs Raúl Muñoz Pedro García Encina 1 Introduction to Solid-Liquid Separation 2 Introduction: Separation Methods Solid/liquid separation technologies Ensure good

More information

Evaluation of a modified chitosan biopolymer for coagulation of colloidal particles

Evaluation of a modified chitosan biopolymer for coagulation of colloidal particles Colloids and Surfaces A: Physicochemical and Engineering Aspects 147 (1999) 359 364 Evaluation of a modified chitosan biopolymer for coagulation of colloidal particles Jill Ruhsing Pan, Chihpin Huang *,

More information

REMOVAL OF REACTIVE YELLOW DYE USING NATURAL COAGULANTS IN SYNTHETIC TEXTILE WASTE WATER

REMOVAL OF REACTIVE YELLOW DYE USING NATURAL COAGULANTS IN SYNTHETIC TEXTILE WASTE WATER Int. J. Chem. Sci.: 11(4), 213, 1824-183 ISSN 972-768X www.sadgurupublications.com REMOVAL OF REACTIVE YELLOW DYE USING NATURAL COAGULANTS IN SYNTHETIC TEXTILE WASTE WATER G. VIJAYARAGHAVAN *, R. RAJASEKARAN

More information

10 TH EUROPEAN WASTE WATER CONFERENCE DEVELOPMENT OF FLOCCULATION MODELS FOR IMPROVING WATER TREATMENT

10 TH EUROPEAN WASTE WATER CONFERENCE DEVELOPMENT OF FLOCCULATION MODELS FOR IMPROVING WATER TREATMENT 10 TH EUROPEAN WASTE WATER CONFERENCE DEVELOPMENT OF FLOCCULATION MODELS FOR IMPROVING WATER TREATMENT Egarr, D. A. 1 *, Horton, L. 1, Rice, H. 2, Hunter, T. 2 1 MMI Engineering, Suite 7 Corum 2, Corum

More information

International Journal of Scientific and Research Publications, Volume 4, Issue 5, May ISSN

International Journal of Scientific and Research Publications, Volume 4, Issue 5, May ISSN International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014 1 Effective use of nanocrystalline and lime when used in of coagulants - Alum, Fecl 3 and FeSO 4 for suspended

More information

Coagulation. Characterization of Natural Organic Matter by FeCl 3. Journal of Physics: Conference Series PAPER OPEN ACCESS

Coagulation. Characterization of Natural Organic Matter by FeCl 3. Journal of Physics: Conference Series PAPER OPEN ACCESS Journal of Physics: Conference Series PAPER OPEN ACCESS Characterization of Natural Organic Matter by FeCl 3 Coagulation To cite this article: O H Cahyonugroho and E N Hidayah 2018 J. Phys.: Conf. Ser.

More information

Brownian Motion and Coagulation Process

Brownian Motion and Coagulation Process American Journal of Environmental Protection 2015; 4(5-1): 1-15 Published online April 28, 2015 (http://www.sciencepublishinggroup.com/j/ajep) doi: 10.11648/j.ajeps.s.2015040501.11 ISSN: 2328-5680 (Print);

More information

Coagulation & Flocculation

Coagulation & Flocculation Chapter 6-1. Coagulation & Flocculation I Introduction Colloidal impurities in surface waters cause the water to appear turbid or may impart color - Turbidity caused by colloidal clay particles produced

More information

Optimization of the Coagulation Process to Remove Total Suspended Solids (TSS) from Produced Water

Optimization of the Coagulation Process to Remove Total Suspended Solids (TSS) from Produced Water 115 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 39, 2014 Guest Editors: Petar Sabev Varbanov, Jiří Jaromír Klemeš, Peng Yen Liew, Jun Yow Yong Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-30-3;

More information

Color removal from industrial wastewater with a novel coagulant flocculant formulation

Color removal from industrial wastewater with a novel coagulant flocculant formulation Int. J. Environ. Sci. Tech. Supplement Winter 2006, Vol. 3, No. 1, pp. 79-88 Color removal from industrial wastewater with a novel coagulant flocculant formulation 1* M. S. Rahbar, 2 E. Alipour and 3 R.

More information

Adsorption of Humic acid on Powdered Activated Carbon (PAC)

Adsorption of Humic acid on Powdered Activated Carbon (PAC) Adsorption of Humic acid on Powdered Activated Carbon (PAC) Department of Civil and Environmental Engineering, MSU, East Lansing, MI, 48824, USA Abstract Removal capacity and rate of Humic Acid (HA) onto

More information

Conducting Polymer /TiO 2 Photocatalytic Nanocomposite for Wastewater Treatment

Conducting Polymer /TiO 2 Photocatalytic Nanocomposite for Wastewater Treatment Conducting Polymer /TiO 2 Photocatalytic Nanocomposite for Wastewater Treatment Zlata Hrnjak Murgić, Vanja Gilja, Zvonimir Katančić, Ljerka Kratofil Krehula Wastewater treatment BIOLOGICAL methods PHYSICAL

More information

Floc Strength Scale-Up: A Practical Approach

Floc Strength Scale-Up: A Practical Approach Floc Strength Scale-Up: A Practical Approach Dr Mick Dawson Mr Brian Perkins Process Director mdawson@bhrgroup.co.uk 25 th October 2011 BHR Group 2011 BHR Group is a trading name of VirtualPiE Limited

More information

COMPARISON OF THE FILTERABILITY OF MINERAL, ORGANIC, AND MIXED SUSPENSIONS APPLICATION TO WATER CLARIFICATION

COMPARISON OF THE FILTERABILITY OF MINERAL, ORGANIC, AND MIXED SUSPENSIONS APPLICATION TO WATER CLARIFICATION COMPARISON OF THE FILTERABILITY OF MINERAL, ORGANIC, AND MIXED 11 Jurnal Teknologi, 41(F) Keluaran Khas. Dis. 2004: 11 20 Universiti Teknologi Malaysia COMPARISON OF THE FILTERABILITY OF MINERAL, ORGANIC,

More information

The Effect of Fast Mixing Conditions on the Coagulation-Flocculation of Highly Turbid. Suspensions Using Magnesium Hydroxide Coagulant

The Effect of Fast Mixing Conditions on the Coagulation-Flocculation of Highly Turbid. Suspensions Using Magnesium Hydroxide Coagulant The Effect of Fast Mixing Conditions on the Coagulation-Flocculation of Highly Turbid Suspensions Using Magnesium Hydroxide Coagulant S.W. Bin Ahmed 1, G. M. Ayoub 1, M. Al-Hindi 1, F. Azizi 1 1 American

More information

INDBOND 3000 Dry Strength Resin for Paper

INDBOND 3000 Dry Strength Resin for Paper INDBOND 3000 Dry Strength Resin for Paper INDBOND 3000 Dry Strength Resins are specially formulated polymers designed for better paper making and to improve strength characteristics like burst factor,

More information

Water Pollution Control: Physical Methods. AWPPCE RPI Fall 2013

Water Pollution Control: Physical Methods. AWPPCE RPI Fall 2013 Water Pollution Control: Physical Methods AWPPCE RPI Fall 2013 Water Pollution Control Processes Water and Waste Water Treatment are usually carried out in specially designed vessels (reactors) under controlled

More information

Physicochemical Influences upon Floc Deformability, Density, and Permeability

Physicochemical Influences upon Floc Deformability, Density, and Permeability Physicochemical Influences upon Floc Deformability, Density, and Permeability Abstract Larry A. Glasgow Department of Chemical Engineering Kansas State University Manhattan, KS 66506-50 785-5-44 FAX: 785-5-77

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Type of reactors Dr. Zifei Liu Ideal reactors A reactor is an apparatus in which chemical, biological, and physical processes (reactions) proceed intentionally,

More information

ECOTAN SERIES. Natural Based Coagulants

ECOTAN SERIES. Natural Based Coagulants ECOTAN SERIES Natural Based Coagulants Results and examples Fruits, Textile, Slaughterhouses. Dairy, Species, PWTP. Ice Cream, Paper & Cardboard, WWTP. In general, ECOTAN series are efficient on both sedimentation

More information

Theory of Flocculation Reprint with Authorization by David L. Forbes

Theory of Flocculation Reprint with Authorization by David L. Forbes TECHNICAL PUBLICATION INFORMATION & STRATEGY FOR THE FACILITY MANAGER Theory of Flocculation Reprint with Authorization by David L. Forbes Introduction The efficiency of most solid/liquid separation processes

More information

Utilization of floc characteristics for the evaluation of seawater coagulation process

Utilization of floc characteristics for the evaluation of seawater coagulation process Desalination and Water Treatment www.deswater.com 10 (2009) 95 100 1944-3994 / 1944-3986 2009 Desalination Publications. All rights reserved. Utilization of floc characteristics for the evaluation of seawater

More information

Particles in aqueous environments

Particles in aqueous environments Lecture 11 Particle-Aqueous Solute Interactions Today 1. Particle types and sizes 2. Particle charges 3. Particle-solute Interactions Next time Please continue to read Manahan Chapter 4. 1. Fresh-salt

More information

Impact of ozonation on coagulation properties in drinking water treatment

Impact of ozonation on coagulation properties in drinking water treatment Impact of ozonation on coagulation properties in drinking water treatment N. Vereshchuk 1 *, L. J. Hem 2, H. Ratnaweera 2, I. Kosogina 1, I. Astrelin 1 1 Department of Chemical technology of inorganic

More information

Colloid stability. Lyophobic sols. Stabilization of colloids.

Colloid stability. Lyophobic sols. Stabilization of colloids. Colloid stability. Lyophobic sols. Stabilization of colloids. Lyophilic and lyophobic sols Sols (lyosols) are dispersed colloidal size particles in a liquid medium (=solid/liquid dispersions) These sols

More information

SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES

SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES EXERCISE 5.1: Colloidal particles may be either dispersed or aggregated. (a) What causes the difference between these two cases? Answer in terms of interparticle

More information

15. Physics of Sediment Transport William Wilcock

15. Physics of Sediment Transport William Wilcock 15. Physics of Sediment Transport William Wilcock (based in part on lectures by Jeff Parsons) OCEAN/ESS 410 Lecture/Lab Learning Goals Know how sediments are characteried (sie and shape) Know the definitions

More information

Chapter 12 Gravimetric Methods of Analysis

Chapter 12 Gravimetric Methods of Analysis Chapter 12 Gravimetric Methods of Analysis gravi metric (weighing - measure) Gravimetric Analysis A given analyte is isolated from the sample and weighed in some pure form. One of the most accurate and

More information

Water Soluble Polymers For Industrial Water Treatment Applications

Water Soluble Polymers For Industrial Water Treatment Applications Water Soluble Polymers For Industrial Water Treatment Applications Presented By Technical Sales Jim Millard Course Objectives Explain what water soluble polymers are. Describe the 4 physical forms commonly

More information

Understanding Fluid Mechanics and Chemistry in Advanced Polymer Mixing for Improved Coagulation and Dewatering

Understanding Fluid Mechanics and Chemistry in Advanced Polymer Mixing for Improved Coagulation and Dewatering Understanding Fluid Mechanics and Chemistry in Advanced Polymer Mixing for Improved Coagulation and Dewatering Yong Kim, PhD Technical Director UGSI Chemical Feed, Inc. 1 Presentation Overview Why Polymer?

More information

Short Communication Changes in Iron(II) and Iron(III) Content in a Solution of Humic Acids During Coagulation by Means of Monomeric Iron(III) Salts

Short Communication Changes in Iron(II) and Iron(III) Content in a Solution of Humic Acids During Coagulation by Means of Monomeric Iron(III) Salts Polish J. of Environ. Stud. Vol. 19, No. 5 (2010), 1089-1093 Short Communication Changes in Iron(II) and Iron(III) Content in a Solution of Humic Acids During Coagulation by Means of Monomeric Iron(III)

More information

Removal of Colloidal Particles Utilizing Gelation Reaction of Sodium Alginate

Removal of Colloidal Particles Utilizing Gelation Reaction of Sodium Alginate Korean J. Chem. Eng., 17(5), 574-578 (2000) Removal of Colloidal Particles Utilizing Gelation Reaction of Sodium Alginate Masashi Iwata Department of Industrial Chemistry, Suzuka National College of Technology,

More information

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2 This chapter provides an introduction to the transport of particles that are either more dense (e.g. mineral sediment) or less dense (e.g. bubbles) than the fluid. A method of estimating the settling velocity

More information

Enhanced coagulation for high alkalinity and micro-polluted water: The third way through coagulant optimization

Enhanced coagulation for high alkalinity and micro-polluted water: The third way through coagulant optimization Available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/watres Enhanced coagulation for high alkalinity and micro-polluted water: The third way through coagulant optimization Mingquan

More information

Coagulation performance and floc characteristics of polytitanium tetrachloride and titanium tetrachloride compared with ferric chloride for

Coagulation performance and floc characteristics of polytitanium tetrachloride and titanium tetrachloride compared with ferric chloride for 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Coagulation performance and floc characteristics of polytitanium tetrachloride and titanium tetrachloride

More information

Chapter 2: Conventional Wastewater Treatment (continue)

Chapter 2: Conventional Wastewater Treatment (continue) ENGI 9605 Advanced Wastewater Treatment Chapter 2: Conventional Wastewater Treatment (continue) Winter 2011 Faculty of Engineering & Applied Science 1 2.2 Chemical treatment processes 1. Coagulation (1)

More information

ENVIRONMENTAL CHEMICAL ANALYSIS

ENVIRONMENTAL CHEMICAL ANALYSIS ENVIRONMENTAL CHEMICAL ANALYSIS ANALYSIS Identification and Quantification CHEMICAL The Analyte: A Discrete Chemical Species or A Collection of Related Chemical Species (i.e., An Aggregate) ENVIRONMENTAL

More information

Lect. 2: Chemical Water Quality

Lect. 2: Chemical Water Quality The Islamic University of Gaza Faculty of Engineering Civil Engineering Department M.Sc. Water Resources Water Quality Management (ENGC 6304) Lect. 2: Chemical Water Quality ١ Chemical water quality parameters

More information

S-100 Antiscalant AXEON S-100 Antiscalant is a highly effective antiscalant, specially formulated for feedwaters with the highest levels of metal oxid

S-100 Antiscalant AXEON S-100 Antiscalant is a highly effective antiscalant, specially formulated for feedwaters with the highest levels of metal oxid Membrane Chemicals AXEON Water Technologies features a broad range of membrane chemicals formulated to treat a variety of water conditions for commercial and industrial applications. AXEON Membrane Chemicals

More information

Faculty of Science and Technology

Faculty of Science and Technology Faculty of Science and Technology MASTER S THESIS Study program/ Specialization: Environmental Technology/Water Science and Technology Writer: Milagros Mosquera Faculty supervisor: Roald Kommedal Spring

More information

A TIPPING-BUCKET SEDIMENT TRAP FOR CONTINUOUS MONITORING OF SEDIMENT DEPOSITION RATE

A TIPPING-BUCKET SEDIMENT TRAP FOR CONTINUOUS MONITORING OF SEDIMENT DEPOSITION RATE A TIPPING-BUCKET SEDIMENT TRAP FOR CONTINUOUS MONITORING OF SEDIMENT DEPOSITION RATE YASUO NIHEI AND YUICHI IMASHIMIZU Department of Civil Eng., Tokyo University of Science, 2641 Yamazaki, Noda-shi 278-851,

More information

Optimization Studies on Textile Wastewater Decolourization by Fe 3+ /Pectin

Optimization Studies on Textile Wastewater Decolourization by Fe 3+ /Pectin 013 4th International Conference on Biology, Environment and Chemistry IPCBEE vol.58 (013) (013) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 013. V58. Optimization Studies on Textile Wastewater Decolourization

More information

Optimal Precipitation Of Zn+₂ and Ni+₂ From Aqueous Solution: Influence Of Rapid Mixing Parameters

Optimal Precipitation Of Zn+₂ and Ni+₂ From Aqueous Solution: Influence Of Rapid Mixing Parameters Ryerson University Digital Commons @ Ryerson Theses and dissertations 1-1-2010 Optimal Precipitation Of Zn+₂ and Ni+₂ From Aqueous Solution: Influence Of Rapid Mixing Parameters Ayad Hmood Ryerson University

More information

Method of floc classification after the coagulation process

Method of floc classification after the coagulation process Method of floc classification after the coagulation process Ewelina Łukasiewicz 1,*, and Mariusz Rząsa 1 1 Opole University of Technology, Department of Thermal Engineering and Industrial Facilities, 5

More information

Groundwater chemistry

Groundwater chemistry Read: Ch. 3, sections 1, 2, 3, 5, 7, 9; Ch. 7, sections 2, 3 PART 14 Groundwater chemistry Introduction Matter present in water can be divided into three categories: (1) Suspended solids (finest among

More information

Shirley E. Clark, Ph.D., P.E., D. WRE Penn State Harrisburg. Robert Pitt, Ph.D., P.E., BCEE, D. WRE University of Alabama

Shirley E. Clark, Ph.D., P.E., D. WRE Penn State Harrisburg. Robert Pitt, Ph.D., P.E., BCEE, D. WRE University of Alabama Shirley E. Clark, Ph.D., P.E., D. WRE Penn State Harrisburg Robert Pitt, Ph.D., P.E., BCEE, D. WRE University of Alabama Site Stormwater Characteristics and Permit Limits Analytes on Permit 90 th percentile

More information

J. Bio. & Env. Sci. 2014

J. Bio. & Env. Sci. 2014 Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 5, No. 5, p. 75-81, 2014 http://www.innspub.net RESEARCH PAPER OPEN ACCESS Investigation on the

More information

Coagu-Flocculation Mechanism of Flocculant and its Physical Model

Coagu-Flocculation Mechanism of Flocculant and its Physical Model Refereed Proceedings Separations Technology VI: New Perspectives on Very Large-Scale Operations Engineering Conferences International Year 2004 Coagu-Flocculation Mechanism of Flocculant and its Physical

More information

Inorganic pre-polymerized coagulants: current status and future trends

Inorganic pre-polymerized coagulants: current status and future trends Proc. of the 3rd IASME/WSEAS Int. Conf. on Energy, Environment, Ecosystems and Sustainable Development, Agios Nikolaos, Greece, July 24-26, 2007 292 Inorganic pre-polymerized coagulants: current status

More information

Some effects of mixing in water treatment

Some effects of mixing in water treatment Loughborough University Institutional Repository Some effects of mixing in water treatment This item was submitted to Loughborough University's Institutional Repository by the/an author. Additional Information:

More information

Characterisation of Titanium Tetrachloride and Titanium Sulfate Flocculation in Wastewater Treatment

Characterisation of Titanium Tetrachloride and Titanium Sulfate Flocculation in Wastewater Treatment Characterisation of Titanium Tetrachloride and Titanium Sulfate Flocculation in Wastewater Treatment Y. Okour *, H.K. Shon * and I. El Saliby * * Faculty of Engineering and IT, University of Technology,

More information

Effect of flocculation conditions on membrane permeability in coagulation microfiltration

Effect of flocculation conditions on membrane permeability in coagulation microfiltration Desalination 191 (2006) 386 396 Effect of flocculation conditions on membrane permeability in coagulation microfiltration Min-Ho Cho a, Chung-Hak Lee a*, Sangho Lee b a School of Chemical and Biological

More information

Geotube Technology for Residuals and Biosolids Management

Geotube Technology for Residuals and Biosolids Management Geotube Technology for Residuals and Biosolids Management Introduction Outline Geotextile Container Introduction Chemical Conditioning Programs Feasibility Evaluations Online Optimization Case Studies

More information

SOLUTIONS. Dissolution of sugar in water. General Chemistry I. General Chemistry I CHAPTER

SOLUTIONS. Dissolution of sugar in water. General Chemistry I. General Chemistry I CHAPTER 11 CHAPTER SOLUTIONS 11.1 Composition of Solutions 11.2 Nature of Dissolved Species 11.3 Reaction Stoichiometry in Solutions: Acid-Base Titrations 11.4 Reaction Stoichiometry in Solutions: Oxidation-Reduction

More information

Chapter 7: Anion and molecular retention

Chapter 7: Anion and molecular retention I. Anions and molecules of importance in soils Anions of major importance to agricultural soils and soil chemistry are: H 2 PO - 4, HPO 2-4, SO 2-4, HCO - 3, NO - 3, Cl -, F - and OH -. Also, micronutrients

More information

CHAPTER 7 7. DEVELOPMENT OF A SINGLE STAGE ELECTROCOAGULATION INDUCED SETTLING TANK REACTOR (EISTR) FOR DYE AND TEXTILE WASTEWATER TREATMENT

CHAPTER 7 7. DEVELOPMENT OF A SINGLE STAGE ELECTROCOAGULATION INDUCED SETTLING TANK REACTOR (EISTR) FOR DYE AND TEXTILE WASTEWATER TREATMENT CHAPTER 7 7. DEVELOPMENT OF A SINGLE STAGE ELTROCOAGULATION INDUCED SETTLING TANK REACTOR (EISTR) FOR DYE AND TEXTILE WASTEWATER TREATMENT 7.1. INTRODUCTION Chemical coagulation (CC) is one of the primary

More information

Environment Protection Engineering

Environment Protection Engineering Environment Protection Engineering Vol. 39 2013 No. 3 DOI: 10.5277/epe130305 ZHANMENG LIU 1, 2, SIMIN LI 1, HAIXIA ZHANG 1, FAHUI NIE 2, QUNHUI WANG 3 PREPARATION, CHARACTERIZATION AND COAGULATION BEHAVIOUR

More information

THE POTENTIAL USE OF TITANIUM TETRACLORIDE (TiCl 4 ) AS AN ALTERNATIVE FOR COAGULANT IN TEXTILE WASTEWATER TREATMENT

THE POTENTIAL USE OF TITANIUM TETRACLORIDE (TiCl 4 ) AS AN ALTERNATIVE FOR COAGULANT IN TEXTILE WASTEWATER TREATMENT THE POTENTIAL USE OF TITANIUM TETRACLORIDE (TiCl 4 ) AS AN ALTERNATIVE FOR COAGULANT IN TEXTILE WASTEWATER TREATMENT Wulan Safrihatini Atikah 1*, Octianne Djamaluddin 1, Radyan Manggala 1 1 Politeknik

More information

Combination of anionic polyelectrolyte and novel polyaluminumferric-silicate-chloride

Combination of anionic polyelectrolyte and novel polyaluminumferric-silicate-chloride Combination of anionic polyelectrolyte and novel polyaluminumferric-silicate-chloride coagulant and application in coagulation/flocculation (C/F) process of water or wastewater treatment A. Tolkou, A.

More information

Polymer Applications Understanding Polymer Activation. Presented by Rich Hopkins February 15, 2011

Polymer Applications Understanding Polymer Activation. Presented by Rich Hopkins February 15, 2011 Polymer Applications Understanding Polymer Activation Presented by Rich Hopkins February 15, 2011 Why Polymer? Helping particles settle faster Improving liquid/solid separation Some Applications Clarifiers

More information

Universal Indicator turns green. Which method is used to obtain pure solid X from an aqueous solution? A. mixture

Universal Indicator turns green. Which method is used to obtain pure solid X from an aqueous solution? A. mixture 1 The results of some tests on a colourless liquid X are shown. oiling point = 102 Universal Indicator turns green What is X? ethanol hydrochloric acid pure water sodium chloride (salt) solution 2 blue

More information

8. STATIC BARRIER EVALUATION

8. STATIC BARRIER EVALUATION 8. STATIC BARRIER EVALUATION The construction of the barrier shown in Figure 5.3 permitted the sampling of water and measurement of ph at points along the entire length of each unit. Data on the variation

More information

Flocculation and Dispersion

Flocculation and Dispersion Flocculation and Dispersion Flocculation is the process, where the individual particles of clay are coagulated to form floccular aggregates. The degree and permanence of flocculation depend upon the nature

More information

Fracking Wastewater Treatment at Collection Facility

Fracking Wastewater Treatment at Collection Facility Fracking Wastewater Treatment at Collection Facility *Miroslav Colic, Ray Guthrie, Ariel Lechter Clean Water Technology Inc., Los Angeles, CA ABSTRACT Engineering company operates a wastewater collection

More information

( ) ( ). ( ) " d#. ( ) " cos (%) " d%

( ) ( ). ( )  d#. ( )  cos (%)  d% Math 22 Fall 2008 Solutions to Homework #6 Problems from Pages 404-407 (Section 76) 6 We will use the technique of Separation of Variables to solve the differential equation: dy d" = ey # sin 2 (") y #

More information

13 Colloids and agglomeration

13 Colloids and agglomeration 13 Colloids and agglomeration The processing of fine particulate materials is becoming increasingly important and the term nanotechnology is typically used to describe any system with particle diameters

More information

Stability of colloidal systems

Stability of colloidal systems Stability of colloidal systems Colloidal stability DLVO theory Electric double layer in colloidal systems Processes to induce charges at surfaces Key parameters for electric forces (ζ-potential, Debye

More information

István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry

István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry Colloid stability István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry www.kolloid.unideb.hu (Stability of lyophilic colloids see: macromolecular solutions) Stabilities 1.

More information

AWWA IMS Mid Year Conference. Chemical Feed. D. Gerard Yates Central Utah Water Conservancy District

AWWA IMS Mid Year Conference. Chemical Feed. D. Gerard Yates Central Utah Water Conservancy District AWWA IMS Mid Year Conference Chemical Feed D. Gerard Yates Central Utah Water Conservancy District The chemical formula for water is: A. HCl B. H 2 O C. 2HO D. HO 2 Which of the following chemical compounds

More information

Effects of Coagulation ph and Mixing Conditions on. Characteristics of Flocs in Surface Water Treatment. Suresh Valiyaveettil 4)

Effects of Coagulation ph and Mixing Conditions on. Characteristics of Flocs in Surface Water Treatment. Suresh Valiyaveettil 4) The 212 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-3, 212 Effects of Coagulation ph and Mixing Conditions on Characteristics of Flocs in

More information