QuickCheck 1.5. An ant zig-zags back and forth on a picnic table as shown. The ant s distance traveled and displacement are

Size: px
Start display at page:

Download "QuickCheck 1.5. An ant zig-zags back and forth on a picnic table as shown. The ant s distance traveled and displacement are"

Transcription

1 APPY1 Review

2 QuickCheck 1.5 An ant zig-zags back and forth on a picnic table as shown. The ant s distance traveled and displacement are A. 50 cm and 50 cm B. 30 cm and 50 cm C. 50 cm and 30 cm D. 50 cm and 50 cm E. 50 cm and 30 cm Slide 1- #

3 QuickCheck 1.5 An ant zig-zags back and forth on a picnic table as shown. The ant s distance traveled and displacement are A. 50 cm and 50 cm B. 30 cm and 50 cm C. 50 cm and 30 cm D. 50 cm and 50 cm E. 50 cm and 30 cm Slide 1- #

4 QuickCheck 1.6 Given vectors and, what is? Slide 1- #

5 QuickCheck 1.6 Given vectors and, what is? A. Slide 1- #

6 QuickCheck 2.7 Which velocity-versus-time graph goes with this position graph? Slide 2- #

7 QuickCheck 2.7 Which velocity-versus-time graph goes with this position graph? C. Slide 2- #

8 QuickCheck 2.20 A cart speeds up toward the origin. What do the position and velocity graphs look like? Slide 2- #

9 QuickCheck 2.20 A cart speeds up toward the origin. What do the position and velocity graphs look like? C. Slide 2- #

10 QuickCheck 3.16 A heavy red ball is released from rest 2.0 m above a flat, horizontal surface. At exactly the same instant, a yellow ball with the same mass is fired horizontally at 3.0 m/s. Which ball hits the ground first? A. The red ball hits first. B. The yellow ball hits first. C. They hit at the same time. Slide 3- #

11 QuickCheck 3.16 A heavy red ball is released from rest 2.0 m above a flat, horizontal surface. At exactly the same instant, a yellow ball with the same mass is fired horizontally at 3.0 m/s. Which ball hits the ground first? A. The red ball hits first. B. The yellow ball hits first. C. They hit at the same time. Slide 3- #

12 QuickCheck 3.20 A car is traveling around a curve at a steady 45 mph. Which vector shows the direction of the car s acceleration? E. The acceleration is zero. Slide 3- #

13 QuickCheck 3.20 A car is traveling around a curve at a steady 45 mph. Which vector shows the direction of the car s acceleration? B. E. The acceleration is zero. Slide 3- #

14 QuickCheck 4.4 A bobsledder pushes her sled across horizontal snow to get it going, then jumps in. After she jumps in, the sled gradually slows to a halt. What forces act on the sled just after she s jumped in? A. Gravity and kinetic friction B. Gravity and a normal force C. Gravity and the force of the push D. Gravity, a normal force, and kinetic friction E. Gravity, a normal force, kinetic friction, and the force of the push Slide 4- #

15 QuickCheck 4.4 A bobsledder pushes her sled across horizontal snow to get it going, then jumps in. After she jumps in, the sled gradually slows to a halt. What forces act on the sled just after she s jumped in? A. Gravity and kinetic friction B. Gravity and a normal force C. Gravity and the force of the push D. Gravity, a normal force, and kinetic friction E. Gravity, a normal force, kinetic friction, and the force of the push Slide 4- #

16 QuickCheck 4.9 An object on a rope is lowered at constant speed. Which is true? A. The rope tension is greater than the object s weight. B. The rope tension equals the object s weight. C. The rope tension is less than the object s weight. D. The rope tension can t be compared to the object s weight. Slide 4- #

17 QuickCheck 4.9 An object on a rope is lowered at constant speed. Which is true? Constant velocity Zero acceleration A. The rope tension is greater than the object s weight. B. The rope tension equals the object s weight. C. The rope tension is less than the object s weight. D. The rope tension can t be compared to the object s weight. Slide 4- #

18 QuickCheck 4.14 A car is parked on a hill. Which is the correct free-body diagram? Slide 4- #

19 QuickCheck 4.14 A car is parked on a hill. Which is the correct free-body diagram? C. Slide 4- #

20 QuickCheck 4.10 An object on a rope is lowered at a steadily decreasing speed. Which is true? A. The rope tension is greater than the object s weight. B. The rope tension equals the object s weight. C. The rope tension is less than the object s weight. D. The rope tension can t be compared to the object s weight. Slide 4- #

21 QuickCheck 4.10 An object on a rope is lowered at a steadily decreasing speed. Which is true? Decreasing downward velocity Acceleration vector points up points up A. The rope tension is greater than the object s weight. B. The rope tension equals the object s weight. C. The rope tension is less than the object s weight. D. The rope tension can t be compared to the object s weight. Slide 4- #

22 QuickCheck 4.17 A mosquito runs head-on into a truck. Splat! Which is true during the collision? A. The mosquito exerts more force on the truck than the truck exerts on the mosquito. B. The truck exerts more force on the mosquito than the mosquito exerts on the truck. C. The mosquito exerts the same force on the truck as the truck exerts on the mosquito. D. The truck exerts a force on the mosquito but the mosquito does not exert a force on the truck. E. The mosquito exerts a force on the truck but the truck does not exert a force on the mosquito. Slide 4- #

23 QuickCheck 4.17 A mosquito runs head-on into a truck. Splat! Which is true during the collision? A. The mosquito exerts more force on the truck than the truck exerts on the mosquito. B. The truck exerts more force on the mosquito than the mosquito exerts on the truck. C. The mosquito exerts the same force on the truck as the truck exerts on the mosquito. D. The truck exerts a force on the mosquito but the mosquito does not exert a force on the truck. E. The mosquito exerts a force on the truck but the truck does not exert a force on the mosquito. Slide 4- #

24 QuickCheck 5.3 A box is being pulled to the right at steady speed by a rope that angles upward. In this situation: A. n > mg B. n = mg C. n < mg D. n = 0 E. Not enough information to judge the size of the normal force Slide 5- #

25 QuickCheck 5.3 A box is being pulled to the right at steady speed by a rope that angles upward. In this situation: A. n > mg B. n = mg C. n < mg D. n = 0 E. Not enough information to judge the size of the normal force Slide 5- #

26 QuickCheck 5.8 A box with a weight of 100 N is at rest. It is then pulled by a 30 N horizontal force. Does the box move? A. Yes B. No C. Not enough information to say Slide 5- #

27 QuickCheck 5.8 A box with a weight of 100 N is at rest. It is then pulled by a 30 N horizontal force. Does the box move? A. Yes B. No C. Not enough 30 N information < f s max = 40 to N say Slide 5- #

28 QuickCheck 5.12 Boxes A and B are being pulled to the right on a frictionless surface; the boxes are speeding up. Box A has a larger mass than Box B. How do the two tension forces compare? A. T 1 > T 2 B. T 1 = T 2 C. T 1 < T 2 D. Not enough information to tell Slide 5- #

29 QuickCheck 5.12 Boxes A and B are being pulled to the right on a frictionless surface; the boxes are speeding up. Box A has a larger mass than Box B. How do the two tension forces compare? A. T 1 > T 2 B. T 1 = T 2 C. T 1 < T 2 D. Not enough information to tell Slide 5- #

30 QuickCheck 5.14 The two masses are at rest. The pulleys are frictionless. The scale is in kg. The scale reads A. 0 kg B. 5 kg C. 10 kg Slide 5- #

31 QuickCheck 5.14 The two masses are at rest. The pulleys are frictionless. The scale is in kg. The scale reads A. 0 kg B. 5 kg C. 10 kg Slide 5- #

32 QuickCheck 6.3 A ball at the end of a string is being swung in a horizontal circle. What is the direction of the acceleration of the ball? A. Tangent to the circle, in the direction of the ball s motion B. Toward the center of the circle Slide 6- #

33 QuickCheck 6.3 A ball at the end of a string is being swung in a horizontal circle. What is the direction of the acceleration of the ball? A. Tangent to the circle, in the direction of the ball s motion B. Toward the center of the circle Slide 6- #

34 QuickCheck 6.9 A coin is rotating on a turntable; it moves without sliding. At the instant shown, suppose the frictional force disappeared. In what direction would the coin move? Slide 6- #

35 QuickCheck 6.9 A coin is rotating on a turntable; it moves without sliding. At the instant shown, suppose the frictional force disappeared. In what direction would the coin move? A Slide 6- #

36 QuickCheck 6.13 A coin sits on a turntable as the table steadily rotates counterclockwise. What force or forces act in the plane of the turntable? Slide 6- #

37 QuickCheck 6.13 A coin sits on a turntable as the table steadily rotates counterclockwise. What force or forces act in the plane of the turntable? A. Slide 6- #

38 QuickCheck 6.16 The force of Planet Y on Planet X is the magnitude of. A. One quarter B. One half C. The same as D. Twice E. Four times 2M Planet X M Planet Y Slide 6- #

39 QuickCheck 6.16 The force of Planet Y on Planet X is the magnitude of. A. One quarter B. One half C. The same as D. Twice E. Four times 2M Planet X Newton s third law M Planet Y Slide 6- #

40 QuickCheck 6.18 Planet X has free-fall acceleration 8 m/s 2 at the surface. Planet Y has twice the mass and twice the radius of planet X. On Planet Y A. g = 2 m/s 2 B. g = 4 m/s 2 C. g = 8 m/s 2 D. g = 16 m/s 2 E. g = 32 m/s 2 Slide 6- #

41 QuickCheck 6.18 Planet X has free-fall acceleration 8 m/s 2 at the surface. Planet Y has twice the mass and twice the radius of planet X. On Planet Y A. g = 2 m/s 2 B. g = 4 m/s 2 C. g = 8 m/s 2 D. g = 16 m/s 2 E. g = 32 m/s 2 Slide 6- #

42 QuickCheck 6.22 A 60-kg person stands on each of the following planets. On which planet is his or her weight the greatest? Slide 6- #

43 QuickCheck 6.22 A 60-kg person stands on each of the following planets. On which planet is his or her weight the greatest? A Slide 6- #

44 QuickCheck 7.2 Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia s angular velocity is that of Rasheed. A. Half B. The same as C. Twice D. Four times E. We can t say without knowing their radii. Slide 7- #

45 QuickCheck 7.2 Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia s angular velocity is that of Rasheed. A. Half B. The same as C. Twice D. Four times E. We can t say without knowing their radii. Slide 7- #

46 QuickCheck 7.3 Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia s speed is that of Rasheed. A. Half B. The same as C. Twice D. Four times E. We can t say without knowing their radii. Slide 7- #

47 QuickCheck 7.3 Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia s speed is that of Rasheed. A. Half B. The same as C. Twice v = ωr D. Four times E. We can t say without knowing their radii. Slide 7- #

48 QuickCheck 7.5 The fan blade is slowing down. What are the signs of ω and α? A. ω is positive and α is positive. B. ω is positive and α is negative. C. ω is negative and α is positive. D. ω is negative and α is negative. E. ω is positive and α is zero. Slide 7- #

49 QuickCheck 7.5 The fan blade is slowing down. What are the signs of ω and α? A. ω is positive and α is positive. B. ω is positive and α is negative. C. ω is negative and α is positive. D. ω is negative and α is negative. E. ω is positive and α is zero. Slowing down means that ω and α have opposite signs, not that α is negative. Slide 7- #

50 QuickCheck 7.7 This is the angular velocity graph of a wheel. How many revolutions does the wheel make in the first 4 s? A. 1 B. 2 C. 4 D. 6 E. 8 Slide 7- #

51 QuickCheck 7.7 This is the angular velocity graph of a wheel. How many revolutions does the wheel make in the first 4 s? A. 1 B. 2 C. 4 D. 6 E. 8 Δθ = area under the angular velocity curve Slide 7- #

52 QuickCheck 7.10 The four forces shown have the same strength. Which force would be most effective in opening the door? A. Force F 1 B. Force F 2 C. Force F 3 D. Force F 4 E. Either F 1 or F 3 Slide 7- #

53 QuickCheck 7.10 The four forces shown have the same strength. Which force would be most effective in opening the door? A. Force F 1 B. Force F 2 C. Force F 3 D. Force F 4 E. Either F 1 or F 3 Your intuition likely led you to choose F 1. The reason is that F 1 exerts the largest torque about the hinge. Slide 7- #

54 QuickCheck 8.2 What does the scale read? A. 500 N B N C N D N Answering this requires reasoning, not calculating. Slide 8- #

55 QuickCheck 8.2 What does the scale read? A. 500 N B N C N D N Answering this requires reasoning, not calculating. Slide 8- #

56 QuickCheck 8.3 The restoring force of three springs is measured as they are stretched. Which spring has the largest spring constant? Slide 8- #

57 QuickCheck 8.3 The restoring force of three springs is measured as they are stretched. Which spring has the largest spring constant? A. Steepest slope. Takes lots of force for a small displacement. Slide 8- #

58 QuickCheck 9.1 The cart s change of momentum Δp x is A. 20 kg m/s B. 10 kg m/s C. 0 kg m/s D. 10 kg m/s E. 30 kg m/s Slide 9- #

59 QuickCheck 9.1 The cart s change of momentum Δp x is A. 20 kg m/s B. 10 kg m/s C. 0 kg m/s D. 10 kg m/s E. 30 kg m/s Δp x = 10 kg m/s ( 20 kg m/s) = 30 kg m/s Negative initial momentum because motion is to the left and v x < 0. Slide 9- #

60 QuickCheck 9.6 Two 1.0 kg stationary cue balls are struck by cue sticks. The cues exert the forces shown. Which ball has the greater final speed? A. Ball 1 B. Ball 2 C. Both balls have the same final speed. Slide 9- #

61 QuickCheck 9.6 Two 1.0 kg stationary cue balls are struck by cue sticks. The cues exert the forces shown. Which ball has the greater final speed? A. Ball 1 B. Ball 2 C. Both balls have the same final speed. Slide 9- #

62 QuickCheck 9.8 A mosquito and a truck have a head-on collision. Splat! Which has a larger change of momentum? A. The mosquito B. The truck C. They have the same change of momentum. D. Can t say without knowing their initial velocities. Slide 9- #

63 QuickCheck 9.8 A mosquito and a truck have a head-on collision. Splat! Which has a larger change of momentum? A. The mosquito B. The truck C. They have the same change of momentum. D. Can t say without knowing their initial velocities. Momentum is conserved, so Δp mosquito + Δp truck = 0. Equal magnitude (but opposite sign) changes in momentum. Slide 9- #

64 QuickCheck 9.9 The two boxes are sliding along a frictionless surface. They collide and stick together. Afterward, the velocity of the two boxes is A. 2 m/s to the left B. 1 m/s to the left C. 0 m/s, at rest D. 1 m/s to the right E. 2 m/s to the right Slide 9- #

65 QuickCheck 9.10 The two boxes are on a frictionless surface. They had been sitting together at rest, but an explosion between them has just pushed them apart. How fast is the 2-kg box going? A. 1 m/s B. 2 m/s C. 4 m/s D. 8 m/s E. There s not enough information to tell. Slide 9- #

66 QuickCheck 10.5 Robert pushes the box to the left at constant speed. In doing so, Robert does work on the box. A. Positive B. Negative C. Zero Slide 10- #

67 QuickCheck 10.5 Robert pushes the box to the left at constant speed. In doing so, Robert does work on the box. A. Positive B. Negative C. Zero Force is in the direction of displacement positive work Slide 10- #

68 QuickCheck 10.7 Which force below does the most work? All three displacements are the same. A. The 10 N force B. The 8 N force C. The 6 N force D. They all do the same work. sin60 = 0.87 cos60 = 0.50 Slide 10- #

69 QuickCheck 10.7 Which force below does the most work? All three displacements are the same. A. The 10 N force B. The 8 N force C. The 6 N force D. They all do the same work. sin60 = 0.87 cos60 = 0.50 Slide 10- #

70 QuickCheck Each of the boxes shown is pulled for 10 m across a level, frictionless floor by the force given. Which box experiences the greatest change in its kinetic energy? Slide 10- #

71 QuickCheck Each of the boxes shown is pulled for 10 m across a level, frictionless floor by the force given. Which box experiences the greatest change in its kinetic energy? D Work-energy equation: K = W = Fd. All have same d, so largest work (and hence largest K) corresponds to largest force. Slide 10- #

72 QuickCheck Starting from rest, a marble first rolls down a steeper hill, then down a less steep hill of the same height. For which is it going faster at the bottom? A. Faster at the bottom of the steeper hill B. Faster at the bottom of the less steep hill C. Same speed at the bottom of both hills D. Can t say without knowing the mass of the marble Slide 10- #

73 QuickCheck Starting from rest, a marble first rolls down a steeper hill, then down a less steep hill of the same height. For which is it going faster at the bottom? A. Faster at the bottom of the steeper hill B. Faster at the bottom of the less steep hill C. Same speed at the bottom of both hills D. Can t say without knowing the mass of the marble Slide 10- #

74 QuickCheck A hockey puck sliding on smooth ice at 4 m/s comes to a 1-m-high hill. Will it make it to the top of the hill? A. Yes B. No C. Can t answer without knowing the mass of the puck D. Can t say without knowing the angle of the hill Slide 10- #

75 QuickCheck A hockey puck sliding on smooth ice at 4 m/s comes to a 1-m-high hill. Will it make it to the top of the hill? A. Yes B. No C. Can t answer without knowing the mass of the puck D. Can t say without knowing the angle of the hill Slide 10- #

76 QuickCheck Four students run up the stairs in the time shown. Which student has the largest power output? Slide 10- #

77 QuickCheck Four students run up the stairs in the time shown. Which student has the largest power output? B. Slide 10- #

78 QuickCheck 14.1 A mass oscillates on a horizontal spring with period T = 2.0 s. What is the frequency? A Hz B. 1.0 Hz C. 2.0 Hz D. 3.0 Hz E. 4.0 Hz Slide 14- #

79 QuickCheck 14.1 A mass oscillates on a horizontal spring with period T = 2.0 s. What is the frequency? A Hz B. 1.0 Hz C. 2.0 Hz D. 3.0 Hz E. 4.0 Hz Slide 14- #

80 QuickCheck 14.5 A mass oscillates on a horizontal spring with period T = 2.0 s. If the amplitude of the oscillation is doubled, the new period will be A. 1.0 s B. 1.4 s C. 2.0 s D. 2.8 s E. 4.0 s Slide 14- #

81 QuickCheck 14.5 A mass oscillates on a horizontal spring with period T = 2.0 s. If the amplitude of the oscillation is doubled, the new period will be A. 1.0 s B. 1.4 s C. 2.0 s D. 2.8 s E. 4.0 s Slide 14- #

82 QuickCheck 14.9 A mass oscillates on a horizontal spring. It s velocity is v x and the spring exerts force F x. At the time indicated by the arrow, A. v x is + and F x is + B. v x is + and F x is C. v x is and F x is 0 D. v x is 0 and F x is + E. v x is 0 and F x is Slide 14- #

83 QuickCheck 14.9 A mass oscillates on a horizontal spring. It s velocity is v x and the spring exerts force F x. At the time indicated by the arrow, A. v x is + and F x is + B. v x is + and F x is C. v x is and F x is 0 D. v x is 0 and F x is + E. v x is 0 and F x is Slide 14- #

84 QuickCheck A block oscillates on a vertical spring. When the block is at the lowest point of the oscillation, it s acceleration a y is A. Negative. B. Zero. C. Positive. Slide 14- #

85 QuickCheck A block oscillates on a vertical spring. When the block is at the lowest point of the oscillation, it s acceleration a y is A. Negative. B. Zero. C. Positive. Slide 14- #

86 QuickCheck 15.1 These two wave pulses travel along the same stretched string, one after the other. Which is true? A. v A > v B B. v B > v A C. v A = v B D. Not enough information to tell Slide 15- #

87 QuickCheck 15.1 These two wave pulses travel along the same stretched string, one after the other. Which is true? A. v A > v B B. v B > v A C. v A = v B D. Not enough information to tell Wave speed depends on the properties of the medium, not on the amplitude of the wave. Slide 15- #

88 QuickCheck 15.5 The graph below shows a snapshot graph of a wave on a string that is moving to the right. A point on the string is noted. Which of the choices is the correct history graph for the subsequent motion of this point? Slide 15- #

89 QuickCheck 15.5 The graph below shows a snapshot graph of a wave on a string that is moving to the right. A point on the string is noted. Which of the choices is the correct history graph for the subsequent motion of this point? B. Slide 15- #

90 QuickCheck 15.7 The period of this wave is A. 1 s B. 2 s C. 4 s D. Not enough information to tell Slide 15- #

91 QuickCheck 15.7 The period of this wave is A. 1 s A sinusoidal wave moves B. 2 s forward one wavelength (2 C. 4 s m) in one period. D. Not enough information to tell Slide 15- #

92 QuickCheck 15.9 For this sinusoidal wave, what is the wavelength? A. 0.5 m B. 1 m C. 2 m D. 4 m Slide 15- #

93 QuickCheck 15.9 For this sinusoidal wave, what is the wavelength? A. 0.5 m B. 1 m C. 2 m D. 4 m Slide 15- #

94 QuickCheck For this sinusoidal wave, what is the frequency? A. 50 Hz B. 100 Hz C. 200 Hz D. 400 Hz Slide 15- #

95 QuickCheck For this sinusoidal wave, what is the frequency? A. 50 Hz B. 100 Hz C. 200 Hz D. 400 Hz Slide 15- #

96 QuickCheck A siren emits a sound wave with frequency f 0. The graph shows the frequency you hear as you stand at rest at x = 0 on the x-axis. Which is the correct description of the siren s motion? A. It moves from left to right and passes you at t = 2 s. B. It moves from right to left and passes you at t = 2 s. C. It moves toward you for 2 s but doesn t reach you, then reverses direction at t = 2 s and moves away. D. It moves away from you for 2 s, then reverses direction at t = 2 s and moves toward you but doesn t reach you. Slide 15- #

97 QuickCheck A siren emits a sound wave with frequency f 0. The graph shows the frequency you hear as you stand at rest at x = 0 on the x-axis. Which is the correct description of the siren s motion? Doppler shift to lower frequency means it s moving away. A. It moves from left to right and passes you at t = 2 s. B. It moves from right to left and passes you at t = 2 s. C. It moves toward you for 2 s but doesn t reach you, then reverses direction at t = 2 s and moves away. D. It moves away from you for 2 s, then reverses direction at t = 2 s and moves toward you but doesn t reach you. Slide 15- #

98 QuickCheck 16.1 Two wave pulses on a string approach each other at speeds of 1 m/s. How does the string look at t = 3 s? Slide 16- #

99 QuickCheck 16.1 Two wave pulses on a string approach each other at speeds of 1 m/s. How does the string look at t = 3 s? C. Slide 16- #

100 QuickCheck 16.2 Two wave pulses on a string approach each other at speeds of 1 m/s. How does the string look at t = 3 s? Slide 16- #

101 QuickCheck 16.2 Two wave pulses on a string approach each other at speeds of 1 m/s. How does the string look at t = 3 s? B. Slide 16- #

102 QuickCheck 16.4 What is the wavelength of this standing wave? A m B. 0.5 m C. 1.0 m D. 2.0 m E. Standing waves don t have a wavelength. Slide 16- #

103 QuickCheck 16.4 What is the wavelength of this standing wave? A m B. 0.5 m C. 1.0 m D. 2.0 m E. Standing waves don t have a wavelength. Slide 16- #

104 QuickCheck 16.5 What is the mode number of this standing wave? A. 4 B. 5 C. 6 D. Can t say without knowing what kind of wave it is Slide 16- #

105 QuickCheck 16.5 What is the mode number of this standing wave? A. 4 B. 5 C. 6 D. Can t say without knowing what kind of wave it is Slide 16- #

106 QuickCheck 16.8 An open-open tube of air has length L. Which graph shows the m = 3 standing wave in this tube? Slide 16- #

107 QuickCheck 16.8 An open-open tube of air has length L. Which graph shows the m = 3 standing wave in this tube? A. Slide 16- #

108 QuickCheck 16.9 An open-closed tube of air of length L has the closed end on the right. Which graph shows the m = 3 standing wave in this tube? Slide 16- #

109 QuickCheck 16.9 An open-closed tube of air of length L has the closed end on the right. Which graph shows the m = 3 standing wave in this tube? C. Slide 16- #

110 QuickCheck Two in-phase sources emit sound waves of equal wavelength and intensity. At the position of the dot, A. The interference is constructive. B. The interference is destructive. C. The interference is somewhere between constructive and destructive. D. There s not enough information to tell about the interference. Slide 16- #

111 QuickCheck Two in-phase sources emit sound waves of equal wavelength and intensity. At the position of the dot, A. The interference is constructive. B. The interference is destructive. C. The interference is somewhere between constructive and destructive. D. There s not enough information to tell about the interference. Slide 16- #

112 QuickCheck Two speakers emit sounds of nearly equal frequency, as shown. At a point between the two speakers, the sound varies from loud to soft. How much time elapses between two successive loud moments? A. 0.5 s B. 1.0 s C. 2.0 s D. 4.0 s Slide 16- #

113 QuickCheck Two speakers emit sounds of nearly equal frequency, as shown. At a point between the two speakers, the sound varies from loud to soft. How much time elapses between two successive loud moments? A. 0.5 s B. 1.0 s C. 2.0 s D. 4.0 s Slide 16- #

114 QuickCheck You hear 2 beats per second when two sound sources, both at rest, play simultaneously. The beats disappear if source 2 moves toward you while source 1 remains at rest. The frequency of source 1 is 500 Hz. The frequency of source 2 is A. 496 Hz B. 498 Hz C. 500 Hz D. 502 Hz E. 504 Hz Slide 16- #

115 QuickCheck You hear 2 beats per second when two sound sources, both at rest, play simultaneously. The beats disappear if source 2 moves toward you while source 1 remains at rest. The frequency of source 1 is 500 Hz. The frequency of source 2 is A. 496 Hz B. 498 Hz C. 500 Hz D. 502 Hz E. 504 Hz Slide 16- #

116 QuickCheck 20.2 A rod attracts a positively charged hanging ball. The rod is A. Positive. B. Negative. C. Neutral. D. Either A or C. E. Either B or C. Slide 20- #

117 QuickCheck 20.2 A rod attracts a positively charged hanging ball. The rod is A. Positive. B. Negative. C. Neutral. D. Either A or C. E. Either B or C. Slide 20- #

118 QuickCheck In each of the following cases, an identical small, positive charge is placed at the black dot. In which case is the force on the small charge the largest? (All charges shown are of equal magnitude.) Slide 20- #

119 QuickCheck In each of the following cases, an identical small, positive charge is placed at the black dot. In which case is the force on the small charge the largest? (All charges shown are of equal magnitude.) A Slide 20- #

120 QuickCheck Which is the direction of the net force on the charge at the lower left? E. None of these. Slide 20- #

121 QuickCheck Which is the direction of the net force on the charge at the lower left? B. E. None of these. Slide 20- #

122 QuickCheck The direction of the force on charge q is A. Up B. Down C. Left D. Right E. The force on q is zero Slide 20- #

123 QuickCheck The direction of the force on charge q is A. Up B. Down C. Left D. Right E. The force on q is zero Q is slightly closer than +Q. Slide 20- #

124 QuickCheck 22.2 Every minute, 120 C of charge flow through this cross section of the wire. The wire s current is A. 240 A B. 120 A C. 60 A D. 2 A E. Some other value Slide 22- #

125 QuickCheck 22.2 Every minute, 120 C of charge flow through this cross section of the wire. The wire s current is A. 240 A B. 120 A C. 60 A D. 2 A E. Some other value Slide 22- #

126 QuickCheck 22.3 A and B are identical lightbulbs connected to a battery as shown. Which is brighter? A. Bulb A B. Bulb B C. The bulbs are equally bright. Slide 22- #

127 QuickCheck 22.3 A and B are identical lightbulbs connected to a battery as shown. Which is brighter? A. Bulb A B. Bulb B C. The bulbs are equally bright. Conservation of current Slide 22- #

128 QuickCheck 22.4 The wires shown next carry currents as noted. Rate the currents I A, I B, and I C. A. I A > I B > I C B. I B > I A > I C C. I C > I A > I B D. I A > I C > I B E. I C > I B > I A Slide 22- #

129 QuickCheck 22.4 The wires shown next carry currents as noted. Rate the currents I A, I B, and I C. A. I A > I B > I C B. I B > I A > I C C. I C > I A > I B D. I A > I C > I B E. I C > I B > I A Slide 22- #

130 QuickCheck 23.5 Which is the correct circuit diagram for the circuit shown? Slide 23- #

131 QuickCheck 23.5 Which is the correct circuit diagram for the circuit shown? A Slide 23- #

132 QuickCheck 23.6 The diagram below shows a segment of a circuit. What is the current in the 200 Ω resistor? A. 0.5 A B. 1.0 A C. 1.5 A D. 2.0 A E. There is not enough information to decide. Slide 23- #

133 QuickCheck 23.6 The diagram below shows a segment of a circuit. What is the current in the 200 Ω resistor? A. 0.5 A B. 1.0 A C. 1.5 A D. 2.0 A E. There is not enough information to decide. Slide 23- #

134 QuickCheck 23.8 The potential difference across the 10 resistor is A. 30 V B. 20 V C. 15 V D. 10 V E. 5 V Slide 23- #

135 QuickCheck 23.8 The potential difference across the 10 resistor is A. 30 V B. 20 V C. 15 V D. 10 V E. 5 V Slide 23- #

136 QuickCheck What things about the resistors in this circuit are the same for all three? A. Current I B. Potential difference ΔV C. Resistance R D. A and B E. B and C Slide 23- #

137 QuickCheck What things about the resistors in this circuit are the same for all three? A. Current I B. Potential difference ΔV C. Resistance R D. A and B E. B and C Slide 23- #

138 QuickCheck Which resistor dissipates more power? A. The 9 Ω resistor B. The 1 Ω resistor C. They dissipate the same power Slide 23- #

139 QuickCheck Which resistor dissipates more power? A. The 9 Ω resistor B. The 1 Ω resistor C. They dissipate the same power Slide 23- #

140 QuickCheck The battery current I is A. 3 A B. 2 A C. 1 A D. 2/3 A E. 1/2 A Slide 23- #

141 QuickCheck The battery current I is A. 3 A B. 2 A C. 1 A D. 2/3 A E. 1/2 A Slide 23- #

142 QuickCheck The battery current I is A. 3 A B. 2 A C. 1 A D. 2/3 A E. 1/2 A Slide 23- #

143 QuickCheck The battery current I is A. 3 A B. 2 A C. 1 A D. 2/3 A E. 1/2 A Slide 23- #

144 QuickCheck What does the voltmeter read? A. 6 V B. 3 V C. 2 V D. Some other value E. Nothing because this will fry the meter. Slide 23- #

145 QuickCheck What does the voltmeter read? A. 6 V B. 3 V C. 2 V D. Some other value E. Nothing because this will fry the meter. Slide 23- #

146 QuickCheck What does the ammeter read? A. 6 A B. 3 A C. 2 A D. Some other value E. Nothing because this will fry the meter. Slide 23- #

147 QuickCheck What does the ammeter read? A. 6 A B. 3 A C. 2 A D. Some other value E. Nothing because this will fry the meter. Slide 23- #

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 30-35,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

University of Houston Mathematics Contest: Physics Exam 2017

University of Houston Mathematics Contest: Physics Exam 2017 Unless otherwise specified, please use g as the acceleration due to gravity at the surface of the earth. Vectors x, y, and z are unit vectors along x, y, and z, respectively. Let G be the universal gravitational

More information

What Is a Force? Slide Pearson Education, Inc.

What Is a Force? Slide Pearson Education, Inc. What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet

More information

NAME. (2) Choose the graph below that represents the velocity vs. time for constant, nonzero acceleration in one dimension.

NAME. (2) Choose the graph below that represents the velocity vs. time for constant, nonzero acceleration in one dimension. (1) The figure shows a lever (which is a uniform bar, length d and mass M), hinged at the bottom and supported steadily by a rope. The rope is attached a distance d/4 from the hinge. The two angles are

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

Lecture Presentation. Chapter 4 Forces and Newton s Laws of Motion. Chapter 4 Forces and Newton s Laws of Motion. Reading Question 4.

Lecture Presentation. Chapter 4 Forces and Newton s Laws of Motion. Chapter 4 Forces and Newton s Laws of Motion. Reading Question 4. Chapter 4 Forces and Newton s Laws of Motion Lecture Presentation Chapter 4 Forces and Newton s Laws of Motion Chapter Goal: To establish a connection between force and motion. Slide 4-2 Chapter 4 Preview

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

A hockey puck slides on ice at constant velocity. What is the net force acting on the puck?

A hockey puck slides on ice at constant velocity. What is the net force acting on the puck? A hockey puck slides on ice at constant velocity. What is the net force acting on the puck? A. Something more than its weight B. Equal to its weight C. Something less than its weight but more than zero

More information

Test Booklet. Subject: SC, Grade: HS 2008 Grade High School Physics. Student name:

Test Booklet. Subject: SC, Grade: HS 2008 Grade High School Physics. Student name: Test ooklet Subject: S, Grade: HS 2008 Grade High School Physics Student name: uthor: North arolina istrict: North arolina Released Tests Printed: Monday July 09, 2012 1 n object is launched across a room.

More information

(1) +0.2 m/s (2) +0.4 m/s (3) +0.6 m/s (4) +1 m/s (5) +0.8 m/s

(1) +0.2 m/s (2) +0.4 m/s (3) +0.6 m/s (4) +1 m/s (5) +0.8 m/s 77777 77777 Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 2, 120 minutes November 13, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized

More information

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm! Wiley Plus Final Assignment (5) Is Due Today: Before 11 pm! Final Exam Review December 9, 009 3 What about vector subtraction? Suppose you are given the vector relation A B C RULE: The resultant vector

More information

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,

More information

66 Chapter 6: FORCE AND MOTION II

66 Chapter 6: FORCE AND MOTION II Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the

More information

PHYSICS 1. Section I 40 Questions Time 90 minutes. g = 10 m s in all problems.

PHYSICS 1. Section I 40 Questions Time 90 minutes. g = 10 m s in all problems. Note: To simplify calculations, you may use PHYSICS 1 Section I 40 Questions Time 90 minutes 2 g = 10 m s in all problems. Directions: Each of the questions or incomplete statements below is followed by

More information

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

PHYSICS 025 FINAL EXAMINATION Friday, 2003 April 11

PHYSICS 025 FINAL EXAMINATION Friday, 2003 April 11 Print Name: Student No. A 1-10 A 11-20 A 21-30 B1 B2 B3 B4 C1 C2 C3 Total PHYSICS 025 FINAL EXAMINATION Friday, 2003 April 11 Time: 7:00 10:00 PM 1. This is a closed book test. You may use only a calculator,

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Physics I (Navitas) FINAL EXAM Fall 2015

Physics I (Navitas) FINAL EXAM Fall 2015 95.141 Physics I (Navitas) FINAL EXAM Fall 2015 Name, Last Name First Name Student Identification Number: Write your name at the top of each page in the space provided. Answer all questions, beginning

More information

Slide 1 / 133. Slide 2 / 133. Slide 3 / How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m?

Slide 1 / 133. Slide 2 / 133. Slide 3 / How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? 1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 1 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 2 / 133 3 A ball rotates

More information

Slide 2 / 133. Slide 1 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133

Slide 2 / 133. Slide 1 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133 Slide 1 / 133 1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 2 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 3 / 133

More information

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. 1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)

More information

Pre-AP Physics Review Problems

Pre-AP Physics Review Problems Pre-AP Physics Review Problems SECTION ONE: MULTIPLE-CHOICE QUESTIONS (50x2=100 points) 1. The graph above shows the velocity versus time for an object moving in a straight line. At what time after t =

More information

Multiple Choice -- TEST I

Multiple Choice -- TEST I Multiple Choice Test I--Classical Mechanics Multiple Choice -- TEST I 1) The position function for an oscillating body is x = 20 sin (6t - /2) At t = 0, the magnitude of the body's acceleration is: a)

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

3/17/2018. Interacting Objects. Interacting Objects

3/17/2018. Interacting Objects. Interacting Objects Example 0 - Iris drags a sled containing her baby brother across the floor at a constant speed. She pulls the sled at a 20 degree above the horizontal. Draw a FBD and write out N2L for both x and y directions.

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

Lecture Presentation Chapter 7 Rotational Motion

Lecture Presentation Chapter 7 Rotational Motion Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class

More information

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below.

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram The diagram shows the top view of a 65-kilogram student at point A on an amusement park ride. The ride spins the student in a horizontal

More information

Concept Question: Normal Force

Concept Question: Normal Force Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical

More information

3.The wrecking crane shown is moving toward a brick wall that is to be torn down.

3.The wrecking crane shown is moving toward a brick wall that is to be torn down. Test Name: Physics Practice Test Section 1 1.Which of the following best classifies a material that has extremely low conductivity? 1. A. semiconductor B. insulator C. metalloid D. conductor 2.Which of

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

Physics 12 Final Exam Review Booklet # 1

Physics 12 Final Exam Review Booklet # 1 Physics 12 Final Exam Review Booklet # 1 1. Which is true of two vectors whose sum is zero? (C) 2. Which graph represents an object moving to the left at a constant speed? (C) 3. Which graph represents

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

Q1. Which of the following is the correct combination of dimensions for energy?

Q1. Which of the following is the correct combination of dimensions for energy? Tuesday, June 15, 2010 Page: 1 Q1. Which of the following is the correct combination of dimensions for energy? A) ML 2 /T 2 B) LT 2 /M C) MLT D) M 2 L 3 T E) ML/T 2 Q2. Two cars are initially 150 kilometers

More information

Force Concept Inventory

Force Concept Inventory Force Concept Inventory 1. Two metal balls are the same size but one weighs twice as much as the other. The balls are dropped from the roof of a single story building at the same instant of time. The time

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

Phys 111: Supplementary Exercises

Phys 111: Supplementary Exercises Phys 111 Spring 2015 Phys 111: Supplementary Exercises 1 Ant on a stick Anantwalksalongastraightstick. Thegraph illustrates the ant s position vs. time. Answer the following, giving explanations for each

More information

1 MR SAMPLE EXAM 3 FALL 2013

1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

More information

Phys 111 Exam 1 September 22, 2015

Phys 111 Exam 1 September 22, 2015 Phys 111 Exam 1 September 22, 2015 1. The time T required for one complete oscillation of a mass m on a spring of force constant k is T = 2π m k. Find the dimension of k to be dimensionally correct for

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises For all these exercises, assume that all strings are massless and all pulleys are both massless and frictionless. We will improve our model and learn how to account for the mass

More information

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: _ Date: _ Physics Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A weather balloon records the temperature every hour. From the table

More information

Physics Semester 2 Final Exam Review Answers

Physics Semester 2 Final Exam Review Answers Physics Semester 2 Final Exam Review Answers A student attaches a string to a 3 kg block resting on a frictionless surface, and then pulls steadily (with a constant force) on the block as shown below.

More information

1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true?

1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? Slide 1 / 30 1 car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? The car s velocity is constant The car s acceleration is constant The

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In the diagram shown, the unknown vector is 1) Diagram 1 A) B - A. B) A - B. C) A + B.

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Circular Motion 04-2 1 Exam 1: Next Tuesday (9/23/14) In Stolkin (here!) at the usual lecture time Material covered: Textbook chapters 1 4.3 s up through 9/16

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT CIRCULAR MOTION MULTIPLE CHOICE / 30 OPEN ENDED / 65 TOTAL / 95 NAME: 1. An object travels along a path at constant speed. There is a constant

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

More information

Lecture 18. Newton s Laws

Lecture 18. Newton s Laws Agenda: l Review for exam Lecture 18 l Assignment: For Monday, Read chapter 14 Physics 207: Lecture 18, Pg 1 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient

More information

Circular Orbits. Slide Pearson Education, Inc.

Circular Orbits. Slide Pearson Education, Inc. Circular Orbits The figure shows a perfectly smooth, spherical, airless planet with one tower of height h. A projectile is launched parallel to the ground with speed v 0. If v 0 is very small, as in trajectory

More information

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

More information

Webreview Torque and Rotation Practice Test

Webreview Torque and Rotation Practice Test Please do not write on test. ID A Webreview - 8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30-m-radius automobile

More information

Comprehensive Exam Session III Classical Mechanics Physics Department- Proctor: Dr. Jack Straton (Sun. Jan 11 th, 2015) (3 hours long 1:00 to 4:00 PM)

Comprehensive Exam Session III Classical Mechanics Physics Department- Proctor: Dr. Jack Straton (Sun. Jan 11 th, 2015) (3 hours long 1:00 to 4:00 PM) Letter Comprehensive Exam Session III Classical Mechanics Physics Department- Proctor: Dr. Jack Straton (Sun. Jan 11 th, 2015) (3 hours long 1:00 to 4:00 PM) If you cannot solve the whole problem, write

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

Choose the best answer for Questions 1-15 below. Mark your answer on your scantron form using a #2 pencil.

Choose the best answer for Questions 1-15 below. Mark your answer on your scantron form using a #2 pencil. Name: ID #: Section #: PART I: MULTIPLE CHOICE QUESTIONS Choose the best answer for Questions 1-15 below. Mark your answer on your scantron form using a #2 pencil. 1. A 55.0-kg box rests on a horizontal

More information

Question 1. G.M. Paily Phys 211

Question 1. G.M. Paily Phys 211 Question 1 A 0.5 kg hockey puck slides along the surface of the ice with a speed of 10 m s. What force must be acting on the puck to keep it moving at constant velocity? A 0.05 N B 5 N C 20 N D 50 N E

More information

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.

More information

Practice Final C. 1. The diagram below shows a worker using a rope to pull a cart.

Practice Final C. 1. The diagram below shows a worker using a rope to pull a cart. 1. The diagram below shows a worker using a rope to pull a cart. 6. The graph below represents the relationship between gravitational force and mass for objects near the surface of Earth. The worker s

More information

1. For which of the following motions of an object must the acceleration always be zero?

1. For which of the following motions of an object must the acceleration always be zero? 1. For which of the following motions of an object must the acceleration always be zero? I. Any motion in a straight line II. Simple harmonic motion III. Any motion in a circle I only II only III that

More information

Test 7 wersja angielska

Test 7 wersja angielska Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with

More information

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

PHYSICS 111 SPRING EXAM 2: March 7, 2017; 8:15-9:45 pm

PHYSICS 111 SPRING EXAM 2: March 7, 2017; 8:15-9:45 pm PHYSICS 111 SPRING 017 EXAM : March 7, 017; 8:15-9:45 pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 0 multiple-choice questions plus 1 extra credit question, each

More information

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

More information

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km Name: Physics I Mid Term Exam Review Multiple Choice Questions Date: Mr. Tiesler 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km

More information

Upon collision, the clay and steel block stick together and move to the right with a speed of

Upon collision, the clay and steel block stick together and move to the right with a speed of 1. A 2.0-kilogram ball traveling north at 4.0 meters per second collides head on with a 1.0-kilogram ball traveling south at 8.0 meters per second. What is the magnitude of the total momentum of the two

More information

Use the following to answer question 1:

Use the following to answer question 1: Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to

More information

AP Physics C Summer Assignment Kinematics

AP Physics C Summer Assignment Kinematics AP Physics C Summer Assignment Kinematics 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will the motorcycle

More information

4) Vector = and vector = What is vector = +? A) B) C) D) E)

4) Vector = and vector = What is vector = +? A) B) C) D) E) 1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In

More information

12/5/2016. A. 10 km B. 15 km C. 20 km D. 30 km E. 35 km

12/5/2016. A. 10 km B. 15 km C. 20 km D. 30 km E. 35 km A marathon runner runs at a steady 15 km/hr. When the runner is 7.5 km from the finish, a bird begins flying from the runner to the finish at 30 km/hr. When the bird reaches the finish line, it turns around

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

AP Physics 1 - Test 05 - Force and Motion

AP Physics 1 - Test 05 - Force and Motion P Physics 1 - Test 05 - Force and Motion Score: 1. brick slides on a horizontal surface. Which of the following will increase the magnitude of the frictional force on it? Putting a second brick on top

More information

SPRING 2003 Final Exam, Part A

SPRING 2003 Final Exam, Part A Physics 151 SPRING 2003 Final Exam, Part A Roster No.: Score: 17 pts. possible Exam time limit: 2 hours. You may use calculators and both sides of 2 sheets of notes, handwritten only. Closed book; no collaboration.

More information

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

PSI AP Physics B Dynamics

PSI AP Physics B Dynamics PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

More information

Contents. Objectives IAI motion w/o force motion with force F=ma third law work and energy circular motion Final Exam mechanics questions Recap IAI

Contents. Objectives IAI motion w/o force motion with force F=ma third law work and energy circular motion Final Exam mechanics questions Recap IAI Physics 121 for Majors Section 1 IAI Review 4 Review for IAI and Final Exam Exam Details In the Testing Center Friday - Wednesday Wed. is a late day with a $5 fee Hours: 8 am 9 pm Friday 10 am 3 pm Saturday

More information

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/ AP Physics C Summer Assignment 2017 1. Complete the problem set that is online, entitled, AP C Physics C Summer Assignment 2017. I also gave you a copy of the problem set. You may work in groups as a matter

More information

Circular Motion Test Review

Circular Motion Test Review Circular Motion Test Review Name: Date: 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration is equal to zero. B) No,

More information

Good Vibes: Introduction to Oscillations

Good Vibes: Introduction to Oscillations Chapter 14 Solutions Good Vibes: Introduction to Oscillations Description: Several conceptual and qualitative questions related to main characteristics of simple harmonic motion: amplitude, displacement,

More information

Chapter 4. The Laws of Motion. 1. Force. 2. Newton s Laws. 3. Applications. 4. Friction

Chapter 4. The Laws of Motion. 1. Force. 2. Newton s Laws. 3. Applications. 4. Friction Chapter 4 The Laws of Motion 1. Force 2. Newton s Laws 3. Applications 4. Friction 1 Classical Mechanics What is classical Mechanics? Under what conditions can I use it? 2 Sir Isaac Newton 1642 1727 Formulated

More information

2016 PHYSICS FINAL REVIEW PACKET

2016 PHYSICS FINAL REVIEW PACKET 2016 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN CHAPTER TOPIC # OF QUESTIONS 6 CONSERVATION OF ENERGY 22 7 MOMENTUM/COLLISIONS 17 5 CIRCULAR MOTION GRAVITY/SATELLITE MOTION 30 11 WAVES 24 - ELECTROMAGNETISM/MISC./LABS

More information

North Carolina Essential Standards Assessment Examples Physics

North Carolina Essential Standards Assessment Examples Physics This document is designed to assist North Carolina educators in effective instruction of the new Common Core State and/or North Carolina Essential Standards (Standard Course of Study) in order to increase

More information

1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

1. Which one of the following situations is an example of an object with a non-zero kinetic energy? Name: Date: 1. Which one of the following situations is an example of an object with a non-zero kinetic energy? A) a drum of diesel fuel on a parked truck B) a stationary pendulum C) a satellite in geosynchronous

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information

Review PHYS114 Chapters 4-7

Review PHYS114 Chapters 4-7 Review PHYS114 Chapters 4-7 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 27 kg object is accelerated at a rate of 1.7 m/s 2. What force does

More information

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

More information

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4.

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4. AP Physics Multiple Choice Practice Momentum and Impulse 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass,

More information

PY205N Spring The vectors a, b, and c. are related by c = a b. The diagram below that best illustrates this relationship is (a) I

PY205N Spring The vectors a, b, and c. are related by c = a b. The diagram below that best illustrates this relationship is (a) I PY205N Spring 2013 Final exam, practice version MODIFIED This practice exam is to help students prepare for the final exam to be given at the end of the semester. Please note that while problems on this

More information

Multiple Choice Practice

Multiple Choice Practice Class: Date: Multiple Choice Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An ice skater moving at 10.0 m/s coasts to a halt in 1.0 10 2 m on

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Profs. D. Reitze, H. Chan PHYSICS DEPARTMENT PHY 2053 Exam 2 April 2, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

INSTRUCTIONS FOR USE. This file can only be used to produce a handout master:

INSTRUCTIONS FOR USE. This file can only be used to produce a handout master: INSTRUCTIONS FOR USE This file can only be used to produce a handout master: Use print from the File menu to make a printout of the test. You may not modify the contents of this file. IMPORTANT NOTICE:

More information

1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of

1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of 1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of 1 1 (A) 2 (B) 2 (C) 1 (D) 2 (E) 2 2. A railroad flatcar of mass 2,000 kilograms rolls

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

Reading Quiz. Chapter 5. Physics 111, Concordia College

Reading Quiz. Chapter 5. Physics 111, Concordia College Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic

More information