Math 273a: Optimization Subgradients of convex functions

Size: px
Start display at page:

Download "Math 273a: Optimization Subgradients of convex functions"

Transcription

1 Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 20

2 Subgradients Assumptions and Notation 1. f : R n R n { } is a closed proper convex function, i.e. epif = {(x, t) R n R f(x) t} is closed and convex. 2. The effective domain of f is domf = {x R n : f(x) < } 3. The function f is proper, i.e. domf. 4. A raised (e.g., x ) means global minimum of some function. 2 / 20

3 C 1 convex function Recall: a convex function of C 1 obeys f(y) f(x) + f(x), y x, x, y R n 1 1 figure taken from Boyd and Vandenberghe, Convex Optimization. 3 / 20

4 Non-C 1 convex functions For all each ˉx R n, f(ˉx) := {g R n : f(y) f(ˉx) + g, y ˉx } 4 / 20

5 subgradient is defined via a global property, not by taking limits. in contrast, the set of regular subgradients is defined as ˆ f(x) = {g δ > 0 such that f(y) f(x)+ g, y x +o( y x ), y B δ (x)} g is a general subgradient of f at x if: there is a sequence x i x and g i ˆ f(x i ) with g i g. Reference: Variational analysis by Rockafellar and Wets. Definition / 20

6 Which functions have subgradients? If f C 1, then f(x) f(x). In fact, f(x) = { f(x)}. Proof: if g is a subgradient, then for y R n f(x), y = f(x + ty) f(x) lim t 0 t g, x + ty x lim t 0 = g, y. Change y to y, and the inequality still holds. Plugging in standard basis vectors = f(x) = g. Next, the general case. t (by f def.) (by subgrad def.) = f(x), y = g, y. 6 / 20

7 Which functions have subgradients? Theorem (Nesterov 03 Thm ) Let f be a closed convex function and x 0 int(dom(f)). Then f(x 0) is a nonempty bounded set. Proof uses supporting hyperplanes of epigraph to show existence, and local Lipschitz continuity of convex functions to show boundedness. 2 2 figure taken from Boyd and Vandenberghe, 7 / 20

8 The converse Lemma (Nesterov 03 Lm 3.1.6) If f(x) for all x dom(f), then f is convex. Proof. x, y dom(f), α [0, 1], y α = (1 α)x + αy = x + α(y x), g f(y α ). f(y) f(y α) + g, y y α = f(y α) + (1 α) g, y x (1) f(x) f(y α) + g, x y α = f(y α) α g, y x (2) Multiply equation (1) by α and equation (2) by (1 α). Add them together to get αf(y) + (1 α)f(x) f(y α) 8 / 20

9 Technicality: int(dom(f)) We cannot relax the assumption x int(dom(f)) to x dom(f). Example: f : [0, + ) R. f(x) = x. dom(f) = [0, + ) but f(0) =. 9 / 20

10 Compute subgradients: general rules Smooth functions: f(x) = { f(x)}. Composition with affine mapping: φ(x) = f(a(x) + b) φ(x) = A T f(a(x) + b). Positive sums: α, β > 0, f(x) = αf 1(x) + βf 2(x). f(x) = α f 1(x) + β f 2(x) Maximums: f(x) = max i {1,,n} {f i(x)} f(x) = conv{ f i(x) f i(x) = f(x)} 10 / 20

11 Examples f(x) = x. f(x) = { {sign(x)} x 0; [ 1, 1] otherwise 3 as seen, f is a relation or a point-to-set mapping 3 figure taken from Boyd and Vandenberghe, 11 / 20

12 Examples f(x) = n ai, x bi. Define i=1 I (x) = {i a i, x b i < 0} I +(x) = {i a i, x b i > 0} I 0(x) = {i a i, x b i = 0}. Then f(x) = a i a i + [ a i, a i] i I + (x) i I (x) i I 0 (x) (the last sum is the Minkowski sum) minimize x Ax b 1 is known as robust fitting, which is more robust to the outliers than the least-squares problem. 12 / 20

13 f(x) = max i {1,,n} x i. Then f(x) = conv{e i x i = f(x)} f(0) = conv { e i i {1,, n} } Note: conv denotes the convex hull: conv{x i} := { α ix i : a i 0, α i = 1 } i i 13 / 20

14 Examples f(x) = x 2. f is differential away from 0, so: f(x) = At 0, go back to subgradient equation: Thus, g f(0), if, and only if, g,y y 2 ball B2(0, 1) = B 2(0, 1). This is a common pattern! x x 2, where x 0. y g, y 0 1 for all y 0. Thus, g is in the dual 14 / 20

15 How to compute subgradients: Examples f(x) = x = max i {1,,n} x (i). f(x) = conv{g i : g i x (i), x (i) = f(x)}, where x 0. Going back to subgradient equation y 0 + g, y g,y Thus, g f(0), if, and only if, y 1 for all y 0. Thus, f(0) is the dual ball to the l norm: B 1(0, 1). 15 / 20

16 Examples f(x) = x 1 = n xi. Then i=1 f(x) = e i x i >0 e i + [ e i, e i] x i <0 x i =0 for all x. Then n f(0) = [ e i, e i] = B (0, 1). i=1 16 / 20

17 Semi-continuity Definition (upper semi-continuity) A point-to-set mapping M is upper semi-continuous at x if any convergent sequence (x k, s k ) (x, s ) satisfying s k M(x k ) for each k also obeys s M(x ). Interpretation: if (i) x k x and (ii) for each x k you can find s k M(x k ) so that s k s, then s M(x ). Lower semi-continuity is essentially the opposite. Definition (lower semi-continuity, lsc) A point-to-set mapping M is lower semi-continuous if any convergent sequence x k x and s M(x ), there exists sequence s i M(x k i ) such that s i s. 17 / 20

18 Lemma Let f be a proper convex function. f is upper semi-continuous, and f(x) is a convex set. Proof: Take the limit of f(y) f(x k ) + s k, y x k, s k f(x k ). The second part is a direct result of linearity of, y x. However, if f(x) = x, the f is not lower semi-continuous at x = / 20

19 Directional derivative versus Subgradient Assume that f : R n R {+ } is a proper, closed (thus lsc), and convex. Then 1. the directional derivative is well defined for every d R n : f (x; d) = lim α 0 f(x + αd) f(x). α 2. the directional derivatives at x bound all the subgradient projections f(x) = {p R n : f (x; d) p, d, d R n }. 3. directional derivatives are extreme subgradients: f (x; d) = max{ p, d : p f(x)}. 19 / 20

20 0 subgradient = minimum Suppose that 0 f(x). If f is smooth and convex, 0 f(x) = { f(x)} = f(x) = 0. In general: If 0 f(x), then f(y) f(x) + 0, y x = f(x) for all y R n. = x is a minimum! Converse also true: f(y) f(x ) + 0 = f(x ) + 0, y x. 20 / 20

Math 273a: Optimization Subgradients of convex functions

Math 273a: Optimization Subgradients of convex functions Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 42 Subgradients Assumptions

More information

Math 273a: Optimization Subgradient Methods

Math 273a: Optimization Subgradient Methods Math 273a: Optimization Subgradient Methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com Nonsmooth convex function Recall: For ˉx R n, f(ˉx) := {g R

More information

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 30 Notation f : H R { } is a closed proper convex function domf := {x R n

More information

Lecture 1: Background on Convex Analysis

Lecture 1: Background on Convex Analysis Lecture 1: Background on Convex Analysis John Duchi PCMI 2016 Outline I Convex sets 1.1 Definitions and examples 2.2 Basic properties 3.3 Projections onto convex sets 4.4 Separating and supporting hyperplanes

More information

Math 273a: Optimization Convex Conjugacy

Math 273a: Optimization Convex Conjugacy Math 273a: Optimization Convex Conjugacy Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com Convex conjugate (the Legendre transform) Let f be a closed proper

More information

Convex Analysis Background

Convex Analysis Background Convex Analysis Background John C. Duchi Stanford University Park City Mathematics Institute 206 Abstract In this set of notes, we will outline several standard facts from convex analysis, the study of

More information

Optimality Conditions for Nonsmooth Convex Optimization

Optimality Conditions for Nonsmooth Convex Optimization Optimality Conditions for Nonsmooth Convex Optimization Sangkyun Lee Oct 22, 2014 Let us consider a convex function f : R n R, where R is the extended real field, R := R {, + }, which is proper (f never

More information

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients and quasigradients subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE392o, Stanford University Basic inequality recall basic

More information

Subgradient Method. Ryan Tibshirani Convex Optimization

Subgradient Method. Ryan Tibshirani Convex Optimization Subgradient Method Ryan Tibshirani Convex Optimization 10-725 Consider the problem Last last time: gradient descent min x f(x) for f convex and differentiable, dom(f) = R n. Gradient descent: choose initial

More information

Convex Analysis and Optimization Chapter 4 Solutions

Convex Analysis and Optimization Chapter 4 Solutions Convex Analysis and Optimization Chapter 4 Solutions Dimitri P. Bertsekas with Angelia Nedić and Asuman E. Ozdaglar Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

Convex Functions. Pontus Giselsson

Convex Functions. Pontus Giselsson Convex Functions Pontus Giselsson 1 Today s lecture lower semicontinuity, closure, convex hull convexity preserving operations precomposition with affine mapping infimal convolution image function supremum

More information

In Progress: Summary of Notation and Basic Results Convex Analysis C&O 663, Fall 2009

In Progress: Summary of Notation and Basic Results Convex Analysis C&O 663, Fall 2009 In Progress: Summary of Notation and Basic Results Convex Analysis C&O 663, Fall 2009 Intructor: Henry Wolkowicz November 26, 2009 University of Waterloo Department of Combinatorics & Optimization Abstract

More information

BASICS OF CONVEX ANALYSIS

BASICS OF CONVEX ANALYSIS BASICS OF CONVEX ANALYSIS MARKUS GRASMAIR 1. Main Definitions We start with providing the central definitions of convex functions and convex sets. Definition 1. A function f : R n R + } is called convex,

More information

Lecture 8. Strong Duality Results. September 22, 2008

Lecture 8. Strong Duality Results. September 22, 2008 Strong Duality Results September 22, 2008 Outline Lecture 8 Slater Condition and its Variations Convex Objective with Linear Inequality Constraints Quadratic Objective over Quadratic Constraints Representation

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

LECTURE 12 LECTURE OUTLINE. Subgradients Fenchel inequality Sensitivity in constrained optimization Subdifferential calculus Optimality conditions

LECTURE 12 LECTURE OUTLINE. Subgradients Fenchel inequality Sensitivity in constrained optimization Subdifferential calculus Optimality conditions LECTURE 12 LECTURE OUTLINE Subgradients Fenchel inequality Sensitivity in constrained optimization Subdifferential calculus Optimality conditions Reading: Section 5.4 All figures are courtesy of Athena

More information

Local strong convexity and local Lipschitz continuity of the gradient of convex functions

Local strong convexity and local Lipschitz continuity of the gradient of convex functions Local strong convexity and local Lipschitz continuity of the gradient of convex functions R. Goebel and R.T. Rockafellar May 23, 2007 Abstract. Given a pair of convex conjugate functions f and f, we investigate

More information

Subgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients strong and weak subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE364b, Stanford University Basic inequality recall basic inequality

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 4. Suvrit Sra. (Conjugates, subdifferentials) 31 Jan, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 4. Suvrit Sra. (Conjugates, subdifferentials) 31 Jan, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 4 (Conjugates, subdifferentials) 31 Jan, 2013 Suvrit Sra Organizational HW1 due: 14th Feb 2013 in class. Please L A TEX your solutions (contact TA if this

More information

Lecture 2: Convex Sets and Functions

Lecture 2: Convex Sets and Functions Lecture 2: Convex Sets and Functions Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Network Optimization, Fall 2015 1 / 22 Optimization Problems Optimization problems are

More information

IE 521 Convex Optimization

IE 521 Convex Optimization Lecture 5: Convex II 6th February 2019 Convex Local Lipschitz Outline Local Lipschitz 1 / 23 Convex Local Lipschitz Convex Function: f : R n R is convex if dom(f ) is convex and for any λ [0, 1], x, y

More information

8. Conjugate functions

8. Conjugate functions L. Vandenberghe EE236C (Spring 2013-14) 8. Conjugate functions closed functions conjugate function 8-1 Closed set a set C is closed if it contains its boundary: x k C, x k x = x C operations that preserve

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 1 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

Chapter 2: Preliminaries and elements of convex analysis

Chapter 2: Preliminaries and elements of convex analysis Chapter 2: Preliminaries and elements of convex analysis Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-14-15.shtml Academic year 2014-15

More information

LECTURE SLIDES ON CONVEX OPTIMIZATION AND DUALITY THEORY TATA INSTITUTE FOR FUNDAMENTAL RESEARCH MUMBAI, INDIA JANUARY 2009 PART I

LECTURE SLIDES ON CONVEX OPTIMIZATION AND DUALITY THEORY TATA INSTITUTE FOR FUNDAMENTAL RESEARCH MUMBAI, INDIA JANUARY 2009 PART I LECTURE SLIDES ON CONVEX OPTIMIZATION AND DUALITY THEORY TATA INSTITUTE FOR FUNDAMENTAL RESEARCH MUMBAI, INDIA JANUARY 2009 PART I BY DIMITRI P. BERTSEKAS M.I.T. http://web.mit.edu/dimitrib/www/home.html

More information

Coordinate Update Algorithm Short Course Proximal Operators and Algorithms

Coordinate Update Algorithm Short Course Proximal Operators and Algorithms Coordinate Update Algorithm Short Course Proximal Operators and Algorithms Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 36 Why proximal? Newton s method: for C 2 -smooth, unconstrained problems allow

More information

Subgradient Method. Guest Lecturer: Fatma Kilinc-Karzan. Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization /36-725

Subgradient Method. Guest Lecturer: Fatma Kilinc-Karzan. Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization /36-725 Subgradient Method Guest Lecturer: Fatma Kilinc-Karzan Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization 10-725/36-725 Adapted from slides from Ryan Tibshirani Consider the problem Recall:

More information

Introduction to Convex Analysis Microeconomics II - Tutoring Class

Introduction to Convex Analysis Microeconomics II - Tutoring Class Introduction to Convex Analysis Microeconomics II - Tutoring Class Professor: V. Filipe Martins-da-Rocha TA: Cinthia Konichi April 2010 1 Basic Concepts and Results This is a first glance on basic convex

More information

Convex Optimization Theory

Convex Optimization Theory Convex Optimization Theory A SUMMARY BY DIMITRI P. BERTSEKAS We provide a summary of theoretical concepts and results relating to convex analysis, convex optimization, and duality theory. In particular,

More information

Math 273a: Optimization Lagrange Duality

Math 273a: Optimization Lagrange Duality Math 273a: Optimization Lagrange Duality Instructor: Wotao Yin Department of Mathematics, UCLA Winter 2015 online discussions on piazza.com Gradient descent / forward Euler assume function f is proper

More information

Handout 2: Elements of Convex Analysis

Handout 2: Elements of Convex Analysis ENGG 5501: Foundations of Optimization 2018 19 First Term Handout 2: Elements of Convex Analysis Instructor: Anthony Man Cho So September 10, 2018 As briefly mentioned in Handout 1, the notion of convexity

More information

GEOMETRIC APPROACH TO CONVEX SUBDIFFERENTIAL CALCULUS October 10, Dedicated to Franco Giannessi and Diethard Pallaschke with great respect

GEOMETRIC APPROACH TO CONVEX SUBDIFFERENTIAL CALCULUS October 10, Dedicated to Franco Giannessi and Diethard Pallaschke with great respect GEOMETRIC APPROACH TO CONVEX SUBDIFFERENTIAL CALCULUS October 10, 2018 BORIS S. MORDUKHOVICH 1 and NGUYEN MAU NAM 2 Dedicated to Franco Giannessi and Diethard Pallaschke with great respect Abstract. In

More information

Optimization and Optimal Control in Banach Spaces

Optimization and Optimal Control in Banach Spaces Optimization and Optimal Control in Banach Spaces Bernhard Schmitzer October 19, 2017 1 Convex non-smooth optimization with proximal operators Remark 1.1 (Motivation). Convex optimization: easier to solve,

More information

LECTURE 4 LECTURE OUTLINE

LECTURE 4 LECTURE OUTLINE LECTURE 4 LECTURE OUTLINE Relative interior and closure Algebra of relative interiors and closures Continuity of convex functions Closures of functions Reading: Section 1.3 All figures are courtesy of

More information

Chapter 1. Optimality Conditions: Unconstrained Optimization. 1.1 Differentiable Problems

Chapter 1. Optimality Conditions: Unconstrained Optimization. 1.1 Differentiable Problems Chapter 1 Optimality Conditions: Unconstrained Optimization 1.1 Differentiable Problems Consider the problem of minimizing the function f : R n R where f is twice continuously differentiable on R n : P

More information

Continuity of convex functions in normed spaces

Continuity of convex functions in normed spaces Continuity of convex functions in normed spaces In this chapter, we consider continuity properties of real-valued convex functions defined on open convex sets in normed spaces. Recall that every infinitedimensional

More information

5. Subgradient method

5. Subgradient method L. Vandenberghe EE236C (Spring 2016) 5. Subgradient method subgradient method convergence analysis optimal step size when f is known alternating projections optimality 5-1 Subgradient method to minimize

More information

Epiconvergence and ε-subgradients of Convex Functions

Epiconvergence and ε-subgradients of Convex Functions Journal of Convex Analysis Volume 1 (1994), No.1, 87 100 Epiconvergence and ε-subgradients of Convex Functions Andrei Verona Department of Mathematics, California State University Los Angeles, CA 90032,

More information

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725 Gradient Descent Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: canonical convex programs Linear program (LP): takes the form min x subject to c T x Gx h Ax = b Quadratic program (QP): like

More information

Convex Analysis and Optimization Chapter 2 Solutions

Convex Analysis and Optimization Chapter 2 Solutions Convex Analysis and Optimization Chapter 2 Solutions Dimitri P. Bertsekas with Angelia Nedić and Asuman E. Ozdaglar Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

18.657: Mathematics of Machine Learning

18.657: Mathematics of Machine Learning 8.657: Mathematics of Machine Learning Lecturer: Philippe Rigollet Lecture Scribe: Kevin Li Oct. 4, 05. CONVEX OPTIMIZATION FOR MACHINE LEARNING In this lecture, we will cover the basics of convex optimization

More information

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus 1/41 Subgradient Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes definition subgradient calculus duality and optimality conditions directional derivative Basic inequality

More information

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 7 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Convex Optimization Differentiation Definition: let f : X R N R be a differentiable function,

More information

4. Convex Sets and (Quasi-)Concave Functions

4. Convex Sets and (Quasi-)Concave Functions 4. Convex Sets and (Quasi-)Concave Functions Daisuke Oyama Mathematics II April 17, 2017 Convex Sets Definition 4.1 A R N is convex if (1 α)x + αx A whenever x, x A and α [0, 1]. A R N is strictly convex

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

LECTURE SLIDES ON BASED ON CLASS LECTURES AT THE CAMBRIDGE, MASS FALL 2007 BY DIMITRI P. BERTSEKAS.

LECTURE SLIDES ON BASED ON CLASS LECTURES AT THE CAMBRIDGE, MASS FALL 2007 BY DIMITRI P. BERTSEKAS. LECTURE SLIDES ON CONVEX ANALYSIS AND OPTIMIZATION BASED ON 6.253 CLASS LECTURES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASS FALL 2007 BY DIMITRI P. BERTSEKAS http://web.mit.edu/dimitrib/www/home.html

More information

Helly's Theorem and its Equivalences via Convex Analysis

Helly's Theorem and its Equivalences via Convex Analysis Portland State University PDXScholar University Honors Theses University Honors College 2014 Helly's Theorem and its Equivalences via Convex Analysis Adam Robinson Portland State University Let us know

More information

Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem

Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem Charles Byrne (Charles Byrne@uml.edu) http://faculty.uml.edu/cbyrne/cbyrne.html Department of Mathematical Sciences

More information

Smoothing Proximal Gradient Method. General Structured Sparse Regression

Smoothing Proximal Gradient Method. General Structured Sparse Regression for General Structured Sparse Regression Xi Chen, Qihang Lin, Seyoung Kim, Jaime G. Carbonell, Eric P. Xing (Annals of Applied Statistics, 2012) Gatsby Unit, Tea Talk October 25, 2013 Outline Motivation:

More information

THE INVERSE FUNCTION THEOREM

THE INVERSE FUNCTION THEOREM THE INVERSE FUNCTION THEOREM W. PATRICK HOOPER The implicit function theorem is the following result: Theorem 1. Let f be a C 1 function from a neighborhood of a point a R n into R n. Suppose A = Df(a)

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 4 Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 2 4.1. Subgradients definition subgradient calculus duality and optimality conditions Shiqian

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

A function(al) f is convex if dom f is a convex set, and. f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) f(x) = x 3

A function(al) f is convex if dom f is a convex set, and. f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) f(x) = x 3 Convex functions The domain dom f of a functional f : R N R is the subset of R N where f is well-defined. A function(al) f is convex if dom f is a convex set, and f(θx + (1 θ)y) θf(x) + (1 θ)f(y) for all

More information

Lecture 6 : Projected Gradient Descent

Lecture 6 : Projected Gradient Descent Lecture 6 : Projected Gradient Descent EE227C. Lecturer: Professor Martin Wainwright. Scribe: Alvin Wan Consider the following update. x l+1 = Π C (x l α f(x l )) Theorem Say f : R d R is (m, M)-strongly

More information

Fenchel Duality between Strong Convexity and Lipschitz Continuous Gradient

Fenchel Duality between Strong Convexity and Lipschitz Continuous Gradient Fenchel Duality between Strong Convexity and Lipschitz Continuous Gradient Xingyu Zhou The Ohio State University zhou.2055@osu.edu December 5, 2017 Xingyu Zhou (OSU) Fenchel Duality December 5, 2017 1

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

LECTURE 3 LECTURE OUTLINE

LECTURE 3 LECTURE OUTLINE LECTURE 3 LECTURE OUTLINE Differentiable Conve Functions Conve and A ne Hulls Caratheodory s Theorem Reading: Sections 1.1, 1.2 All figures are courtesy of Athena Scientific, and are used with permission.

More information

Radial Subgradient Descent

Radial Subgradient Descent Radial Subgradient Descent Benja Grimmer Abstract We present a subgradient method for imizing non-smooth, non-lipschitz convex optimization problems. The only structure assumed is that a strictly feasible

More information

Introduction to Convex and Quasiconvex Analysis

Introduction to Convex and Quasiconvex Analysis Introduction to Convex and Quasiconvex Analysis J.B.G.Frenk Econometric Institute, Erasmus University, Rotterdam G.Kassay Faculty of Mathematics, Babes Bolyai University, Cluj August 27, 2001 Abstract

More information

Parcours OJD, Ecole Polytechnique et Université Pierre et Marie Curie 05 Mai 2015

Parcours OJD, Ecole Polytechnique et Université Pierre et Marie Curie 05 Mai 2015 Examen du cours Optimisation Stochastique Version 06/05/2014 Mastère de Mathématiques de la Modélisation F. Bonnans Parcours OJD, Ecole Polytechnique et Université Pierre et Marie Curie 05 Mai 2015 Authorized

More information

Newton s Method. Javier Peña Convex Optimization /36-725

Newton s Method. Javier Peña Convex Optimization /36-725 Newton s Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, f ( (y) = max y T x f(x) ) x Properties and

More information

Subdifferential representation of convex functions: refinements and applications

Subdifferential representation of convex functions: refinements and applications Subdifferential representation of convex functions: refinements and applications Joël Benoist & Aris Daniilidis Abstract Every lower semicontinuous convex function can be represented through its subdifferential

More information

LECTURE SLIDES ON CONVEX ANALYSIS AND OPTIMIZATION BASED ON LECTURES GIVEN AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASS

LECTURE SLIDES ON CONVEX ANALYSIS AND OPTIMIZATION BASED ON LECTURES GIVEN AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASS LECTURE SLIDES ON CONVEX ANALYSIS AND OPTIMIZATION BASED ON LECTURES GIVEN AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASS BY DIMITRI P. BERTSEKAS http://web.mit.edu/dimitrib/www/home.html

More information

Convex Optimization Theory. Chapter 3 Exercises and Solutions: Extended Version

Convex Optimization Theory. Chapter 3 Exercises and Solutions: Extended Version Convex Optimization Theory Chapter 3 Exercises and Solutions: Extended Version Dimitri P. Bertsekas Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System The Q-parametrization (Youla) Lecture 3: Synthesis by Convex Optimization controlled variables z Plant distubances w Example: Spring-mass system measurements y Controller control inputs u Idea for lecture

More information

Lecture 6: September 17

Lecture 6: September 17 10-725/36-725: Convex Optimization Fall 2015 Lecturer: Ryan Tibshirani Lecture 6: September 17 Scribes: Scribes: Wenjun Wang, Satwik Kottur, Zhiding Yu Note: LaTeX template courtesy of UC Berkeley EECS

More information

ON GAP FUNCTIONS OF VARIATIONAL INEQUALITY IN A BANACH SPACE. Sangho Kum and Gue Myung Lee. 1. Introduction

ON GAP FUNCTIONS OF VARIATIONAL INEQUALITY IN A BANACH SPACE. Sangho Kum and Gue Myung Lee. 1. Introduction J. Korean Math. Soc. 38 (2001), No. 3, pp. 683 695 ON GAP FUNCTIONS OF VARIATIONAL INEQUALITY IN A BANACH SPACE Sangho Kum and Gue Myung Lee Abstract. In this paper we are concerned with theoretical properties

More information

Dedicated to Michel Théra in honor of his 70th birthday

Dedicated to Michel Théra in honor of his 70th birthday VARIATIONAL GEOMETRIC APPROACH TO GENERALIZED DIFFERENTIAL AND CONJUGATE CALCULI IN CONVEX ANALYSIS B. S. MORDUKHOVICH 1, N. M. NAM 2, R. B. RECTOR 3 and T. TRAN 4. Dedicated to Michel Théra in honor of

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - A) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

Lecture 14: Newton s Method

Lecture 14: Newton s Method 10-725/36-725: Conve Optimization Fall 2016 Lecturer: Javier Pena Lecture 14: Newton s ethod Scribes: Varun Joshi, Xuan Li Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes

More information

Convex envelopes, cardinality constrained optimization and LASSO. An application in supervised learning: support vector machines (SVMs)

Convex envelopes, cardinality constrained optimization and LASSO. An application in supervised learning: support vector machines (SVMs) ORF 523 Lecture 8 Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Any typos should be emailed to a a a@princeton.edu. 1 Outline Convexity-preserving operations Convex envelopes, cardinality

More information

Convergence of Fixed-Point Iterations

Convergence of Fixed-Point Iterations Convergence of Fixed-Point Iterations Instructor: Wotao Yin (UCLA Math) July 2016 1 / 30 Why study fixed-point iterations? Abstract many existing algorithms in optimization, numerical linear algebra, and

More information

Convex Functions and Optimization

Convex Functions and Optimization Chapter 5 Convex Functions and Optimization 5.1 Convex Functions Our next topic is that of convex functions. Again, we will concentrate on the context of a map f : R n R although the situation can be generalized

More information

Sum of two maximal monotone operators in a general Banach space is maximal

Sum of two maximal monotone operators in a general Banach space is maximal arxiv:1505.04879v1 [math.fa] 19 May 2015 Sum of two maximal monotone operators in a general Banach space is maximal S R Pattanaik, D K Pradhan and S Pradhan May 20, 2015 Abstract In a real Banach space,

More information

Math 205b Homework 2 Solutions

Math 205b Homework 2 Solutions Math 5b Homework Solutions January 5, 5 Problem (R-S, II.) () For the R case, we just expand the right hand side and use the symmetry of the inner product: ( x y x y ) = = ((x, x) (y, y) (x, y) (y, x)

More information

Lecture 12 Unconstrained Optimization (contd.) Constrained Optimization. October 15, 2008

Lecture 12 Unconstrained Optimization (contd.) Constrained Optimization. October 15, 2008 Lecture 12 Unconstrained Optimization (contd.) Constrained Optimization October 15, 2008 Outline Lecture 11 Gradient descent algorithm Improvement to result in Lec 11 At what rate will it converge? Constrained

More information

Aliprantis, Border: Infinite-dimensional Analysis A Hitchhiker s Guide

Aliprantis, Border: Infinite-dimensional Analysis A Hitchhiker s Guide aliprantis.tex May 10, 2011 Aliprantis, Border: Infinite-dimensional Analysis A Hitchhiker s Guide Notes from [AB2]. 1 Odds and Ends 2 Topology 2.1 Topological spaces Example. (2.2) A semimetric = triangle

More information

The local equicontinuity of a maximal monotone operator

The local equicontinuity of a maximal monotone operator arxiv:1410.3328v2 [math.fa] 3 Nov 2014 The local equicontinuity of a maximal monotone operator M.D. Voisei Abstract The local equicontinuity of an operator T : X X with proper Fitzpatrick function ϕ T

More information

Convex optimization COMS 4771

Convex optimization COMS 4771 Convex optimization COMS 4771 1. Recap: learning via optimization Soft-margin SVMs Soft-margin SVM optimization problem defined by training data: w R d λ 2 w 2 2 + 1 n n [ ] 1 y ix T i w. + 1 / 15 Soft-margin

More information

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization /

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization / Uses of duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Remember conjugate functions Given f : R n R, the function is called its conjugate f (y) = max x R n yt x f(x) Conjugates appear

More information

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System FRTN Multivariable Control, Lecture 3 Anders Robertsson Automatic Control LTH, Lund University Course outline The Q-parametrization (Youla) L-L5 Purpose, models and loop-shaping by hand L6-L8 Limitations

More information

Integral Jensen inequality

Integral Jensen inequality Integral Jensen inequality Let us consider a convex set R d, and a convex function f : (, + ]. For any x,..., x n and λ,..., λ n with n λ i =, we have () f( n λ ix i ) n λ if(x i ). For a R d, let δ a

More information

Convexity in R n. The following lemma will be needed in a while. Lemma 1 Let x E, u R n. If τ I(x, u), τ 0, define. f(x + τu) f(x). τ.

Convexity in R n. The following lemma will be needed in a while. Lemma 1 Let x E, u R n. If τ I(x, u), τ 0, define. f(x + τu) f(x). τ. Convexity in R n Let E be a convex subset of R n. A function f : E (, ] is convex iff f(tx + (1 t)y) (1 t)f(x) + tf(y) x, y E, t [0, 1]. A similar definition holds in any vector space. A topology is needed

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

Online Convex Optimization

Online Convex Optimization Advanced Course in Machine Learning Spring 2010 Online Convex Optimization Handouts are jointly prepared by Shie Mannor and Shai Shalev-Shwartz A convex repeated game is a two players game that is performed

More information

Existence of Global Minima for Constrained Optimization 1

Existence of Global Minima for Constrained Optimization 1 Existence of Global Minima for Constrained Optimization 1 A. E. Ozdaglar 2 and P. Tseng 3 Communicated by A. Miele 1 We thank Professor Dimitri Bertsekas for his comments and support in the writing of

More information

Optimality, identifiability, and sensitivity

Optimality, identifiability, and sensitivity Noname manuscript No. (will be inserted by the editor) Optimality, identifiability, and sensitivity D. Drusvyatskiy A. S. Lewis Received: date / Accepted: date Abstract Around a solution of an optimization

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

More information

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version Convex Optimization Theory Chapter 5 Exercises and Solutions: Extended Version Dimitri P. Bertsekas Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

Appendix B Convex analysis

Appendix B Convex analysis This version: 28/02/2014 Appendix B Convex analysis In this appendix we review a few basic notions of convexity and related notions that will be important for us at various times. B.1 The Hausdorff distance

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

ON A CLASS OF NONSMOOTH COMPOSITE FUNCTIONS

ON A CLASS OF NONSMOOTH COMPOSITE FUNCTIONS MATHEMATICS OF OPERATIONS RESEARCH Vol. 28, No. 4, November 2003, pp. 677 692 Printed in U.S.A. ON A CLASS OF NONSMOOTH COMPOSITE FUNCTIONS ALEXANDER SHAPIRO We discuss in this paper a class of nonsmooth

More information

Chapter 2 Convex Analysis

Chapter 2 Convex Analysis Chapter 2 Convex Analysis The theory of nonsmooth analysis is based on convex analysis. Thus, we start this chapter by giving basic concepts and results of convexity (for further readings see also [202,

More information

Stochastic Optimization Lecture notes for part I. J. Frédéric Bonnans 1

Stochastic Optimization Lecture notes for part I. J. Frédéric Bonnans 1 Stochastic Optimization Lecture notes for part I Optimization Master, University Paris-Saclay Version of January 25, 2018 J. Frédéric Bonnans 1 1 Centre de Mathématiques Appliquées, Inria, Ecole Polytechnique,

More information

In applications, we encounter many constrained optimization problems. Examples Basis pursuit: exact sparse recovery problem

In applications, we encounter many constrained optimization problems. Examples Basis pursuit: exact sparse recovery problem 1 Conve Analsis Main references: Vandenberghe UCLA): EECS236C - Optimiation methods for large scale sstems, http://www.seas.ucla.edu/ vandenbe/ee236c.html Parikh and Bod, Proimal algorithms, slides and

More information

Lecture 1: January 12

Lecture 1: January 12 10-725/36-725: Convex Optimization Fall 2015 Lecturer: Ryan Tibshirani Lecture 1: January 12 Scribes: Seo-Jin Bang, Prabhat KC, Josue Orellana 1.1 Review We begin by going through some examples and key

More information

IE 521 Convex Optimization

IE 521 Convex Optimization Lecture 1: 16th January 2019 Outline 1 / 20 Which set is different from others? Figure: Four sets 2 / 20 Which set is different from others? Figure: Four sets 3 / 20 Interior, Closure, Boundary Definition.

More information

1 Lesson 0: Intro and motivation (Brunn-Minkowski)

1 Lesson 0: Intro and motivation (Brunn-Minkowski) 1 Lesson 0: Intro and motivation (Brunn-Minkowski) Convex sets are in correspondence with norms, which will be our first motivation to studying them. A very basic inequality is Brunn-Minkowski, which is

More information