ELEG5481 SIGNAL PROCESSING OPTIMIZATION TECHNIQUES 6. GEOMETRIC PROGRAM

Size: px
Start display at page:

Download "ELEG5481 SIGNAL PROCESSING OPTIMIZATION TECHNIQUES 6. GEOMETRIC PROGRAM"

Transcription

1 ELEG5481 SIGNAL PROCESSING OPTIMIZATION TECHNIQUES 6. GEOMETRIC PROGRAM Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 1

2 Some Basics A function f : R n R with domf = R n ++, defined as f(x) = cx a 1 1 xa 2 2 xa n n where c > 0 & a i R, is called a monomial function. A sum of monomials f(x) = K k=1 c k x a 1k 1 x a 2k 2 x a nk n where c k > 0 & a ik R, is called a posynomial function. Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 2

3 The log-sum-exp function f(x) = log(e x e x n ), where domf = R n. The log-sum-exp function is convex on R n. The following extended log-sum-exp function f(x) = log(e at 1 x+b e at m x+b m ), where a i R n & b i R, is also convex on R n. Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 3

4 Geometric Program where D = R n ++. min K 0 k=1 c 0,kx a 0,1k 1 x a 0,2k 2 x a 0,nk n s.t. K i k=1 c i,kx a i,1k 1 x a i,2k 2 x a i,nk n 1, i = 1,..., m d i x g i1 1 x g in n = 1, i = 1,..., p The objective & inequality constraint functions are posynomials. The equality constraint functions are monomials. Not a convex optimization problem in general. Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 4

5 Geometric Program in a Convex Form Let x i = e y i. A monomial can be re-expressed as where b = log c. cx a 1 1 xa 2 2 xa n n = ce a 1y1 e a ny n = e at y+b Likewise, a posynomial can be re-expressed as where b k = log c k. K k=1 c k x a 1k 1 x a 2k 2 x a nk n = K k=1 e at k y+b k The geometric program can then be transformed to min K 0 k=1 eat 0k y+b 0k s.t. K i k=1 eat ik y+b ik 1, i = 1,..., m e gt i y+h i = 1, i = 1,..., p Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 5

6 By applying the logarithm to all functions, we obtain an equiv. problem that is convex. min log K 0 k=1 eat 0k y+b 0k s.t. log K i k=1 eat ik y+b ik 0, i = 1,..., m g T i y + h i = 0, i = 1,..., p Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 6

7 Example: Optimal Power Assignment Revisited Recall the power assignment problem in the last lesson: j i min max G ijp j + σi 2 i=1,...,k G ii p i s.t. 0 p i p max,i, i = 1,..., K By epigraph reformulation, we may rewrite the problem as min t j i s.t. G ijp j + σi 2 t, i = 1,..., K G ii p i 0 p i p max,i, i = 1,..., K Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 7

8 The problem can be further reformulated as min t s.t. j i G ij G 1 ii p jp 1 i t 1 + σi 2 G 1 ii p 1 i t 1 1, i = 1,..., K p 1 max,i p i 1, i = 1,..., K with D = R K The problem becomes a geometric program. Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 8

9 Example: Gate sizing Consider a digital circuit with gates interconnected by wires. The problem is to determine the size of each gate to minimize the delay in the circuit subject to area and power constraints. Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 9

10 The total area of all gates is A = n a i x i, i=1 where x i 1 is the scale factor of gate i, and a i is the area of gate i under unit scaling. The total power consumed by all gates is P = n f i e i x i, i=1 where f i is the transition frequency of the gate, and e i is the energy lost in gate transition. The input capacitance C i and the driving resistance R i can be modeled as C i = α i + β i x i, R i = γ i /x i, for some positive constants α i, β i and γ i. Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 10

11 The delay of a gate is R i j F (i) D i = C j, if i is not an output gate R i Ci out, if i is an output gate where F (i) is the set of gates with the inputs connected to gate i, and Ci out load capacitance of an output gate. is the The worst-case delay D is the maximum delay of all paths from inputs to outputs, i.e. D = max D i, I O i I where O is the set of all paths from inputs to outputs. Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 11

12 In this example, D is given by D = max{d 1 + D 5, D 1 + D 4 + D 6, D 2 + D 4 + D 6, D 3 + D 6 }. Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 12

13 The problem can be formulated as min D s.t. A A max, P P max, x i 1, i = 1,..., n. This problem is not a GP, as D is the maximum of some posynomials. But it can be converted to a GP by adding a slack variable t, min t s.t. D i t, for all I O, i I A A max, P P max, x i 1, i = 1,..., n. Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 13

14 Additional Reading S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, A tutorial on geometric programming, Optimization and Engineering, 2007 M. Chiang, Geometric programming for communication systems, Foundations and Trends in Communications and Information Theory, M. Chiang, C. W. Tan, D. P. Palomar, D. O Neill, and D. Julian, Power control by geometric programming, IEEE Trans. Wireless Commun., Wing-Kin Ma, Dept. Electronic Eng., The Chinese University of Hong Kong 14

Efficient Nonlinear Optimizations of Queuing Systems

Efficient Nonlinear Optimizations of Queuing Systems Efficient Nonlinear Optimizations of Queuing Systems Mung Chiang, Arak Sutivong, and Stephen Boyd Electrical Engineering Department, Stanford University, CA 9435 Abstract We present a systematic treatment

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

Geometric Programming for Communication Systems

Geometric Programming for Communication Systems Geometric Programming for Communication Systems Mung Chiang Electrical Engineering Department, Princeton University Tutorial Presentation August 2005 Outline Part I: Geometric Programming What s GP? Why

More information

Convex Functions. Wing-Kin (Ken) Ma The Chinese University of Hong Kong (CUHK)

Convex Functions. Wing-Kin (Ken) Ma The Chinese University of Hong Kong (CUHK) Convex Functions Wing-Kin (Ken) Ma The Chinese University of Hong Kong (CUHK) Course on Convex Optimization for Wireless Comm. and Signal Proc. Jointly taught by Daniel P. Palomar and Wing-Kin (Ken) Ma

More information

Distributed Geometric-Programming-Based Power Control in Cellular Cognitive Radio Networks

Distributed Geometric-Programming-Based Power Control in Cellular Cognitive Radio Networks Distributed Geometric-Programming-Based Power Control in Cellular Cognitive Radio Networks Qingqing Jin, Dongfeng Yuan, Zhangyu Guan Wireless Mobile Communication and Transmission WMCT Lab School of Information

More information

Lecture: Convex Optimization Problems

Lecture: Convex Optimization Problems 1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt-2015-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Convex Functions Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Definition convex function Examples

More information

Stochastic geometric optimization with joint probabilistic constraints

Stochastic geometric optimization with joint probabilistic constraints Stochastic geometric optimization with joint probabilistic constraints Jia Liu a,b, Abdel Lisser 1a, Zhiping Chen b a Laboratoire de Recherche en Informatique (LRI), Université Paris Sud - XI, Bât. 650,

More information

Problems in VLSI design

Problems in VLSI design Problems in VLSI design wire and transistor sizing signal delay in RC circuits transistor and wire sizing Elmore delay minimization via GP dominant time constant minimization via SDP placement problems

More information

Optimization in Information Theory

Optimization in Information Theory Optimization in Information Theory Dawei Shen November 11, 2005 Abstract This tutorial introduces the application of optimization techniques in information theory. We revisit channel capacity problem from

More information

Convex optimization problems. Optimization problem in standard form

Convex optimization problems. Optimization problem in standard form Convex optimization problems optimization problem in standard form convex optimization problems linear optimization quadratic optimization geometric programming quasiconvex optimization generalized inequality

More information

Lecture 10. ( x domf. Remark 1 The domain of the conjugate function is given by

Lecture 10. ( x domf. Remark 1 The domain of the conjugate function is given by 10-1 Multi-User Information Theory Jan 17, 2012 Lecture 10 Lecturer:Dr. Haim Permuter Scribe: Wasim Huleihel I. CONJUGATE FUNCTION In the previous lectures, we discussed about conve set, conve functions

More information

Convexity II: Optimization Basics

Convexity II: Optimization Basics Conveity II: Optimization Basics Lecturer: Ryan Tibshirani Conve Optimization 10-725/36-725 See supplements for reviews of basic multivariate calculus basic linear algebra Last time: conve sets and functions

More information

Majorization-Minimization Algorithm

Majorization-Minimization Algorithm Majorization-Minimization Algorithm Theory and Ying Sun and Daniel P. Palomar Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology ELEC 5470 - Convex Optimization

More information

ELE539A: Optimization of Communication Systems Lecture 6: Quadratic Programming, Geometric Programming, and Applications

ELE539A: Optimization of Communication Systems Lecture 6: Quadratic Programming, Geometric Programming, and Applications ELE539A: Optimization of Communication Systems Lecture 6: Quadratic Programming, Geometric Programming, and Applications Professor M. Chiang Electrical Engineering Department, Princeton University February

More information

gpcvx A Matlab Solver for Geometric Programs in Convex Form

gpcvx A Matlab Solver for Geometric Programs in Convex Form gpcvx A Matlab Solver for Geometric Programs in Convex Form Kwangmoo Koh deneb1@stanford.edu Almir Mutapcic almirm@stanford.edu Seungjean Kim sjkim@stanford.edu Stephen Boyd boyd@stanford.edu May 22, 2006

More information

2640 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 7, JULY Power Control By Geometric Programming

2640 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 7, JULY Power Control By Geometric Programming 2640 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 7, JULY 2007 Power Control By Geometric Programming Mung Chiang, Chee Wei Tan, Daniel P. Palomar, Daniel O Neill, and David Julian Abstract

More information

Enabling Efficient Analog Synthesis by Coupling Sparse Regression and Polynomial Optimization

Enabling Efficient Analog Synthesis by Coupling Sparse Regression and Polynomial Optimization Enabling Efficient Analog Synthesis by Coupling Sparse Regression and Polynomial Optimization Ye Wang, Michael Orshansky, Constantine Caramanis ECE Dept., The University of Texas at Austin 1 Analog Synthesis

More information

Introduction to Convex Optimization

Introduction to Convex Optimization Introduction to Convex Optimization Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Optimization

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

POWER CONTROL BY GEOMETRIC PROGRAMMING

POWER CONTROL BY GEOMETRIC PROGRAMMING POWER CONTROL BY GEOMETRIC PROGRAMMING MUNG CHIANG, CHEE WEI TAN, DANIEL O NEILL, DAVID JULIAN Abstract. In wireless cellular or ad hoc networks that are interference-limited, a variety of power control

More information

ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition

ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition Wing-Kin (Ken) Ma 2017 2018 Term 2 Department of Electronic Engineering The Chinese University of Hong Kong Lecture 8: QR Decomposition

More information

Lecture 4: Convex Functions, Part I February 1

Lecture 4: Convex Functions, Part I February 1 IE 521: Convex Optimization Instructor: Niao He Lecture 4: Convex Functions, Part I February 1 Spring 2017, UIUC Scribe: Shuanglong Wang Courtesy warning: These notes do not necessarily cover everything

More information

EE115C Digital Electronic Circuits Homework #5

EE115C Digital Electronic Circuits Homework #5 EE115C Digital Electronic Circuits Homework #5 Due Thursday, May 13, 6pm @ 56-147E EIV Problem 1 Elmore Delay Analysis Calculate the Elmore delay from node A to node B using the values for the resistors

More information

i.e., into a monomial, using the Arithmetic-Geometric Mean Inequality, the result will be a posynomial approximation!

i.e., into a monomial, using the Arithmetic-Geometric Mean Inequality, the result will be a posynomial approximation! Dennis L. Bricker Dept of Mechanical & Industrial Engineering The University of Iowa i.e., 1 1 1 Minimize X X X subject to XX 4 X 1 0.5X 1 Minimize X X X X 1X X s.t. 4 1 1 1 1 4X X 1 1 1 1 0.5X X X 1 1

More information

A Geometric Programming-based Worst-Case Gate Sizing Method Incorporating Spatial Correlation

A Geometric Programming-based Worst-Case Gate Sizing Method Incorporating Spatial Correlation A Geometric Programming-based Worst-Case Gate Sizing Method Incorporating Spatial Correlation Jaskirat Singh Vidyasagar Nookala Zhi-Quan Luo Sachin S. Sapatnekar Department of Electrical & Computer Engineering

More information

Unconstrained Geometric Programming

Unconstrained Geometric Programming Jim Lambers MAT 49/59 Summer Session 20-2 Lecture 8 Notes These notes correspond to Section 2.5 in the text. Unconstrained Geometric Programming Previously, we learned how to use the A-G Inequality to

More information

ARITHMETIC MEAN-GEOMETIRC MEAN INEQUALITY : A New Perspective and Significant Applications

ARITHMETIC MEAN-GEOMETIRC MEAN INEQUALITY : A New Perspective and Significant Applications ARITHMETIC MEAN-GEOMETIRC MEAN INEQUALITY : A New Perspective and Significant Applications Khosrow Moshirvaziri, Information Systems Dept., California State University, Long Beach, Long Beach, CA 90840,

More information

CS675: Convex and Combinatorial Optimization Fall 2016 Convex Optimization Problems. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2016 Convex Optimization Problems. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2016 Convex Optimization Problems Instructor: Shaddin Dughmi Outline 1 Convex Optimization Basics 2 Common Classes 3 Interlude: Positive Semi-Definite

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 18 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 31, 2012 Andre Tkacenko

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions 3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions

More information

Data fitting with geometric-programming-compatible softmax functions

Data fitting with geometric-programming-compatible softmax functions Data fitting with geometric-programming-compatible softmax functions The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

ENGG5781 Matrix Analysis and Computations Lecture 9: Kronecker Product

ENGG5781 Matrix Analysis and Computations Lecture 9: Kronecker Product ENGG5781 Matrix Analysis and Computations Lecture 9: Kronecker Product Wing-Kin (Ken) Ma 2017 2018 Term 2 Department of Electronic Engineering The Chinese University of Hong Kong Kronecker product and

More information

EECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010

EECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010 Signature: EECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010 Robert Dick Show your work. Derivations are required for credit; end results are insufficient. Closed book. No electronic mental

More information

COMP 103. Lecture 10. Inverter Dynamics: The Quest for Performance. Section 5.4.2, What is this lecture+ about? PERFORMANCE

COMP 103. Lecture 10. Inverter Dynamics: The Quest for Performance. Section 5.4.2, What is this lecture+ about? PERFORMANCE COMP 103 Lecture 10 Inverter Dynamics: The Quest for Performance Section 5.4.2, 5.4.3 [All lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

GEOMETRIC PROGRAMMING APPROACHES OF RELIABILITY ALLOCATION

GEOMETRIC PROGRAMMING APPROACHES OF RELIABILITY ALLOCATION U.P.B. Sci. Bull., Series A, Vol. 79, Iss. 3, 2017 ISSN 1223-7027 GEOMETRIC PROGRAMMING APPROACHES OF RELIABILITY ALLOCATION Constantin Udrişte 1, Saad Abbas Abed 2 and Ionel Ţevy 3 One of the important

More information

8. Conjugate functions

8. Conjugate functions L. Vandenberghe EE236C (Spring 2013-14) 8. Conjugate functions closed functions conjugate function 8-1 Closed set a set C is closed if it contains its boundary: x k C, x k x = x C operations that preserve

More information

Sum-Power Iterative Watefilling Algorithm

Sum-Power Iterative Watefilling Algorithm Sum-Power Iterative Watefilling Algorithm Daniel P. Palomar Hong Kong University of Science and Technolgy (HKUST) ELEC547 - Convex Optimization Fall 2009-10, HKUST, Hong Kong November 11, 2009 Outline

More information

6.1 Matrices. Definition: A Matrix A is a rectangular array of the form. A 11 A 12 A 1n A 21. A 2n. A m1 A m2 A mn A 22.

6.1 Matrices. Definition: A Matrix A is a rectangular array of the form. A 11 A 12 A 1n A 21. A 2n. A m1 A m2 A mn A 22. 61 Matrices Definition: A Matrix A is a rectangular array of the form A 11 A 12 A 1n A 21 A 22 A 2n A m1 A m2 A mn The size of A is m n, where m is the number of rows and n is the number of columns The

More information

A = , A 32 = n ( 1) i +j a i j det(a i j). (1) j=1

A = , A 32 = n ( 1) i +j a i j det(a i j). (1) j=1 Lecture Notes: Determinant of a Square Matrix Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Determinant Definition Let A [a ij ] be an

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

10725/36725 Optimization Homework 2 Solutions

10725/36725 Optimization Homework 2 Solutions 10725/36725 Optimization Homework 2 Solutions 1 Convexity (Kevin) 1.1 Sets Let A R n be a closed set with non-empty interior that has a supporting hyperplane at every point on its boundary. (a) Show that

More information

Example 1 linear elastic structure; forces f 1 ;:::;f 100 induce deections d 1 ;:::;d f i F max i, several hundred other constraints: max load p

Example 1 linear elastic structure; forces f 1 ;:::;f 100 induce deections d 1 ;:::;d f i F max i, several hundred other constraints: max load p Convex Optimization in Electrical Engineering Stephen Boyd and Lieven Vandenberghe EE Dept., Stanford ISL EE370 Seminar, 2/9/96 1 Main idea many electrical engineering design problems can be cast as convex

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Convex Optimization Problems. Prof. Daniel P. Palomar

Convex Optimization Problems. Prof. Daniel P. Palomar Conve Optimization Problems Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19, HKUST,

More information

4. Convex optimization problems (part 1: general)

4. Convex optimization problems (part 1: general) EE/AA 578, Univ of Washington, Fall 2016 4. Convex optimization problems (part 1: general) optimization problem in standard form convex optimization problems quasiconvex optimization 4 1 Optimization problem

More information

Concurrent Logic Restructuring and Placement for Timing Closure

Concurrent Logic Restructuring and Placement for Timing Closure Concurrent Logic Restructuring and Placement for Timing Closure Jinan Lou, Wei Chen, Massoud Pedram Department of Electrical Engineering Systems University of Southern California, Los Angeles, CA 90089

More information

A General Method for Energy-Error Tradeoffs in Approximate Adders

A General Method for Energy-Error Tradeoffs in Approximate Adders A General Method for Energy-Error Tradeoffs in Approximate Adders Zvi M. Kedem Kirthi Krishna Muntimadugu NYU CS Technical Report TR-2013-952 March 15, 2013 Abstract Approximate adders are adders with

More information

Name: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Name: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015 University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 205 Midterm Wednesday, November 4 Point values

More information

The Wire. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Wire. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Wire July 30, 2002 1 The Wire transmitters receivers schematics physical 2 Interconnect Impact on

More information

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1)

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1) Chapter 2: Linear Programming Basics (Bertsimas & Tsitsiklis, Chapter 1) 33 Example of a Linear Program Remarks. minimize 2x 1 x 2 + 4x 3 subject to x 1 + x 2 + x 4 2 3x 2 x 3 = 5 x 3 + x 4 3 x 1 0 x 3

More information

Subgradient Method. Ryan Tibshirani Convex Optimization

Subgradient Method. Ryan Tibshirani Convex Optimization Subgradient Method Ryan Tibshirani Convex Optimization 10-725 Consider the problem Last last time: gradient descent min x f(x) for f convex and differentiable, dom(f) = R n. Gradient descent: choose initial

More information

Multiplication of Polynomials

Multiplication of Polynomials Summary 391 Chapter 5 SUMMARY Section 5.1 A polynomial in x is defined by a finite sum of terms of the form ax n, where a is a real number and n is a whole number. a is the coefficient of the term. n is

More information

14. Nonlinear equations

14. Nonlinear equations L. Vandenberghe ECE133A (Winter 2018) 14. Nonlinear equations Newton method for nonlinear equations damped Newton method for unconstrained minimization Newton method for nonlinear least squares 14-1 Set

More information

Wireless Network Optimization by Perron-Frobenius Theory

Wireless Network Optimization by Perron-Frobenius Theory Wireless Network Optimization by Perron-Frobenius Theory Chee Wei Tan City University of Hong Kong Abstract A basic question in wireless networking is how to optimize the wireless network resource allocation

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2011

EE C245 ME C218 Introduction to MEMS Design Fall 2011 EE C245 ME C218 Introduction to MEMS Design Fall 2011 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:

More information

CSCI : Optimization and Control of Networks. Review on Convex Optimization

CSCI : Optimization and Control of Networks. Review on Convex Optimization CSCI7000-016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one

More information

Linear Programming. Operations Research. Anthony Papavasiliou 1 / 21

Linear Programming. Operations Research. Anthony Papavasiliou 1 / 21 1 / 21 Linear Programming Operations Research Anthony Papavasiliou Contents 2 / 21 1 Primal Linear Program 2 Dual Linear Program Table of Contents 3 / 21 1 Primal Linear Program 2 Dual Linear Program Linear

More information

Linear programming: algebra

Linear programming: algebra : algebra CE 377K March 26, 2015 ANNOUNCEMENTS Groups and project topics due soon Announcements Groups and project topics due soon Did everyone get my test email? Announcements REVIEW geometry Review geometry

More information

COM Optimization for Communications 8. Semidefinite Programming

COM Optimization for Communications 8. Semidefinite Programming COM524500 Optimization for Communications 8. Semidefinite Programming Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University 1 Semidefinite Programming () Inequality form: min c T x s.t.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences Analysis and Design of Digital Integrated Circuits (6.374) - Fall 2003 Quiz #2 Prof. Anantha Chandrakasan

More information

A Brief Review on Convex Optimization

A Brief Review on Convex Optimization A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

OPERA: OPtimization with Ellipsoidal uncertainty for Robust Analog IC design

OPERA: OPtimization with Ellipsoidal uncertainty for Robust Analog IC design OPERA: OPtimization with Ellipsoidal uncertainty for Robust Analog IC design ABSTRACT As the design-manufacturing interface becomes increasingly complicated with IC technology scaling, the corresponding

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002 CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 18-322 DIGITAL INTEGRATED CIRCUITS FALL 2002 Final Examination, Monday Dec. 16, 2002 NAME: SECTION: Time: 180 minutes Closed

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 1 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

Distributed Optimization over Random Networks

Distributed Optimization over Random Networks Distributed Optimization over Random Networks Ilan Lobel and Asu Ozdaglar Allerton Conference September 2008 Operations Research Center and Electrical Engineering & Computer Science Massachusetts Institute

More information

SHANNON made the following well-known remarks in

SHANNON made the following well-known remarks in IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 2, FEBRUARY 2004 245 Geometric Programming Duals of Channel Capacity and Rate Distortion Mung Chiang, Member, IEEE, and Stephen Boyd, Fellow, IEEE

More information

Area-Time Optimal Adder with Relative Placement Generator

Area-Time Optimal Adder with Relative Placement Generator Area-Time Optimal Adder with Relative Placement Generator Abstract: This paper presents the design of a generator, for the production of area-time-optimal adders. A unique feature of this generator is

More information

9. Dual decomposition and dual algorithms

9. Dual decomposition and dual algorithms EE 546, Univ of Washington, Spring 2016 9. Dual decomposition and dual algorithms dual gradient ascent example: network rate control dual decomposition and the proximal gradient method examples with simple

More information

EE141-Fall Digital Integrated Circuits. Announcements. Lab #2 Mon., Lab #3 Fri. Homework #3 due Thursday. Homework #4 due next Thursday

EE141-Fall Digital Integrated Circuits. Announcements. Lab #2 Mon., Lab #3 Fri. Homework #3 due Thursday. Homework #4 due next Thursday EE4-Fall 2000 Digital Integrated ircuits Lecture 6 Inverter Delay Optimization Announcements Lab #2 Mon., Lab #3 Fri. Homework #3 due Thursday Homework #4 due next Thursday 2 2 lass Material Last lecture

More information

Math 273a: Optimization Subgradients of convex functions

Math 273a: Optimization Subgradients of convex functions Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 20 Subgradients Assumptions

More information

Functions. Paul Schrimpf. October 9, UBC Economics 526. Functions. Paul Schrimpf. Definition and examples. Special types of functions

Functions. Paul Schrimpf. October 9, UBC Economics 526. Functions. Paul Schrimpf. Definition and examples. Special types of functions of Functions UBC Economics 526 October 9, 2013 of 1. 2. of 3.. 4 of Functions UBC Economics 526 October 9, 2013 of Section 1 Functions of A function from a set A to a set B is a rule that assigns to each

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

Safety Barriers Series 9001, 9002 Standard Applications

Safety Barriers Series 9001, 9002 Standard Applications Standard s Analog input with transmitter Smart 9001/51-80-091-141 09949E0 Load of transmitter U N = + 0 V... 35 V I N = 3.6 ma... ma R L ( 350 O U min (I N= 0 ma) U N - 9.5 V 14 V U N ( 3.5 V > 3.5 V Maximum

More information

STATIC TIMING ANALYSIS

STATIC TIMING ANALYSIS STATIC TIMING ANALYSIS Standard Cell Library NanGate 45 nm Open Cell Library Open-source standard cell library Over 62 different functions ranging from buffers, to scan-able FFs with set and reset, to

More information

Arithmetic Circuits-2

Arithmetic Circuits-2 Arithmetic Circuits-2 Multipliers Array multipliers Shifters Barrel shifter Logarithmic shifter ECE 261 Krish Chakrabarty 1 Binary Multiplication M-1 X = X i 2 i i=0 Multiplicand N-1 Y = Y i 2 i i=0 Multiplier

More information

Homework 2 Solutions

Homework 2 Solutions Homework 2 Solutions EE 263 Stanford University Summer 2018 July 5, 2018 1. Halfspace. Suppose a, b R n are two given points. Show that the set of points in R n that are closer to a than b is a halfspace,

More information

ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization

ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization Professor M. Chiang Electrical Engineering Department, Princeton University March 16, 2007 Lecture

More information

Constrained Optimization and Support Vector Machines

Constrained Optimization and Support Vector Machines Constrained Optimization and Support Vector Machines Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/

More information

The complexity of VLSI power-delay optimization by interconnect resizing

The complexity of VLSI power-delay optimization by interconnect resizing J Comb Optim (2012) 23:292 300 DOI 10.1007/s10878-010-9355-1 The complexity of VLSI power-delay optimization by interconnect resizing Konstantin Moiseev Avinoam Kolodny Shmuel Wimer Published online: 21

More information

Characterization of Rate Region in Interference Channels with Constrained Power

Characterization of Rate Region in Interference Channels with Constrained Power Characterization of Rate Region in Interference Channels with Constrained Power Hajar Mahdavi-Doost, Masoud Ebrahimi, and Amir K. Khandani Coding & Signal Transmission Laboratory Department of Electrical

More information

LOWER BOUNDS FOR POLYNOMIALS USING GEOMETRIC PROGRAMMING

LOWER BOUNDS FOR POLYNOMIALS USING GEOMETRIC PROGRAMMING LOWER BOUNDS FOR POLYNOMIALS USING GEOMETRIC PROGRAMMING MEHDI GHASEMI AND MURRAY MARSHALL Abstract. We make use of a result of Hurwitz and Reznick [9] [21], and a consequence of this result due to Fidalgo

More information

Regular Analog/RF Integrated Circuits Design Using Optimization With Recourse Including Ellipsoidal Uncertainty

Regular Analog/RF Integrated Circuits Design Using Optimization With Recourse Including Ellipsoidal Uncertainty IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 5, MAY 2009 623 Regular Analog/RF Integrated Circuits Design Using Optimization With Recourse Including Ellipsoidal

More information

Max Margin-Classifier

Max Margin-Classifier Max Margin-Classifier Oliver Schulte - CMPT 726 Bishop PRML Ch. 7 Outline Maximum Margin Criterion Math Maximizing the Margin Non-Separable Data Kernels and Non-linear Mappings Where does the maximization

More information

Answers. Name: Grade: Q1 Q2 Q3 Q4 Total mean: 83, stdev: 14. ESE370 Fall 2017

Answers. Name: Grade: Q1 Q2 Q3 Q4 Total mean: 83, stdev: 14. ESE370 Fall 2017 University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2017 Midterm 2 Monday, November 6 Point values

More information

Linear Programming in Matrix Form

Linear Programming in Matrix Form Linear Programming in Matrix Form Appendix B We first introduce matrix concepts in linear programming by developing a variation of the simplex method called the revised simplex method. This algorithm,

More information

Controller synthesis for positive systems under l 1-induced performance

Controller synthesis for positive systems under l 1-induced performance Title Controller synthesis for positive systems under l 1-induced performance Author(s) Chen, X; Lam, J; Li, P; Shu, Z Citation The 24th Chinese Control and Decision Conference (CCDC 212), Taiyuan, China,

More information

Data AND. Output AND. An Analysis of Pipeline Clocking. J. E. Smith. March 19, 1990

Data AND. Output AND. An Analysis of Pipeline Clocking. J. E. Smith. March 19, 1990 An Analysis of Pipeline locking J E Smith March 19, 1990 Abstract This note examines timing constraints on latches in pipelined systems The goal is to determine required clock characteristics based on

More information

EE115C Digital Electronic Circuits Homework #4

EE115C Digital Electronic Circuits Homework #4 EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors

More information

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March

More information

IE 521 Convex Optimization

IE 521 Convex Optimization Lecture 5: Convex II 6th February 2019 Convex Local Lipschitz Outline Local Lipschitz 1 / 23 Convex Local Lipschitz Convex Function: f : R n R is convex if dom(f ) is convex and for any λ [0, 1], x, y

More information

GRADIENT = STEEPEST DESCENT

GRADIENT = STEEPEST DESCENT GRADIENT METHODS GRADIENT = STEEPEST DESCENT Convex Function Iso-contours gradient 0.5 0.4 4 2 0 8 0.3 0.2 0. 0 0. negative gradient 6 0.2 4 0.3 2.5 0.5 0 0.5 0.5 0 0.5 0.4 0.5.5 0.5 0 0.5 GRADIENT DESCENT

More information

Distributed Optimization: Analysis and Synthesis via Circuits

Distributed Optimization: Analysis and Synthesis via Circuits Distributed Optimization: Analysis and Synthesis via Circuits Stephen Boyd Prof. S. Boyd, EE364b, Stanford University Outline canonical form for distributed convex optimization circuit intepretation primal

More information