4. Convex optimization problems (part 1: general)

Size: px
Start display at page:

Download "4. Convex optimization problems (part 1: general)"

Transcription

1 EE/AA 578, Univ of Washington, Fall Convex optimization problems (part 1: general) optimization problem in standard form convex optimization problems quasiconvex optimization 4 1

2 Optimization problem in standard form minimize f 0 (x) subject to f i (x) 0, i = 1,...,m h i (x) = 0, i = 1,...,p x R n is the optimization variable f 0 : R n R is the objective or cost function f i : R n R, i = 1,...,m, are the inequality constraint functions h i : R n R are the equality constraint functions optimal value: p = inf{f 0 (x) f i (x) 0, i = 1,...,m, h i (x) = 0, i = 1,...,p} p = if problem is infeasible (no x satisfies the constraints) p = if problem is unbounded below 4 2

3 Optimal and locally optimal points x is feasible if x domf 0 and it satisfies the constraints a feasible x is optimal if f 0 (x) = p ; X opt is the set of optimal points x is locally optimal if there is an R > 0 such that x is optimal for minimize (over z) f 0 (z) subject to f i (z) 0, i = 1,...,m, h i (z) = 0, i = 1,...,p z x 2 R examples (with n = 1, m = p = 0) f 0 (x) = 1/x, domf 0 = R ++ : p = 0, no optimal point f 0 (x) = logx, domf 0 = R ++ : p = f 0 (x) = xlogx, domf 0 = R ++ : p = 1/e, x = 1/e is optimal f 0 (x) = x 3 3x, p =, local optimum at x = 1 4 3

4 Implicit constraints the standard form optimization problem has an implicit constraint x D = m i=0 domf i p i=1 domh i, we call D the domain of the problem the constraints f i (x) 0, h i (x) = 0 are the explicit constraints a problem is unconstrained if it has no explicit constraints (m = p = 0) example: minimize f 0 (x) = k i=1 log(b i a T i x) is an unconstrained problem with implicit constraints a T i x < b i 4 4

5 Feasibility problem find x subject to f i (x) 0, i = 1,...,m h i (x) = 0, i = 1,...,p can be considered a special case of the general problem with f 0 (x) = 0: minimize 0 subject to f i (x) 0, i = 1,...,m h i (x) = 0, i = 1,...,p p = 0 if constraints are feasible; any feasible x is optimal p = if constraints are infeasible 4 5

6 Convex optimization problem standard form convex optimization problem minimize f 0 (x) subject to f i (x) 0, i = 1,...,m a T i x = b i, i = 1,...,p f 0, f 1,..., f m are convex; equality constraints are affine problem is quasiconvex if f 0 is quasiconvex (and f 1,..., f m convex) often written as minimize f 0 (x) subject to f i (x) 0, i = 1,...,m Ax = b important property: feasible set of a convex optimization problem is convex 4 6

7 example minimize f 0 (x) = x 2 1+x 2 2 subject to f 1 (x) = x 1 /(1+x 2 2) 0 h 1 (x) = (x 1 +x 2 ) 2 = 0 f 0 is convex; feasible set {(x 1,x 2 ) x 1 = x 2 0} is convex not a convex problem (according to our definition): f 1 is not convex, h 1 is not affine equivalent (but not identical) to the convex problem minimize x 2 1+x 2 2 subject to x 1 0 x 1 +x 2 = 0 4 7

8 Local and global optima any locally optimal point of a convex problem is (globally) optimal proof: suppose x is locally optimal and y is optimal with f 0 (y) < f 0 (x) x locally optimal means there is an R > 0 such that z feasible, z x 2 R = f 0 (z) f 0 (x) consider z = θy +(1 θ)x with θ = R/(2 y x 2 ) y x 2 > R, so 0 < θ < 1/2 z is a convex combination of two feasible points, hence also feasible z x 2 = R/2 and f 0 (z) θf 0 (x)+(1 θ)f 0 (y) < f 0 (x) which contradicts our assumption that x is locally optimal 4 8

9 Optimality criterion for differentiable f 0 x is optimal if and only if it is feasible and f 0 (x) T (y x) 0 for all feasible y f X x f 0 (x) if nonzero, f 0 (x) defines a supporting hyperplane to feasible set X at x 4 9

10 unconstrained problem: x is optimal if and only if x domf 0, f 0 (x) = 0 equality constrained problem minimize f 0 (x) subject to Ax = b x is optimal if and only if there exists a ν such that x domf 0, Ax = b, f 0 (x)+a T ν = 0 minimization over nonnegative orthant x is optimal if and only if minimize f 0 (x) subject to x 0 x domf 0, x 0, { f0 (x) i 0 x i = 0 f 0 (x) i = 0 x i >

11 Equivalent convex problems two problems are (informally) equivalent if the solution of one is readily obtained from the solution of the other, and vice-versa some common transformations that preserve convexity: eliminating equality constraints is equivalent to minimize f 0 (x) subject to f i (x) 0, i = 1,...,m Ax = b minimize (over z) f 0 (Fz +x 0 ) subject to f i (Fz +x 0 ) 0, i = 1,...,m where F and x 0 are such that Ax = b x = Fz +x 0 for some z 4 11

12 introducing equality constraints is equivalent to minimize f 0 (A 0 x+b 0 ) subject to f i (A i x+b i ) 0, i = 1,...,m minimize (over x, y i ) f 0 (y 0 ) subject to f i (y i ) 0, i = 1,...,m y i = A i x+b i, i = 0,1,...,m introducing slack variables for linear inequalities is equivalent to minimize f 0 (x) subject to a T i x b i, i = 1,...,m minimize (over x, s) f 0 (x) subject to a T i x+s i = b i, i = 1,...,m s i 0, i = 1,...m 4 12

13 epigraph form: standard form convex problem is equivalent to minimize (over x, t) t subject to f 0 (x) t 0 f i (x) 0, i = 1,...,m Ax = b minimizing over some variables is equivalent to where f 0 (x 1 ) = inf x2 f 0 (x 1,x 2 ) minimize f 0 (x 1,x 2 ) subject to f i (x 1 ) 0, i = 1,...,m minimize f0 (x 1 ) subject to f i (x 1 ) 0, i = 1,...,m 4 13

14 Quasiconvex optimization minimize f 0 (x) subject to f i (x) 0, i = 1,...,m Ax = b with f 0 : R n R quasiconvex, f 1,..., f m convex can have locally optimal points that are not (globally) optimal convex representation of sublevel sets of f 0 if f 0 is quasiconvex, there exists a family of functions φ t such that: φ t (x) is convex in x for fixed t t-sublevel set of f 0 is 0-sublevel set of φ t, i.e., f 0 (x) t φ t (x)

15 example f 0 (x) = p(x) q(x) with p convex, q concave, and p(x) 0, q(x) > 0 on domf 0 can take φ t (x) = p(x) tq(x): for t 0, φ t convex in x p(x)/q(x) t if and only if φ t (x)

16 quasiconvex optimization via convex feasibility problems φ t (x) 0, f i (x) 0, i = 1,...,m, Ax = b (1) for fixed t, a convex feasibility problem in x if feasible, we can conclude that t p ; if infeasible, t p Bisection method for quasiconvex optimization given l p, u p, tolerance ǫ > 0. repeat 1. t := (l + u)/2. 2. Solve the convex feasibility problem (1). 3. if (1) is feasible, u := t; else l := t. until u l ǫ. requires exactly log 2 ((u l)/ǫ) iterations (where u, l are initial values) 4 16

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

Lecture: Convex Optimization Problems

Lecture: Convex Optimization Problems 1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt-2015-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization

More information

Convex optimization problems. Optimization problem in standard form

Convex optimization problems. Optimization problem in standard form Convex optimization problems optimization problem in standard form convex optimization problems linear optimization quadratic optimization geometric programming quasiconvex optimization generalized inequality

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

CSCI : Optimization and Control of Networks. Review on Convex Optimization

CSCI : Optimization and Control of Networks. Review on Convex Optimization CSCI7000-016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one

More information

A Brief Review on Convex Optimization

A Brief Review on Convex Optimization A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Convex Optimization Fourth lecture, 05.05.2010 Jun.-Prof. Matthias Hein Reminder from last time Convex functions: first-order condition: f(y) f(x) + f x,y x, second-order

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

Convex Optimization. Prof. Nati Srebro. Lecture 12: Infeasible-Start Newton s Method Interior Point Methods

Convex Optimization. Prof. Nati Srebro. Lecture 12: Infeasible-Start Newton s Method Interior Point Methods Convex Optimization Prof. Nati Srebro Lecture 12: Infeasible-Start Newton s Method Interior Point Methods Equality Constrained Optimization f 0 (x) s. t. A R p n, b R p Using access to: 2 nd order oracle

More information

EE/AA 578, Univ of Washington, Fall Duality

EE/AA 578, Univ of Washington, Fall Duality 7. Duality EE/AA 578, Univ of Washington, Fall 2016 Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

Tutorial on Convex Optimization for Engineers Part II

Tutorial on Convex Optimization for Engineers Part II Tutorial on Convex Optimization for Engineers Part II M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

Convex Optimization. 4. Convex Optimization Problems. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University

Convex Optimization. 4. Convex Optimization Problems. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University Conve Optimization 4. Conve Optimization Problems Prof. Ying Cui Department of Electrical Engineering Shanghai Jiao Tong University 2017 Autumn Semester SJTU Ying Cui 1 / 58 Outline Optimization problems

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Lecture: Duality.

Lecture: Duality. Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history of convex optimization 1 1 Mathematical

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction Convex Optimization Boyd & Vandenberghe mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction Convex Optimization Boyd & Vandenberghe mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history

More information

subject to (x 2)(x 4) u,

subject to (x 2)(x 4) u, Exercises Basic definitions 5.1 A simple example. Consider the optimization problem with variable x R. minimize x 2 + 1 subject to (x 2)(x 4) 0, (a) Analysis of primal problem. Give the feasible set, the

More information

Convex Functions. Wing-Kin (Ken) Ma The Chinese University of Hong Kong (CUHK)

Convex Functions. Wing-Kin (Ken) Ma The Chinese University of Hong Kong (CUHK) Convex Functions Wing-Kin (Ken) Ma The Chinese University of Hong Kong (CUHK) Course on Convex Optimization for Wireless Comm. and Signal Proc. Jointly taught by Daniel P. Palomar and Wing-Kin (Ken) Ma

More information

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution:

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: 1-5: Least-squares I A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: f (x) =(Ax b) T (Ax b) =x T A T Ax 2b T Ax + b T b f (x) = 2A T Ax 2A T b = 0 Chih-Jen Lin (National

More information

Optimisation convexe: performance, complexité et applications.

Optimisation convexe: performance, complexité et applications. Optimisation convexe: performance, complexité et applications. Introduction, convexité, dualité. A. d Aspremont. M2 OJME: Optimisation convexe. 1/128 Today Convex optimization: introduction Course organization

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

Convex Optimization. Lecture 12 - Equality Constrained Optimization. Instructor: Yuanzhang Xiao. Fall University of Hawaii at Manoa

Convex Optimization. Lecture 12 - Equality Constrained Optimization. Instructor: Yuanzhang Xiao. Fall University of Hawaii at Manoa Convex Optimization Lecture 12 - Equality Constrained Optimization Instructor: Yuanzhang Xiao University of Hawaii at Manoa Fall 2017 1 / 19 Today s Lecture 1 Basic Concepts 2 for Equality Constrained

More information

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution:

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: 1-5: Least-squares I A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: f (x) =(Ax b) T (Ax b) =x T A T Ax 2b T Ax + b T b f (x) = 2A T Ax 2A T b = 0 Chih-Jen Lin (National

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction Convex Optimization Boyd & Vandenberghe mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction Convex Optimization Boyd & Vandenberghe mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history

More information

Convex Functions. Pontus Giselsson

Convex Functions. Pontus Giselsson Convex Functions Pontus Giselsson 1 Today s lecture lower semicontinuity, closure, convex hull convexity preserving operations precomposition with affine mapping infimal convolution image function supremum

More information

11. Equality constrained minimization

11. Equality constrained minimization Convex Optimization Boyd & Vandenberghe 11. Equality constrained minimization equality constrained minimization eliminating equality constraints Newton s method with equality constraints infeasible start

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Convex Functions Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Definition convex function Examples

More information

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1)

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1) Chapter 2: Linear Programming Basics (Bertsimas & Tsitsiklis, Chapter 1) 33 Example of a Linear Program Remarks. minimize 2x 1 x 2 + 4x 3 subject to x 1 + x 2 + x 4 2 3x 2 x 3 = 5 x 3 + x 4 3 x 1 0 x 3

More information

Convex Optimization in Communications and Signal Processing

Convex Optimization in Communications and Signal Processing Convex Optimization in Communications and Signal Processing Prof. Dr.-Ing. Wolfgang Gerstacker 1 University of Erlangen-Nürnberg Institute for Digital Communications National Technical University of Ukraine,

More information

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions 3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions

More information

Unconstrained minimization

Unconstrained minimization CSCI5254: Convex Optimization & Its Applications Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method self-concordant functions 1 Unconstrained

More information

Lecture: Duality of LP, SOCP and SDP

Lecture: Duality of LP, SOCP and SDP 1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Duality Theory and Optimality Conditions 5th lecture, 12.05.2010 Jun.-Prof. Matthias Hein Program of today/next lecture Lagrangian and duality: the Lagrangian the dual

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

Interior Point Algorithms for Constrained Convex Optimization

Interior Point Algorithms for Constrained Convex Optimization Interior Point Algorithms for Constrained Convex Optimization Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Inequality constrained minimization problems

More information

Analytic Center Cutting-Plane Method

Analytic Center Cutting-Plane Method Analytic Center Cutting-Plane Method S. Boyd, L. Vandenberghe, and J. Skaf April 14, 2011 Contents 1 Analytic center cutting-plane method 2 2 Computing the analytic center 3 3 Pruning constraints 5 4 Lower

More information

8. Conjugate functions

8. Conjugate functions L. Vandenberghe EE236C (Spring 2013-14) 8. Conjugate functions closed functions conjugate function 8-1 Closed set a set C is closed if it contains its boundary: x k C, x k x = x C operations that preserve

More information

N. L. P. NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP. Optimization. Models of following form:

N. L. P. NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP. Optimization. Models of following form: 0.1 N. L. P. Katta G. Murty, IOE 611 Lecture slides Introductory Lecture NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP does not include everything

More information

Convex Optimization Problems. Prof. Daniel P. Palomar

Convex Optimization Problems. Prof. Daniel P. Palomar Conve Optimization Problems Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19, HKUST,

More information

Lecture 1: January 12

Lecture 1: January 12 10-725/36-725: Convex Optimization Fall 2015 Lecturer: Ryan Tibshirani Lecture 1: January 12 Scribes: Seo-Jin Bang, Prabhat KC, Josue Orellana 1.1 Review We begin by going through some examples and key

More information

EE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1

EE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1 EE 546, Univ of Washington, Spring 2012 6. Proximal mapping introduction review of conjugate functions proximal mapping Proximal mapping 6 1 Proximal mapping the proximal mapping (prox-operator) of a convex

More information

On the Method of Lagrange Multipliers

On the Method of Lagrange Multipliers On the Method of Lagrange Multipliers Reza Nasiri Mahalati November 6, 2016 Most of what is in this note is taken from the Convex Optimization book by Stephen Boyd and Lieven Vandenberghe. This should

More information

Lagrangian Duality and Convex Optimization

Lagrangian Duality and Convex Optimization Lagrangian Duality and Convex Optimization David Rosenberg New York University February 11, 2015 David Rosenberg (New York University) DS-GA 1003 February 11, 2015 1 / 24 Introduction Why Convex Optimization?

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions 3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness.

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness. CS/ECE/ISyE 524 Introduction to Optimization Spring 2016 17 14. Duality ˆ Upper and lower bounds ˆ General duality ˆ Constraint qualifications ˆ Counterexample ˆ Complementary slackness ˆ Examples ˆ Sensitivity

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

Duality Theory, Optimality Conditions

Duality Theory, Optimality Conditions 5.1 Duality Theory, Optimality Conditions Katta G. Murty, IOE 510, LP, U. Of Michigan, Ann Arbor We only consider single objective LPs here. Concept of duality not defined for multiobjective LPs. Every

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Algorithms for Constrained Nonlinear Optimization Problems) Tamás TERLAKY Computing and Software McMaster University Hamilton, November 2005 terlaky@mcmaster.ca

More information

Existence of Global Minima for Constrained Optimization 1

Existence of Global Minima for Constrained Optimization 1 Existence of Global Minima for Constrained Optimization 1 A. E. Ozdaglar 2 and P. Tseng 3 Communicated by A. Miele 1 We thank Professor Dimitri Bertsekas for his comments and support in the writing of

More information

Solving systems of polynomial equations and minimization of multivariate polynomials

Solving systems of polynomial equations and minimization of multivariate polynomials François Glineur, Polynomial solving & minimization - 1 - First Prev Next Last Full Screen Quit Solving systems of polynomial equations and minimization of multivariate polynomials François Glineur UCL/CORE

More information

Homework Set #6 - Solutions

Homework Set #6 - Solutions EE 15 - Applications of Convex Optimization in Signal Processing and Communications Dr Andre Tkacenko JPL Third Term 11-1 Homework Set #6 - Solutions 1 a The feasible set is the interval [ 4] The unique

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Duality in Nonlinear Optimization ) Tamás TERLAKY Computing and Software McMaster University Hamilton, January 2004 terlaky@mcmaster.ca Tel: 27780 Optimality

More information

Extended Monotropic Programming and Duality 1

Extended Monotropic Programming and Duality 1 March 2006 (Revised February 2010) Report LIDS - 2692 Extended Monotropic Programming and Duality 1 by Dimitri P. Bertsekas 2 Abstract We consider the problem minimize f i (x i ) subject to x S, where

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

Lagrange duality. The Lagrangian. We consider an optimization program of the form

Lagrange duality. The Lagrangian. We consider an optimization program of the form Lagrange duality Another way to arrive at the KKT conditions, and one which gives us some insight on solving constrained optimization problems, is through the Lagrange dual. The dual is a maximization

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

The Lagrangian L : R d R m R r R is an (easier to optimize) lower bound on the original problem:

The Lagrangian L : R d R m R r R is an (easier to optimize) lower bound on the original problem: HT05: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford Convex Optimization and slides based on Arthur Gretton s Advanced Topics in Machine Learning course

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

Fundamental Theorems of Optimization

Fundamental Theorems of Optimization Fundamental Theorems of Optimization 1 Fundamental Theorems of Math Prog. Maximizing a concave function over a convex set. Maximizing a convex function over a closed bounded convex set. 2 Maximizing Concave

More information

Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications

Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications Chong-Yung Chi Institute of Communications Engineering & Department of Electrical Engineering National Tsing

More information

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra LP Duality: outline I Motivation and definition of a dual LP I Weak duality I Separating hyperplane theorem and theorems of the alternatives I Strong duality and complementary slackness I Using duality

More information

Lagrangian Duality Theory

Lagrangian Duality Theory Lagrangian Duality Theory Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapter 14.1-4 1 Recall Primal and Dual

More information

Lecture 2: Convex functions

Lecture 2: Convex functions Lecture 2: Convex functions f : R n R is convex if dom f is convex and for all x, y dom f, θ [0, 1] f is concave if f is convex f(θx + (1 θ)y) θf(x) + (1 θ)f(y) x x convex concave neither x examples (on

More information

Lecture 8. Strong Duality Results. September 22, 2008

Lecture 8. Strong Duality Results. September 22, 2008 Strong Duality Results September 22, 2008 Outline Lecture 8 Slater Condition and its Variations Convex Objective with Linear Inequality Constraints Quadratic Objective over Quadratic Constraints Representation

More information

Convex Optimization. 9. Unconstrained minimization. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University

Convex Optimization. 9. Unconstrained minimization. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University Convex Optimization 9. Unconstrained minimization Prof. Ying Cui Department of Electrical Engineering Shanghai Jiao Tong University 2017 Autumn Semester SJTU Ying Cui 1 / 40 Outline Unconstrained minimization

More information

The Karush-Kuhn-Tucker (KKT) conditions

The Karush-Kuhn-Tucker (KKT) conditions The Karush-Kuhn-Tucker (KKT) conditions In this section, we will give a set of sufficient (and at most times necessary) conditions for a x to be the solution of a given convex optimization problem. These

More information

Equality constrained minimization

Equality constrained minimization Chapter 10 Equality constrained minimization 10.1 Equality constrained minimization problems In this chapter we describe methods for solving a convex optimization problem with equality constraints, minimize

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 4 Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 2 4.1. Subgradients definition subgradient calculus duality and optimality conditions Shiqian

More information

ICS-E4030 Kernel Methods in Machine Learning

ICS-E4030 Kernel Methods in Machine Learning ICS-E4030 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 28. September, 2016 Juho Rousu 28. September, 2016 1 / 38 Convex optimization Convex optimisation This

More information

9. Geometric problems

9. Geometric problems 9. Geometric problems EE/AA 578, Univ of Washington, Fall 2016 projection on a set extremal volume ellipsoids centering classification 9 1 Projection on convex set projection of point x on set C defined

More information

CS675: Convex and Combinatorial Optimization Fall 2016 Convex Optimization Problems. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2016 Convex Optimization Problems. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2016 Convex Optimization Problems Instructor: Shaddin Dughmi Outline 1 Convex Optimization Basics 2 Common Classes 3 Interlude: Positive Semi-Definite

More information

1 Review of last lecture and introduction

1 Review of last lecture and introduction Semidefinite Programming Lecture 10 OR 637 Spring 2008 April 16, 2008 (Wednesday) Instructor: Michael Jeremy Todd Scribe: Yogeshwer (Yogi) Sharma 1 Review of last lecture and introduction Let us first

More information

Lesson 27 Linear Programming; The Simplex Method

Lesson 27 Linear Programming; The Simplex Method Lesson Linear Programming; The Simplex Method Math 0 April 9, 006 Setup A standard linear programming problem is to maximize the quantity c x + c x +... c n x n = c T x subject to constraints a x + a x

More information

Chap 2. Optimality conditions

Chap 2. Optimality conditions Chap 2. Optimality conditions Version: 29-09-2012 2.1 Optimality conditions in unconstrained optimization Recall the definitions of global, local minimizer. Geometry of minimization Consider for f C 1

More information

10. Ellipsoid method

10. Ellipsoid method 10. Ellipsoid method EE236C (Spring 2008-09) ellipsoid method convergence proof inequality constraints 10 1 Ellipsoid method history developed by Shor, Nemirovski, Yudin in 1970s used in 1979 by Khachian

More information

Note 3: LP Duality. If the primal problem (P) in the canonical form is min Z = n (1) then the dual problem (D) in the canonical form is max W = m (2)

Note 3: LP Duality. If the primal problem (P) in the canonical form is min Z = n (1) then the dual problem (D) in the canonical form is max W = m (2) Note 3: LP Duality If the primal problem (P) in the canonical form is min Z = n j=1 c j x j s.t. nj=1 a ij x j b i i = 1, 2,..., m (1) x j 0 j = 1, 2,..., n, then the dual problem (D) in the canonical

More information

minimize x x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x 2 u 2, 5x 1 +76x 2 1,

minimize x x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x 2 u 2, 5x 1 +76x 2 1, 4 Duality 4.1 Numerical perturbation analysis example. Consider the quadratic program with variables x 1, x 2, and parameters u 1, u 2. minimize x 2 1 +2x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x

More information

Convex Optimization and l 1 -minimization

Convex Optimization and l 1 -minimization Convex Optimization and l 1 -minimization Sangwoon Yun Computational Sciences Korea Institute for Advanced Study December 11, 2009 2009 NIMS Thematic Winter School Outline I. Convex Optimization II. l

More information

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Duality Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Lagrangian Consider the optimization problem in standard form

More information

Fast proximal gradient methods

Fast proximal gradient methods L. Vandenberghe EE236C (Spring 2013-14) Fast proximal gradient methods fast proximal gradient method (FISTA) FISTA with line search FISTA as descent method Nesterov s second method 1 Fast (proximal) gradient

More information

Lecture 2: The Simplex method

Lecture 2: The Simplex method Lecture 2 1 Linear and Combinatorial Optimization Lecture 2: The Simplex method Basic solution. The Simplex method (standardform, b>0). 1. Repetition of basic solution. 2. One step in the Simplex algorithm.

More information

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients and quasigradients subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE392o, Stanford University Basic inequality recall basic

More information

Distributed Real-Time Control Systems. Lecture Distributed Control Linear Programming

Distributed Real-Time Control Systems. Lecture Distributed Control Linear Programming Distributed Real-Time Control Systems Lecture 13-14 Distributed Control Linear Programming 1 Linear Programs Optimize a linear function subject to a set of linear (affine) constraints. Many problems can

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem:

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem: CDS270 Maryam Fazel Lecture 2 Topics from Optimization and Duality Motivation network utility maximization (NUM) problem: consider a network with S sources (users), each sending one flow at rate x s, through

More information

EE5138R: Problem Set 5 Assigned: 16/02/15 Due: 06/03/15

EE5138R: Problem Set 5 Assigned: 16/02/15 Due: 06/03/15 EE538R: Problem Set 5 Assigned: 6/0/5 Due: 06/03/5. BV Problem 4. The feasible set is the convex hull of (0, ), (0, ), (/5, /5), (, 0) and (, 0). (a) x = (/5, /5) (b) Unbounded below (c) X opt = {(0, x

More information

Penalty and Barrier Methods General classical constrained minimization problem minimize f(x) subject to g(x) 0 h(x) =0 Penalty methods are motivated by the desire to use unconstrained optimization techniques

More information

Additional Homework Problems

Additional Homework Problems Additional Homework Problems Robert M. Freund April, 2004 2004 Massachusetts Institute of Technology. 1 2 1 Exercises 1. Let IR n + denote the nonnegative orthant, namely IR + n = {x IR n x j ( ) 0,j =1,...,n}.

More information

The fundamental theorem of linear programming

The fundamental theorem of linear programming The fundamental theorem of linear programming Michael Tehranchi June 8, 2017 This note supplements the lecture notes of Optimisation The statement of the fundamental theorem of linear programming and the

More information

Mathematical Preliminaries

Mathematical Preliminaries Mathematical Preliminaries Economics 3307 - Intermediate Macroeconomics Aaron Hedlund Baylor University Fall 2013 Econ 3307 (Baylor University) Mathematical Preliminaries Fall 2013 1 / 25 Outline I: Sequences

More information

Linear and Combinatorial Optimization

Linear and Combinatorial Optimization Linear and Combinatorial Optimization The dual of an LP-problem. Connections between primal and dual. Duality theorems and complementary slack. Philipp Birken (Ctr. for the Math. Sc.) Lecture 3: Duality

More information