PreAP Physics Review Problems


 Christal Ross
 1 years ago
 Views:
Transcription
1 PreAP Physics Review Problems SECTION ONE: MULTIPLECHOICE QUESTIONS (50x2=100 points) 1. The graph above shows the velocity versus time for an object moving in a straight line. At what time after t = 0 does the object again pass through its initial position? (A) 1 s (B) Between 1 and 2 s (C) 2 s (D) Between 2 and 3 s Questions 23 The following TWO questions refer to the following information. An ideal elastic rubber ball is dropped from a height of about 2 meters, hits the floor and rebounds to its original height. 2. Which of the following graphs would best represent the distance above the floor versus time for the above bouncing ball? 3. Which of the following graphs would best represent acceleration versus time for the bouncing ball? Questions 4 5 A 2kg block slides down a 30 incline as shown above with an acceleration of 2 m/s Which of the following diagrams best represents the gravitational force W. the frictional force f, and the normal force N that act on the block? (D) 5. Which of the following correctly indicates the magnitudes of the forces acting up and down the incline? (A) 20 N down the plane, 16 N up the plane (B) 4 N down the plane, 4 N up the plane (C) 0 N down the plane, 4 N up the plane (D) 10 N down the plane, 6 N up the plane 1
2 6. A rope of negligible mass supports a block that weighs 30 N, as shown above. The breaking strength of the rope is 50 N. The largest acceleration that can be given to the block by pulling up on it with the rope without breaking the rope is most nearly (A) 6.7 m/s 2 (B) 10 m/s 2 (C) 16.7 m/s 2 (D) 26.7 m/s 2 7. Given the three masses as shown in the diagram above, if the coefficient of kinetic friction between the large mass (m 2 ) and the table is μ, what would be the upward acceleration of the small mass (m 3 )? The mass and friction of the cords and pulleys are small enough to produce a negligible effect on the system. (A) g(m 1 + m 2 )/(m 1 + m 2 + m 3 ) (B) g (m 1 + m 2 + m 3 )/ (m 1 m 2 m 3 ) (C) g (m 1 m 2 m 3 )/ (m 1 + m 2 + m 3 ) (D) g(m 1 m 2 m 3 )/ (m 1 + m 2 + m 3 ) 8. Three blocks of masses 3m, 2m, ands are connected to strings A, B, and C as shown above. The blocks are pulled along a rough surface by a force of magnitude F exerted by string C. The coefficient of friction between each block and the surface is the same. Which string must be the strongest in order not to break? (A) A (B) B (C) C (D) They must all be the same strength. 9. A ball of mass m is attached to the end of a string of length Q as shown above. The ball is released from rest from position P. where the string is horizontal. It swings through position Q. where the string is vertical, and then to position R. where the string is again horizontal. What are the directions of the acceleration vectors of the ball at positions Q and R? Position Q (A) Downward (B) Downward (C) Upward (D) Upward Position R Downward To the right Downward To the left 10. A car is traveling on a road in hilly terrain, see figure to the right. Assume the car has speed vand the tops and bottoms of the hills have radius of curvature R. The driver of the car is most likely to feel weightless: (A) at the top of a hill when v (C) going down a hill when v gr gr (B) at the bottom of a hill when v (D) at the top of a hill when v gr gr 2
3 11. The net force on a rocket with a weight of 1.5 x 10 4 N is 2.4 x 10 4 N. How much time is needed to increase the rockets speed from 12 m/s to 36 m/s near the surface of the Earth at takeoff? (A) 0.78 s (B) 1.5 s (C) 3.8 s (D) 15 s Questions 1213: A block oscillates without friction on the end of a spring as shown. The minimum and maximum lengths of the spring as it oscillates are, respectively, x min and x max. The graphs below can represent quantities associated with the oscillation as functions of the length x of the spring. 12. Which graph can represent the total mechanical energy of the blockspring system as a function of x? (A) A (B) B (C) C (D) D (E) E 13. Which graph can represent the kinetic energy of the block as a function of x? (A) A (B) B (C) C (D) D (E) E 14. A force F at an angle θ above the horizontal is used to pull a heavy suitcase of weight mg a distance d along a level floor at constant velocity. The coefficient of friction between the floor and the suitcase is µ. The work done by the frictional force is: (A) Fd cos θ (B) µ Fd cos θ (C) µmgd (D) µ mgd cos θ 15. A 500kg car is moving at 28 m/s. The driver sees a barrier ahead. If the car takes 95 meters to come to rest, what is the magnitude of the minimum average net force necessary to stop? (A) 47.5 N (B) 1400 N (C) 2060 N (D) N 16. A person pushes a block of mass M = 6.0 kg with a constant speed of 5.0 m/s straight up a flat surface inclined 30.0 above the horizontal. The coefficient of kinetic friction between the block and the surface is What is the net force acting on the block? (A) 0 N (B) 21 N (C) 30 N (D) 51 N 17. A block of mass M on a horizontal surface is connected to the end of a massless spring of spring constant k. The block is pulled a distance x from equilibrium and when released from rest, the block moves toward equilibrium. What coefficient of kinetic friction between the surface and the block would allow the block to return to equilibrium and stop? ( A) 2 kx 2Mg ( B) kx Mg ( C) kx 2Mg ( D) Mg 2kx 3
4 18. A person pushes a box across a horizontal surface at a constant speed of 0.5 meter per second. The box has a mass of 40 kilograms, and the coefficient of sliding friction is The power supplied to the box by the person is (A) 0.2 W (B) 5 W (C) 50 W (D) 100 W (E) 200 W 19. Two balls are on a frictionless horizontal tabletop. Ball X initially moves at 10 meters per second, as shown in Figure I above. It then collides elastically with identical ball Y which is initially at rest. After the collision, ball X moves at 6 meters per second along a path at 53 to its original direction, as shown in Figure II above. Which of the following diagrams best represents the motion of ball Y after the collision? (A) (B) (C) (D) 20. From the top of a high cliff, a ball is thrown horizontally with initial speed v o. Which of the following graphs best represents the ball's kinetic energy K as a function of time t? 21. A system of two wheels fixed to each other is free to rotate about a frictionless axis through the common center of the wheels and perpendicular to the page. Four forces are exerted tangentially to the rims of the wheels, as shown. The magnitude of the net torque on the system about the axis is (A) zero (B) 2FR (C) 5FR (D) 14FR 22. A uniform rigid bar of weight W is supported in a horizontal orientation as shown by a rope that makes a 30 angle with the horizontal. The force exerted on the bar at point O, where it is pivoted, is best represented by a vector whose direction is which of the following? 23. A rod of length L and of negligible mass is pivoted at a point that is offcenter with lengths shown in the figure below. The figures show two cases in which masses are suspended from the ends of the rod. In each case the unknown mass m is balanced by a known mass, M 1 or M 2, so that the rod remains horizontal. What is the value of m in terms of the known masses? (A) M 1 M 2 (B) ½(M l + M 2 ) (C) M l M 2 (D) ½M 1 M 2 4
5 24. A turntable that is initially at rest is set in motion with a constant angular acceleration. What is the angular velocity of the turntable after it has made one complete revolution? Questions A solid cylinder of mass m and radius R has a string wound around it. A person holding the string pulls it vertically upward, as shown above, such that the cylinder is suspended in midair for a brief time interval t and its center of mass does not move. The tension in the string is T, and the rotational inertia of the cylinder about its axis is 1 2 MR2 25. the net force on the cylinder during the time interval t is (A) mg (B) T mgr (C) mgr  Τ (D) zero 26. The linear acceleration of the person's hand during the time interval t is (A) (Tmg)/m (B) 2g (C) g/2 (D) T/m 27.When an object oscillating in simple harmonic motion is at its maximum displacement from the equilibrium position. Which of the following is true of the values of its speed and the magnitude of the restoring force? Speed Restoring Force (A) Zero Maximum (B) Zero Zero (C) Maximum ½ maximum (D) Maximum Zero Questions A sphere of mass m 1, which is attached to a spring, is displaced downward from its equilibrium position as shown above left and released from rest. A sphere of mass m 2, which is suspended from a string of length L, is displaced to the right as shown above right and released from rest so that it swings as a simple pendulum with small amplitude. Assume that both spheres undergo simple harmonic motion 28. Which of the following is true for both spheres? (A) The maximum kinetic energy is attained as the sphere passes through its equilibrium position (B) The maximum kinetic energy is attained as the sphere reaches its point of release. (C) The minimum gravitational potential energy is attained as the sphere passes through its equilibrium position. (D) The maximum gravitational potential energy is attained when the sphere reaches its point of release. 29. If both spheres have the same period of oscillation, which of the following is an expression for the spring constant (A) L / m 1 g (B) g / m 2 L (C) m 2 g / L (D) m 1 g / L 5
6 30. A particle oscillates up and down in simple harmonic motion. Its height y as a function of time t is shown in the diagram. At what time t does the particle achieve its maximum positive acceleration? (A) 1 s (B) 2 s (C) 3 s (D) 4 s 31. A simple pendulum consists of a l.0 kilogram brass bob on a string about 1.0 meter long. It has a period of 2.0 seconds. The pendulum would have a period of 1.0 second if the (A) string were replaced by one about 0.25 meter long (B) string were replaced by one about 2.0 meters long (C) bob were replaced by a 0.25 kg brass sphere (D) bob were replaced by a 4.0 kg brass sphere 32. A string is firmly attached at both ends. When a frequency of 60 Hz is applied, the string vibrates in the standing wave pattern shown. Assume the tension in the string and its mass per unit length do not change. Which of the following frequencies could NOT also produce a standing wave pattern in the string? (A)30 Hz (B) 40 Hz (C) 80 Hz (D) 180 Hz 33. If the speed of sound in air is 340 m/s, the length of the organ pipe, open at both ends, that can resonate at the fundamental frequency of 136 Hz, would be: (A)0.40 m (B) 0.80 m (C) 1.25 m (D) 2.5 m 34. For a standing wave mode on a string fixed at both ends, adjacent antinodes are separated by a distance of 20 cm. Waves travel on this string at a speed of 1200 cm/s. At what frequency is the string vibrated to produce this standing wave? (A) 120 Hz (B) 60 Hz (C) 40 Hz (D) 30 Hz 35. A vibrating tuning fork sends sound waves into the air surrounding it. During the time in which the tuning fork makes one complete vibration, the emitted wave travels (A) one wavelength (B) about 340 meters (C) a distance directly proportional to the square root of the air density (D) a distance inversely proportional to the square root of the pressure 36. The figure above shows two wave pulses that are approaching each other. Which of the following best shows the shape of the resultant pulse when the centers of the pulses, points P and Q coincide? (A) 37. Two blocks of steel, the first of mass 1 kg and the second of mass 2 kg, are in thermal equilibrium with a third block of aluminum of mass 2 kg that has a temperature of 400 K. What are the respective temperatures of the first and second steel blocks? (A)400 K and 200 K (B)200 K and 400 K (C)400 K and 400 K (D)800 K and 400 K 38. An ideal gas confined in a box initially has pressure p. If the absolute temperature of the gas is doubled and the volume of the box is quadrupled, the pressure is (A) p/8 (B) p/4 (C) p/2 (D) 2p 39. A mass m of helium gas is in a container of constant volume V. It is initially at pressure p and absolute (Kelvin) temperature T. Additional helium is added, bringing the total mass of helium gas to 3m. After this addition, the temperature is found to be 2T. What is the gas pressure? (A) 2/3 p (B) 3/2 p (C) 3 p (D) 6 p 40. In a certain process, 400 J of heat is transferred to a system and the system simultaneously does 100 J of work. The change in internal energy of the system is (A) 500 J (B) 300 J (C) 100 J (D) 300 J 6
7 41. A monatomic ideal gas at pressure P = 10 5 Pa is in a container of volume V = 12 m 3 while at temperature T = 50ºC. How many molecules of gas are in the container? (A) (B) (C) 2888 (D) Two small spheres have equal charges q and are separated by a distance d. The force exerted on each sphere by the other has magnitude F. If the charge on each sphere is doubled and d is halved, the force on each sphere has magnitude (A) F (B) 4F (C) 8F (D) 16F 43. The diagram above shows an isolated, positive charge Q. Point (B) is twice as far away from Q as point A. The ratio of the electric field strength at point A to the electric field strength at point B is (A) 8 to 1 (B) 4 to 1 (C) 2 to 1 (D) 1 to An electron e and a proton p are simultaneously released from rest in a uniform electric field E, as shown above. Assume that the particles are sufficiently far apart so that the only force acting on each particle after it is released is that due to the electric field. At a later time when the particles are still in the field, the electron and the proton will have the same (A) direction of motion (B) speed (C) magnitude of acceleration (D) magnitude of force acting on them 45. A positive charge of coulomb is placed in an upward directed uniform electric field of N/C. When the charge is moved 0.5 meter upward, the work done by the electric force on the charge is 46. (A) J (B) J (C) J (D) J The following configurations of electric charges are located at the vertices of an equilateral triangle. Point P is equidistant from the charges. In which configuration is the electric field at P equal to zero? (A) A (B) B (C) C (D) D 47. From the electric field vector at a point, one can determine which of the following? I. The direction of the electrostatic force on a test charge of known sign at that point II. The magnitude of the electrostatic force exerted per unit charge on a test charge at that point III. The electrostatic charge at that point (A) I only (B) III only (C) I and II only (D) II and III only 48. Two metal spheres that are initially uncharged are mounted on insulating stands, as shown above. A negatively charged rubber rod is brought close to, but does not make contact with, sphere X. Sphere Y is then brought close to X on the side opposite to the rubber rod. Y is allowed to touch X and then is removed some distance away. The rubber rod is then moved far away from X and Y. What are the final charges on the spheres? Sphere X Sphere Y A) Zero Zero B) Negative Positive C) Positive Negative D) Positive Positive 7
8 Questions Particles of charge Q and 4Q are located on the x axis as shown in the figure above. Assume the particles are isolated from all other charges. 49. Which of the following describes the direction of the electric field at point P? (A) +y (B) y (C) Components in both the x and +y directions (D) Components in both the +x and y directions 50. At which of the labeled points on the x axis is the electric field zero? (A) A (B) B (C) C (D) E SECTION TWO FREERESPONSE QUESTIONS 1. A 3meter long rope is attached to a support at point C. A 60 kg person sits on a ledge at position A holding the other end of the rope so that it is horizontal and taut. The person then drops off the ledge and swings down on the rope toward position B on a lower ledge where a rock of mass 5 kg is at rest. At position B the person grabs hold of the rock and simultaneously lets go of the rope. The person and the rock then land together in the lake at point D, which is a vertical distance 10 m below position B. Air resistance and the mass of the rope are negligible. (a) What is the speed of the person just before the collision with the rock? (b) What is the tension in the rope just before the collision with the rock? (c) Determine the total horizontal displacement of the person from position A until the person and object land in the water at point D. 2. A hollow tube of length 0.5 m open at both ends as shown, is held in midair. A tuning fork with a frequency 400 Hz vibrates at one end of the tube and causes the air in the tube to vibrate at its fundamental frequency. (a) Determine the wavelength of the sound. (b) Determine the speed of sound in the air inside the tube. (c) Determine the next higher frequency at which this air column would resonate. 3. Two point charges, Q 1 and Q 2, are located a distance 0.20 meter apart, as shown above. Charge Q 1 = +8.0 C. The net electric field is zero at point P, located 0.40 meter from Q 1 and 0.20 meter from Q 2. (a) Determine the magnitude and sign of charge Q 2. (b) Determine the magnitude and direction of the net force on charge Q 1 (c) Determine the potential energy of the entire system. 8
AP Physics C: Work, Energy, and Power Practice
AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing
More informationThe net force on a moving object is suddenly reduced to zero. As a consequence, the object
The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity
More informationAP Physics B Summer Assignment
BERGEN COUNTY TECHNICAL SCHOOL AP Physics B Summer Assignment 2011 Solve all problems on separate paper. This will be due the first week of school. If you need any help you can email Mr. Zavorotniy at
More informationOscillations  AP Physics B 1984
Oscillations  AP Physics B 1984 1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of (A) 1 2 (B) (C) 1 1 2 (D) 2 (E) 2 A block oscillates
More informationName Lesson 7. Homework Work and Energy Problem Solving Outcomes
Physics 1 Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Date 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. Period 4. Determine the work done by a
More informationAP Physics Free Response Practice Oscillations
AP Physics Free Response Practice Oscillations 1975B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is drawn aside through
More informationPHYS 101 Previous Exam Problems. Force & Motion I
PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0kg block is lowered with a downward
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences
More informationAP Physics Multiple Choice Practice Torque
AP Physics Multiple Choice Practice Torque 1. A uniform meterstick of mass 0.20 kg is pivoted at the 40 cm mark. Where should one hang a mass of 0.50 kg to balance the stick? (A) 16 cm (B) 36 cm (C) 44
More informationMechanics II. Which of the following relations among the forces W, k, N, and F must be true?
Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which
More informationAP Physics. Harmonic Motion. Multiple Choice. Test E
AP Physics Harmonic Motion Multiple Choice Test E A 0.10Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.
More informationPotential Energy & Conservation of Energy
PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external
More informationCHAPTER 11 TEST REVIEW
AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 MultiResponse Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER TEST
More informationFINAL EXAM  REVIEW PROBLEMS
Physics 10 Spring 009 George Williams FINAL EXAM  REVIEW PROBLEMS A data sheet is provided. Table 10 from your text is assumed, and will be provided on the final exam. 1. A rock is thrown downward from
More informationPHYSICS 1. Section I 40 Questions Time 90 minutes. g = 10 m s in all problems.
Note: To simplify calculations, you may use PHYSICS 1 Section I 40 Questions Time 90 minutes 2 g = 10 m s in all problems. Directions: Each of the questions or incomplete statements below is followed by
More information(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m
PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At
More informationPHYS 1303 Final Exam Example Questions
PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 3035,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor
More informationSRI LANKAN PHYSICS OLYMPIAD COMPETITION 2010
SRI LANKAN PHYSICS OLYMPIAD COMPETITION 2010 Time Allocated : 02 Hours Calculators are not allowed to use. Date of Examination : 10 07 2010 Index No. :. Time : 9.00 a.m.  11.00 a.m. INSTRUCTIONS Answer
More information 1 APPH_MidTerm. Mid  Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E
Name  1 APPH_MidTerm AP Physics Date Mid  Term Exam Part 1: Write your answers to all multiple choice questions in this space. 1) 2) 3) 10) 11) 19) 20) 4) 12) 21) 5) 13) 22) 6) 7) 14) 15) 23) 24) 8)
More informationPSI AP Physics B Circular Motion
PSI AP Physics B Circular Motion Multiple Choice 1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions
More informationConcept Question: Normal Force
Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical
More information1. For which of the following motions of an object must the acceleration always be zero?
1. For which of the following motions of an object must the acceleration always be zero? I. Any motion in a straight line II. Simple harmonic motion III. Any motion in a circle I only II only III that
More informationREVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions
REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,
More informationPSI AP Physics B Dynamics
PSI AP Physics B Dynamics MultipleChoice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second
More informationExam 3 Practice Solutions
Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at
More informationQ1. Which of the following is the correct combination of dimensions for energy?
Tuesday, June 15, 2010 Page: 1 Q1. Which of the following is the correct combination of dimensions for energy? A) ML 2 /T 2 B) LT 2 /M C) MLT D) M 2 L 3 T E) ML/T 2 Q2. Two cars are initially 150 kilometers
More informationAP Physics 1: MIDTERM REVIEW OVER UNITS 24: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER
MIDTERM REVIEW AP Physics 1 McNutt Name: Date: Period: AP Physics 1: MIDTERM REVIEW OVER UNITS 24: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER 1.) A car starts from rest and uniformly accelerates
More informationAP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).
AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the
More informationSt. Joseph s AngloChinese School
Time allowed:.5 hours Take g = 0 ms  if necessary. St. Joseph s AngloChinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your
More informationName: AP Physics C: Kinematics Exam Date:
Name: AP Physics C: Kinematics Exam Date: 1. An object slides off a roof 10 meters above the ground with an initial horizontal speed of 5 meters per second as shown above. The time between the object's
More informationA) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.
Coordinator: Dr. W. AlBasheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes
More information11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0.
A harmonic wave propagates horizontally along a taut string of length! = 8.0 m and mass! = 0.23 kg. The vertical displacement of the string along its length is given by!!,! = 0.1!m cos 1.5!!! +!0.8!!,
More informationPhysicsMC Page 1 of 29 Inertia, Force and Motion 1.
PhysicsMC 20067 Page 1 of 29 Inertia, Force and Motion 1. 3. 2. Three blocks of equal mass are placed on a smooth horizontal surface as shown in the figure above. A constant force F is applied to block
More informationRELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.
1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential
More informationA. B. C. D. E. v x. ΣF x
Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0
More informationPSI AP Physics I Work and Energy
PSI AP Physics I Work and Energy MultipleChoice questions 1. A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate
More information1982B1. The first meters of a 100meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant
1982B1. The first meters of a 100meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90 meters are run with the same velocity
More informationTest Booklet. Subject: SC, Grade: HS 2008 Grade High School Physics. Student name:
Test ooklet Subject: S, Grade: HS 2008 Grade High School Physics Student name: uthor: North arolina istrict: North arolina Released Tests Printed: Monday July 09, 2012 1 n object is launched across a room.
More informationAP Physics Problems Simple Harmonic Motion, Mechanical Waves and Sound
AP Physics Problems Simple Harmonic Motion, Mechanical Waves and Sound 1. 19775 (Mechanical Waves/Sound) Two loudspeakers, S 1 and S 2 a distance d apart as shown in the diagram below left, vibrate in
More informationPHYSICS 221 SPRING 2014
PHYSICS 221 SPRING 2014 EXAM 2: April 3, 2014 8:1510:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiplechoice questions plus 2 extra credit questions,
More informationPractice Final C. 1. The diagram below shows a worker using a rope to pull a cart.
1. The diagram below shows a worker using a rope to pull a cart. 6. The graph below represents the relationship between gravitational force and mass for objects near the surface of Earth. The worker s
More informationTwentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test
Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,
More informationYou may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.
1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction
More informationExtra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.
Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?
More informationOscillations. Oscillations and Simple Harmonic Motion
Oscillations AP Physics C Oscillations and Simple Harmonic Motion 1 Equilibrium and Oscillations A marble that is free to roll inside a spherical bowl has an equilibrium position at the bottom of the bowl
More informationFIGURE P13.5 FIGURE P13.6. Chapter 13 Problems
Chapter 13 Problems 1, 2, 3 = straightforward, intermediate, challenging Section 13.1 Hooke s Law 5. The springs 1 and 2 in Figure P13.5 have spring constants of 40.0 N/cm and 25.0 N/cm, respectively.
More informationC) D) 2. The diagram below shows a worker using a rope to pull a cart.
1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope
More informationfrictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o
AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.
More informationC. points X and Y only. D. points O, X and Y only. (Total 1 mark)
Grade 11 Physics  Homework 16  Answers on a separate sheet of paper, please 1. A cart, connected to two identical springs, is oscillating with simple harmonic motion between two points X and Y that
More informationChapter Work, Energy and Power. Q1. The coefficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)
Chapter Work, Energy and Power Q1. The coefficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of
More informationAP Physics QUIZ Chapters 10
Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5kilogram sphere is connected to a 10kilogram sphere by a rigid rod of negligible
More informationAP Physics 1 Waves and Simple Harmonic Motion Practice Test
AP Physics 1 Waves and Simple Harmonic Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) An object is attached to a vertical
More informationKinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.
Kinematics 1993B1 (modified) A student stands in an elevator and records his acceleration as a function of time. The data are shown in the graph above. At time t = 0, the elevator is at displacement x
More information(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m
Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40
More informationPHYS 1303 Final Exam Example Questions
PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet
More information= y(x, t) =A cos (!t + kx)
A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8
More informationQ16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)
Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string
More information6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.
1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular
More informationAP Physics Free Response Practice Dynamics
AP Physics Free Response Practice Dynamics 14) In the system shown above, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless
More information(a) On the dots below that represent the students, draw and label freebody diagrams showing the forces on Student A and on Student B.
2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on
More information1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3
1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25N crate slides down a frictionless incline that is 25 above the horizontal.
More informationEquilibrium & Elasticity
PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block
More informationINTI INTERNATIONAL UNIVERSITY FOUNDATION IN SCIENCE (CFSI) PHY1203: GENERAL PHYSICS 1 FINAL EXAMINATION: SEPTEMBER 2012 SESSION
INTI INTERNATIONAL UNIVERSITY FOUNDATION IN SCIENCE (CFSI) PHY1203: GENERAL PHYSICS 1 FINAL EXAMINATION: SEPTEMBER 2012 SESSION PHY1203(F)/Page 1 of 5 Instructions: This paper consists of FIVE (5) questions.
More informationGeneral Physics 1. School of Science, University of Tehran Fall Exercises (set 07)
General Physics 1 School of Science, University of Tehran Fall 139697 Exercises (set 07) 1. In Fig., wheel A of radius r A 10cm is coupled by belt B to wheel C of radius r C 25 cm. The angular speed of
More informationSuggested Problems. Chapter 1
Suggested Problems Ch1: 49, 51, 86, 89, 93, 95, 96, 102. Ch2: 9, 18, 20, 44, 51, 74, 75, 93. Ch3: 4, 14, 46, 54, 56, 75, 91, 80, 82, 83. Ch4: 15, 59, 60, 62. Ch5: 14, 52, 54, 65, 67, 83, 87, 88, 91, 93,
More information3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4.
AP Physics Multiple Choice Practice Momentum and Impulse 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass,
More informationFigure 1 Answer: = m
Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel
More informationPHYSICS Final Exam
Name: Answer Key PHYSICS 121004 Final Exam University of Wyoming 2 May 2012 1. (10 points) A cannonball is fired with a speed of 75 m/s at an angle of 30 above horizontal. It lands at its starting height
More informationUse a BLOCK letter to answer each question: A, B, C, or D (not lower case such a b or script such as D)
Physics 23 Spring 212 Answer Sheet Print LAST Name: Rec Sec Letter EM MiniTest First Name: Recitation Instructor & Final Exam Student ID: Gently remove this page from your exam when you begin. Write clearly
More information1. The diagram below shows the variation with time t of the velocity v of an object.
1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the timeaxis represents A. the average velocity of the object. B. the displacement
More informationWEPEnergy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved
1. A 1kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,
More informationSummer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.
Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope
More informationRegents Physics. Physics Midterm Review  Multiple Choice Problems
Name Physics Midterm Review  Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0
More informationPhysics Exam 2 October 11, 2007
INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show
More informationPage 1. Name:
Name: 38341  Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the
More informationPage 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!
Name: Section This assignment is due at the first class in 2019 Part I Show all work! 71641  Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided
More informationd. Determine the power output of the boy required to sustain this velocity.
AP Physics C Dynamics Free Response Problems 1. A 45 kg boy stands on 30 kg platform suspended by a rope passing over a stationary pulley that is free to rotate. The other end of the rope is held by the
More informationThe diagram below shows a block on a horizontal frictionless surface. A 100.newton force acts on the block at an angle of 30. above the horizontal.
Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45
More information4) Vector = and vector = What is vector = +? A) B) C) D) E)
1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In
More informationPHYSICS 218 FINAL EXAM Friday, December 11, 2009
PHYSICS 218 FINAL EXAM Friday, December 11, 2009 NAME: SECTION: 525 526 527 528 Note: 525 Recitation Wed 9:1010:00 526 Recitation Wed 11:3012:20 527 Recitation Wed 1:502:40 528 Recitation Mon 11:3012:20
More informationRotation. PHYS 101 Previous Exam Problems CHAPTER
PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that
More informationChapter 14: Periodic motion
Chapter 14: Periodic motion Describing oscillations Simple harmonic motion Energy of simple harmonic motion Applications of simple harmonic motion Simple pendulum & physical pendulum Damped oscillations
More informationSolution to phys101t112final Exam
Solution to phys101t112final Exam Q1. An 800N man stands halfway up a 5.0m long ladder of negligible weight. The base of the ladder is.0m from the wall as shown in Figure 1. Assuming that the wallladder
More informationPhysics 121, Final Exam Do not turn the pages of the exam until you are instructed to do so.
, Final Exam Do not turn the pages of the exam until you are instructed to do so. You are responsible for reading the following rules carefully before beginning. Exam rules: You may use only a writing
More informationSlide 1 / 133. Slide 2 / 133. Slide 3 / How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m?
1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 1 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 2 / 133 3 A ball rotates
More informationSlide 2 / 133. Slide 1 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133
Slide 1 / 133 1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 2 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 3 / 133
More informationAll questions are of equal value. No marks are subtracted for wrong answers.
(1:30 PM 4:30 PM) Page 1 of 6 All questions are of equal value. No marks are subtracted for wrong answers. Record all answers on the computer score sheet provided. USE PENCIL ONLY! Black pen will look
More informationCenter of Mass & Linear Momentum
PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions
More informationPhysics 6b Winter 2015 Midterm Test Form D
Physics 6b Winter 2015 Midterm Test Form D Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron. Keep questions/cheat
More informationPhysics 6b Winter 2015 Midterm Test Form B
Physics 6b Winter 2015 Midterm Test Form B Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron. Keep questions/cheat
More informationPhysics 6b Winter 2015 Midterm Test Form C
Physics 6b Winter 2015 Midterm Test Form C Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron. Keep questions/cheat
More informationPhysics 6b Winter 2015 Midterm Test Form A
Physics 6b Winter 2015 Midterm Test Form A Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron. Keep questions/cheat
More informationPhys101 Second Major173 Zero Version Coordinator: Dr. M. AlKuhaili Thursday, August 02, 2018 Page: 1. = 159 kw
Coordinator: Dr. M. AlKuhaili Thursday, August 2, 218 Page: 1 Q1. A car, of mass 23 kg, reaches a speed of 29. m/s in 6.1 s starting from rest. What is the average power used by the engine during the
More information1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of
1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of 1 1 (A) 2 (B) 2 (C) 1 (D) 2 (E) 2 2. A railroad flatcar of mass 2,000 kilograms rolls
More informations_3x03 Page 1 Physics Samples
Physics Samples KE, PE, Springs 1. A 1.0kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy
More informationAP* Circular & Gravitation Free Response Questions
1992 Q1 AP* Circular & Gravitation Free Response Questions A 0.10kilogram solid rubber ball is attached to the end of a 0.80meter length of light thread. The ball is swung in a vertical circle, as shown
More informationAP Physics C 1984 Multiple Choice Questions Mechanics
AP Physics C 984 ultiple Choice Questions echanics The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use
More informationAP Physics 1 Lesson 9 Homework Outcomes. Name
AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal
More informationAll Division I students, START HERE. All Division II students, skip the first ten questions, begin on question 11.
ATTENTION: All Division I students, START HERE. All Division II students, skip the first ten questions, begin on question 11. 1. A standard centimeter ruler is shown. Which recorded value is the most correct
More information66 Chapter 6: FORCE AND MOTION II
Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the
More information