4) Vector = and vector = What is vector = +? A) B) C) D) E)


 Roland Goodwin
 2 years ago
 Views:
Transcription
1 1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In equal times its velocity changes by equal amounts. C) In equal times it moves equal distances. D) A graph of its position as a function of time has a constant slope. E) A graph of its velocity as a function of time is a horizontal line. 2) The velocity of an object as a function of time is given by v(t) = 2.00 m/s + (3.00 m/s) t  (1.0 m/s2) t2. Determine the instantaneous acceleration of the object at time t = 5.00 s. A) m/s2 B) m/s2 C) 2.00 m/s2 D) 0.00 m/s2 E) m/s2 3) A car accelerates from 10.0 m/s to 30.0 m/s at a rate of 3.00 m/s2. How far does the car travel while accelerating? A) 80.0 m B) 133 m C) 226 m D) 399 m 4) Vector = and vector = What is vector = +? A) B) C) D) E) ) An object has a position given by = [2.0 m + (5.00 m/s)t] + [3.0 m  (2.00 m/s2)t2], where quantities are in SI units. What is the speed of the object at time t = 2.00 s? A) 6.40 m/s B) 9.43 m/s C) 7.00 m/s D) 7.65 m/s E) 13.0 m/s 6) In a shuffleboard game, the puck slides a total of 12 m before coming to rest. If the coefficient
2 of kinetic friction between the puck and the horizontal board is 0.28, what was the initial speed of the puck? A) 8.1 m/s B) 29.0 m/s C) 6.5 m/s D) 7.3 m/s 7) An object weighing 4.00 N falls from rest subject to a frictional drag force given by Fdrag = bv2, where v is the speed of the object and What terminal speed will this object approach? A) 1.78 m/s B) 3.42 m/s C) 1.15 m/s D) 2.25 m/s E) 0.75 m/s 8) A car enters a 300m radius horizontal curve on a rainy day when the coefficient of static friction between its tires and the road is What is the maximum speed at which the car can travel around this curve without sliding? A) 29.6 m/s B) 33.1 m/s C) 24.8 m/s D) 42.0 m/s E) 37.9 m/s 9) In an INELASTIC collision between two objects A) the momentum of each object is conserved. B) the kinetic energy of each object is conserved. C) the momentum of the system is conserved but the kinetic energy of the system is not conserved. D) both the momentum and the kinetic energy of the system are conserved. E) the kinetic energy of the system is conserved, but the momentum of the system is not conserved. 10) How much energy is needed to change the speed of a 1600 kg sport utility vehicle from 15.0 m/s to 40.0 m/s? A) 1.10 MJ B) 10.0 kj C) 20.0 kj D) 40.0 kj E) MJ
3 11) Determine the scalar product of = and = A) B) C) 12 D) 60 E) undefined 12) The work performed as a function of time for a process is given by W = at 3 where a = 2.4 J/s 3. What is the instantaneous power output at t = 3.7 s? A) 99 W B) 69 W C) 138 W D) 207 W??13) A solid, uniform sphere of mass 2.0 kg and radius 1.7 m rolls from rest without slipping down an inclined plane of height 7.0 m. What is the angular velocity of the sphere at the bottom of the inclined plane? A) 5.8 rad/s B) 9.9 rad/s C) 11 rad/s D) 7.0 rad/s 14) When can we be certain that the average velocity of an object is always equal to its instantaneous velocity? A) always B) never C) only when the velocity is constant D) only when the acceleration is constant E) only when the acceleration is changing at a constant rate
4 15 The figure shows the graph of the position x as a function of time for an object moving in the straight line (the xaxis). Which of the following graphs best describes the velocity along the x axis as a function of time for this object? A) B) C) D) E)
5 16) Which one of the following graphs could possibly represent the vertical position as a function of time for an object in free fall? A) B) C) D)
6 E) 17) The position of an object as a function of time is given by where c = 60 m/s and d = 7.0 m. (a) Find the instantaneous acceleration at t =2.4 s. (b) Find the average acceleration over the first 2.4 seconds. Answer: (a) 44 m/s2 (b) 18 m/s2 Var: 1 18) A runner maintains constant acceleration after starting from rest as she runs a distance of 60.0 m. The runner's speed at the end of the 60.0 m is 9.00 m/s. How much time did it take the runner to complete the 60.0 m distance? A) 6.67 s B) 15.0 s C) 9.80 s D) 10.2 s E) 13.3 s
7 19) A package is dropped from a helicopter moving upward at 15 m/s. If it takes 16.0 s before the package strikes the ground, how high above the ground was the package when it was released if air resistance is negligible? A) 810 m B) 1000 m C) 1200 m D) 1500 m 21) An object has a position given by = [2.0 m + (3.00 m/s)t] + [3.0 m  (2.00 m/s2)t2], where all quantities are in SI units. What is the magnitude of the acceleration of the object at time t = 2.00 s? A) 1.00 m/s2 B) 0.00 m/s2 C) m/s2 D) 4.00 m/s2 E) 2.00 m/s2 22) A hockey puck slides off the edge of a table with an initial velocity of 28.0 m/s. and experiences no air resistance. The height of the tabletop above the ground is 2.00 m. What is the angle below the horizontal of the velocity of the puck just before it hits the ground? A) 77.2 B) 72.6 C) 12.8 D) 12.6 E) ) A box slides down a frictionless plane inclined at an angle θ above the horizontal. The gravitational force on the box is directed A) parallel to the plane in the same direction as the movement of the box. B) parallel to the plane in the opposite direction as the movement of the box. C) perpendicular to the plane. D) vertically. E) at an angle θ below the inclined plane.
8 24) A 60.0kg person rides in elevator while standing on a scale. The elevator is traveling downward but slowing down at a rate of 2.00 m/s2. The reading on the scale is closest to A) 589 N. B) 708 N. C) 469 N. D) 120 N. E) 349 N. 25) A 6.0 kg box slides down an inclined plane that makes an angle of 39 with the horizontal. If the coefficient of kinetic friction is 0.19, at what rate does the box accelerate down the slope? A) 4.7 m/s2 B) 5.2 m/s2 C) 5.5 m/s2 D) 6.2 m/s2 26) A 200 g hockey puck is launched up a metal ramp that is inclined at a 30 angle. The coefficients of static and kinetic friction between the hockey puck and the metal ramp are μs = 0.40 and μk = 0.30, respectively. The puck's initial speed is 63 m/s. What vertical height does the puck reach above its starting point? A) 130 m B) 270 m C) 200 m D) 66 m 27) A 250kg crate is on a rough ramp, inclined at 30 above the horizontal. The coefficient of kinetic friction between the crate and ramp is A horizontal force of 5000 N is applied to the crate, pushing it up the ramp. What is the acceleration of the crate? A) 8.4 m/s2 B) 10 m/s2 C) 12 m/s2 D) 13 m/s2 E) 3.4 m/s2 28) An 80.0kg object is falling and experiences a drag force due to air resistance. The magnitude of this drag force depends on its speed, v, and obeys the equation What is the terminal speed of this object? A) 6.45 m/s
9 B) 72.2 m/s C) 34.2 m/s D) 12.6 m/s E) 47.3 m/s 29) A string is attached to the rearview mirror of a car. A ball is hanging at the other end of the string. The car is driving around in a circle, at a constant speed. Which of the following lists gives all of the forces directly acting on the ball? A) tension and gravity B) tension C) tension, gravity, and the centripetal force D) tension, gravity, the centripetal force, and friction 30) A 1000kg car is slowly picking up speed as it goes around a horizontal curve whose radius is 100 m. The coefficient of static friction between the tires and the road is At what speed will the car begin to skid sideways? A) 9.25 m/s B) 23.6 m/s C) 34.3 m/s D) 35.0 m/s E) 18.5 m/s 31) A small glider is coasting horizontally when suddenly a very heavy piece of cargo falls out of the bottom of the plane. You can neglect air resistance. Just after the cargo has fallen out A) the plane speeds up and the cargo slows down. B) the plane speeds up but the cargo does not change speed. C) neither the cargo nor the plane change speed. D) the cargo slows down but the plane does not change speed. E) both the cargo and the plane speed up. Answer: C 32) A small car has a headon collision with a large truck. Which of the following statements concerning the magnitude of the average force due to the collision is correct? A) The truck experiences the greater average force. B) The small car experiences the greater average force. C) The small car and the truck experience the same average force. D) It is impossible to tell since the masses are not given. E) It is impossible to tell since the velocities are not given.
10 33) Which of the graphs in the figure illustrates Hooke's Law? A) Graph a B) Graph b C) Graph c D) graph d 34) Is it possible for a system to have negative potential energy? A) Yes, as long as the kinetic energy is positive. B) Yes, as long as the total energy is positive. C) Yes, since the choice of the zero of potential energy is arbitrary. D) No, because the kinetic energy of a system must equal its potential energy. E) No, because this would have no physical meaning. 7) In a perfectly ELASTIC collision between two perfectly rigid objects A) the momentum of each object is conserved. B) the kinetic energy of each object is conserved. C) the momentum of the system is conserved but the kinetic energy of the system is not conserved. D) both the momentum and the kinetic energy of the system are conserved. E) the kinetic energy of the system is conserved, but the momentum of the system is not conserved.
11 35) A force on a particle depends on position such that F(x) = (3.00 N/m 2 )x 2 + (6.00 N/m)x for a particle constrained to move along the xaxis. What work is done by this force on a particle that moves from x = 0.00 m to x = 2.00 m? A) 10.0 J B) 20.0 J C) J D) 24.0 J E) 48.0 J 36) A force F = bx3 acts in the x direction, where the value of b is 3.7 N/m3. How much work is done by this force in moving an object from x = 0.00 m to x = 2.6 m? A) 42 J B) 13 J C) 50 J D) 57 J 37) A kg car is moving at 15 km/h. If a kg truck has 18 times the kinetic energy of the car, how fast is the truck moving? A) 45 km/h B) 63 km/h C) 54 km/h D) 36 km/h 38) Determine the angle between the directions of vector = and vector = A) 26.6 B) 30.0 C) 88.1 D) 117 E) ) The angle between vector = and vector is The scalar product of vectors and is If the x component of vector is positive, what is vector. A) B) C) D) E)
12 40) A traveler pulls on a suitcase strap at an angle 36 above the horizontal. If 908 J of work are done by the strap while moving the suitcase a horizontal distance of 15 m, what is the tension in the strap? A) 75 N B) 61 N C) 85 N D) 92 N 41) The work performed as a function of time for a process is given by W = at 3 where a = 2.4 J/s 3. What is the instantaneous power output at t = 3.7 s? A) 99 W B) 69 W C) 138 W D) 207 W 42) A car on a roller coaster starts at zero speed at an elevation above the ground of 26 m. It coasts down a slope, and then climbs a hill. The top of the hill is at an elevation of 16 m. What is the speed of the car at the top of the hill? Neglect any frictional effects. A) 14 m/s B) 18 m/s C) 10 m/s D) 9.0 m/s E) 6.0 m/s??????? 43) Consider the motion of a 1.00kg particle that moves with potential energy given by U(x) = (2.00 J m)/x + (4.00 J m2)/x2. Suppose the particle is moving with a speed of 3.00 m/s when it is located at x = 1.00 m. What is the speed of the object when it is located at x = 5.00 m? A) 2.13 m/s B) 3.00 m/s C) 4.68 m/s D) 3.67 m/s
13 44) A 2.0kg object is moving without friction along the xaxis. The potential energy curve as a function of position is shown in the figure, and the system is conservative. If the speed of the object at the origin is 4.0 m/s, what will be its speed at 7.0 m along the +xaxis? A) 4.0 m/s B) 4.2 m/s C) 4.4 m/s D) 4.6 m/s E) 9.8 m/s 45) When a rigid body rotates about a fixed axis, all the points in the body have the same A) tangential speed. B) angular acceleration. C) tangential acceleration. D) linear displacement. E) centripetal acceleration. 46) The two rotating systems shown in the figure differ only in that the two identical movable masses are positioned at different distances from the axis of rotation. If you release the hanging blocks simultaneously from rest, and if the ropes do not slip, which block lands first? A) The block at the left lands first. B) The block at the right lands first. C) Both blocks land at the same time.
14 47) Consider a uniform solid sphere of radius R and mass M rolling without slipping. Which form of its kinetic energy is larger, translational or rotational? A) Its translational kinetic energy is larger than its rotational kinetic energy. B) Its rotational kinetic energy is larger than its translational kinetic energy. C) Both forms of energy are equal. D) You need to know the speed of the sphere to tell. 48) The angular acceleration of a wheel is given in rad/s2by 45t 3 11t 4, where t is in seconds. If the wheel starts from rest at t = 0.00 s, when is the next time the wheel is at rest? A) 5.1 s B) 8.4 s C) 6.9 s D) 3.6 s 49) A 95 N force exerted at the end of a 0.50 m long torque wrench gives rise to a torque of What is the angle (assumed to be less than 90 ) between the wrench handle and the direction of the applied force? A) 18 B) 14 C) 22 D) 25??50) A uniform solid disk of radius 1.60 m and mass 2.30 kg rolls without slipping to the bottom of an inclined plane. If the angular velocity of the disk is 5.35 rad/s at the bottom, what is the height of the inclined plane? A) 5.61 m B) 4.21 m C) 4.94 m D) 6.73 m 51) A 5.0m radius playground merrygoround with a moment of inertia of 2000 kg m2 is rotating freely with an angular speed of 1.0 rad/s. Two people, each having a mass of 60 kg, are standing right outside the edge of the merrygoround and step on it with negligible speed. What is the angular speed of the merrygoround right after the two people have stepped on? A) 0.20 rad/s B) 0.40 rad/s C) 0.60 rad/s D) 0.80 rad/s E) 0.67 rad/s
15 52) A baseball is located at the surface of the earth. Which statements about it are correct? (There may be more than one correct choice.) A) The earth exerts a much greater gravitational force on the ball than the ball exerts on the earth. B) The ball exerts a greater gravitational force on the earth than the earth exerts on the ball. C) The gravitational force on the ball due to the earth is exactly the same as the gravitational force on the earth due to the ball. D) The gravitational force on the ball is independent of the mass of the ball. E) The gravitational force on the ball is independent of the mass of the earth. 53) If the mass of the earth and all objects on it were suddenly doubled, but the size remained the same, the acceleration due to gravity at the surface would become A) 4 times what it now is. B) 2 times what it now is. C) the same as it now is. D) 1/2 of what it now is. E) 1/4 of what it now is. 54) Neptune circles the Sun at a distance of m once every 164 years. Saturn circles the Sun at a distance of 1.43 x 1012 m. What is the orbital period of Saturn? A) 304 y B) 121 y C) 109 h D) 88.6 y E) 29.4 y 55) A mass M is attached to an ideal massless spring. When this system is set in motion, it has a period T. What is the period if the mass is doubled to 2M? A) 2T B) T/2 C) T D) 4T E) T 56) A certain frictionless simple pendulum having a length L and mass M swings with period T. If both L and M are doubled, what is the new period? A) 4T B) 2T C) T D) T E) T/4
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences
More informationUnless otherwise specified, use g = 9.80 m/s2
Phy 111 Exam 2 March 10, 2015 Name Section University ID Please fill in your computer answer sheet as follows: 1) In the NAME grid, fill in your last name, leave one blank space, then your first name.
More informationAP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).
AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the
More informationis acting on a body of mass m = 3.0 kg and changes its velocity from an initial
PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block
More informationReview PHYS114 Chapters 47
Review PHYS114 Chapters 47 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 27 kg object is accelerated at a rate of 1.7 m/s 2. What force does
More informationElementary Physics October 8, 2007
INSTRUCTIONS: For for the multiple choice questions 1 8, you will be scored only on the basis of choosing only the one correct answer for full credit. No partial credit will be given. For questions 9 10,
More informationOn my honor, I have neither given nor received unauthorized aid on this examination.
Instructor(s): Profs. D. Reitze, H. Chan PHYSICS DEPARTMENT PHY 2053 Exam 2 April 2, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.
More informationChoose the best answer for Questions 115 below. Mark your answer on your scantron form using a #2 pencil.
Name: ID #: Section #: PART I: MULTIPLE CHOICE QUESTIONS Choose the best answer for Questions 115 below. Mark your answer on your scantron form using a #2 pencil. 1. A 55.0kg box rests on a horizontal
More information1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3
1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25N crate slides down a frictionless incline that is 25 above the horizontal.
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the
More informationC) D) 2. The diagram below shows a worker using a rope to pull a cart.
1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope
More informationTwentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test
Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,
More information66 Chapter 6: FORCE AND MOTION II
Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the
More informationWSCH4 Motion and Force Show all your work and equations used. Isaac Newton ( )
AP PHYSICS 1 WSCH4 Motion and Force Show all your work and equations used. Isaac Newton (16431727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential
More informationSummer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.
Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope
More informationr r Sample Final questions for PS 150
Sample Final questions for PS 150 1) Which of the following is an accurate statement? A) Rotating a vector about an axis passing through the tip of the vector does not change the vector. B) The magnitude
More informationAP Physics 1 Work Energy and Power Practice Test Name
AP Physics 1 Work Energy and Power Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two objects, one of mass m and the other
More informationPhysics for Scientists and Engineers 4th Edition, 2017
A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not
More informationNAME. (2) Choose the graph below that represents the velocity vs. time for constant, nonzero acceleration in one dimension.
(1) The figure shows a lever (which is a uniform bar, length d and mass M), hinged at the bottom and supported steadily by a rope. The rope is attached a distance d/4 from the hinge. The two angles are
More informationMechanics II. Which of the following relations among the forces W, k, N, and F must be true?
Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which
More informationAP Physics First Nine Weeks Review
AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
PH105007 Exam 2 VERSION A Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 1.0kg block and a 2.0kg block are pressed together on a horizontal
More informationName Date Period PROBLEM SET: ROTATIONAL DYNAMICS
Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget
More information7. Two forces are applied to a 2.0kilogram block on a frictionless horizontal surface, as shown in the diagram below.
1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.
More informationA) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.
Coordinator: Dr. W. AlBasheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes
More informationPHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009
PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 Note: The unit vectors in the +x, +y, and +z directions of a righthanded Cartesian coordinate system are î, ĵ, and ˆk, respectively.
More informationPractice Test for Midterm Exam
A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it
More informationPRACTICE TEST for Midterm Exam
South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos
More informationExam #2, Chapters 57 PHYS 1014M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam #2, Chapters 57 Name PHYS 1014M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.
More informationEXAM 3 MECHANICS 40% of the final grade
EXAM 3 MECHANICS 40% of the final grade Winter 2018 Name: Each multiplechoice question is worth 2 marks. 1. The mass of the two wheels shown in the diagram is the same. A force of 1 N is exerted on the
More informationPhys , Fall04,Term 1 Exercise Problems
Page 1 1. The number of significant figures in the number 0.00593 is a. 5 b. 2 c. 3 d.6 2. The product of 104 and 105 is a. 1 b. 10 c. 0.1 d.100 3. The length of a car is given as 4.57 m. The percent
More informationThe diagram below shows a block on a horizontal frictionless surface. A 100.newton force acts on the block at an angle of 30. above the horizontal.
Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45
More informationConcept Question: Normal Force
Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical
More informationQ2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ
Coordinator: Dr. S. Kunwar Monday, March 25, 2019 Page: 1 Q1. An object moves in a horizontal circle at constant speed. The work done by the centripetal force is zero because: A) the centripetal force
More informationy(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (!
1. The angle between the vector! A = 3î! 2 ĵ! 5 ˆk and the positive y axis, in degrees, is closest to: A) 19 B) 71 C) 90 D) 109 E) 161 The dot product between the vector! A = 3î! 2 ĵ! 5 ˆk and the unit
More informationEndofChapter Exercises
EndofChapter Exercises For all these exercises, assume that all strings are massless and all pulleys are both massless and frictionless. We will improve our model and learn how to account for the mass
More informationThe net force on a moving object is suddenly reduced to zero. As a consequence, the object
The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity
More informationExam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses.
Exam 1 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Let vector a! = 4î + 3 ĵ and vector b! = î + 2 ĵ (or b! = î + 4 ĵ ). What is the
More informationUNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 15, 2001 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION
More informationPHYS 101 Previous Exam Problems. Force & Motion I
PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0kg block is lowered with a downward
More information2) A car accelerates from 5.0 m/s to 21 m/s at a rate of 3.0 m/s 2. How far does it travel while accelerating? A) 207 m B) 117 m C) 41 m D) 69 m
Name VECTORS 1) An airplane undergoes the following displacements: First, it flies 59 km in a direction 30 east of north. Next, it flies 58 km due south. Finally, it flies 100 km 30 north of west. Using
More informationPHYSICS 1. Section I 40 Questions Time 90 minutes. g = 10 m s in all problems.
Note: To simplify calculations, you may use PHYSICS 1 Section I 40 Questions Time 90 minutes 2 g = 10 m s in all problems. Directions: Each of the questions or incomplete statements below is followed by
More information11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0.
A harmonic wave propagates horizontally along a taut string of length! = 8.0 m and mass! = 0.23 kg. The vertical displacement of the string along its length is given by!!,! = 0.1!m cos 1.5!!! +!0.8!!,
More informationUniversity Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1
University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction
More informationv (m/s) 10 d. displacement from 04 s 28 m e. time interval during which the net force is zero 02 s f. average velocity from 04 s 7 m/s x (m) 20
Physics Final Exam Mechanics Review Answers 1. Use the velocitytime graph below to find the: a. velocity at 2 s 6 m/s v (m/s) 1 b. acceleration from 2 s 6 c. acceleration from 24 s 2 m/s 2 2 4 t (s)
More informationPYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1
TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speedtime graph for the motion of a vehicle during a 7.0minute
More informationAP practice ch 78 Multiple Choice
AP practice ch 78 Multiple Choice 1. A spool of thread has an average radius of 1.00 cm. If the spool contains 62.8 m of thread, how many turns of thread are on the spool? "Average radius" allows us to
More information3) Which of the following quantities has units of a displacement? (There could be more than one correct choice.)
FLEX Physical Sciences AP Physics 1 (Honors Physics) Final Homework Exam 1) A toy rocket is launched vertically from ground level at time t = 0 s. The rocket engine provides constant upward acceleration
More informationCPS lesson Work and Energy ANSWER KEY
CPS lesson Work and Energy ANSWER KEY 1. A ball feeder slowly pushes a bowling ball up a 1m ramp to a height of 0.5 m above the floor. Neglecting friction, what constant force must be exerted on the 5kg
More informationPhysics Midterm Review KEY
Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.kilogram space vehicle is traveling along a straight line
More informationPage 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!
Name: Section This assignment is due at the first class in 2019 Part I Show all work! 71641  Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided
More informationPHYS 1303 Final Exam Example Questions
PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet
More informationWiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!
Wiley Plus Final Assignment (5) Is Due Today: Before 11 pm! Final Exam Review December 9, 009 3 What about vector subtraction? Suppose you are given the vector relation A B C RULE: The resultant vector
More informationPHYSICS 221 SPRING 2013
PHYSICS 221 SPRING 2013 EXAM 2: April 4, 2013 8:1510:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiplechoice questions plus 2 extra credit questions,
More informationAP Physics 1 Rotational Motion Practice Test
AP Physics 1 Rotational Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A spinning ice skater on extremely smooth ice is able
More information1. What three dimensions are used to derive most measurements in physics?
Physics Semester 1 Exam Review Unit 1: Measurement What is the SI unit for length, mass, and time? When are zeros significant figures? When are zeros not significant figures? When are calculations roundedoff
More information(1) +0.2 m/s (2) +0.4 m/s (3) +0.6 m/s (4) +1 m/s (5) +0.8 m/s
77777 77777 Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 2, 120 minutes November 13, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized
More informationWritten Homework problems. Spring (taken from Giancoli, 4 th edition)
Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m
More informationSample Physics Placement Exam
Sample Physics 1301 Placement Exam A. Multiple Choice Questions: 1. A cable is used to take construction equipment from the ground to the top of a tall building. During the trip up, when (if ever) is
More informationPSI AP Physics I Rotational Motion
PSI AP Physics I Rotational Motion MultipleChoice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from
More informationPSI AP Physics I Rotational Motion
PSI AP Physics I Rotational Motion MultipleChoice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two men, Joel and Jerry, push against a wall. Jerry stops after 10 min, while Joel is
More informationBROCK UNIVERSITY. Course: PHYS 1P21/1P91 Number of students: 234 Examination date: 5 December 2014 Number of hours: 3
Name: Student #: BROCK UNIVERSITY Page 1 of 12 Final Exam: December 2014 Number of pages: 12 (+ formula sheet) Course: PHYS 1P21/1P91 Number of students: 234 Examination date: 5 December 2014 Number of
More informationOld Exam. Question Chapter 7 072
Old Exam. Question Chapter 7 072 Q1.Fig 1 shows a simple pendulum, consisting of a ball of mass M = 0.50 kg, attached to one end of a massless string of length L = 1.5 m. The other end is fixed. If the
More informationAP C  Webreview ch 7 (part I) Rotation and circular motion
Name: Class: _ Date: _ AP C  Webreview ch 7 (part I) Rotation and circular motion Multiple Choice Identify the choice that best completes the statement or answers the question. 1. 2 600 rev/min is equivalent
More informationReview. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91
Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton
More informationUNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 Physics and the Universe FINAL EXAMINATION December 14, 013 NAME: (Last) Please Print (Given) Time: 3 hours STUDENT
More informationName: Date: Period: AP Physics C Work HO11
Name: Date: Period: AP Physics C Work HO11 1.) Rat pushes a 25.0 kg crate a distance of 6.0 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction
More informationCircular Motion Test Review
Circular Motion Test Review Name: Date: 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration is equal to zero. B) No,
More informationExam 3 PREP Chapters 6, 7, 8
PHY241  General Physics I Dr. Carlson, Fall 2013 Prep Exam 3 PREP Chapters 6, 7, 8 Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Astronauts in orbiting satellites
More informationPhysics 121, Sections 1 and 2, Winter 2011 Instructor: Scott Bergeson Exam #3 April 16 April 21, 2011 RULES FOR THIS TEST:
Physics 121, Sections 1 and 2, Winter 2011 Instructor: Scott Bergeson Exam #3 April 16 April 21, 2011 RULES FOR THIS TEST: This test is closed book. You may use a dictionary. You may use your own calculator
More informationPHYSICS 221, FALL 2010 EXAM #1 Solutions WEDNESDAY, SEPTEMBER 29, 2010
PHYSICS 1, FALL 010 EXAM 1 Solutions WEDNESDAY, SEPTEMBER 9, 010 Note: The unit vectors in the +x, +y, and +z directions of a righthanded Cartesian coordinate system are î, ĵ, and ˆk, respectively. In
More informationPhysics 23 Exam 2 March 3, 2009
Use the following to answer question 1: A stationary 4kg shell explodes into three pieces. Two of the fragments have a mass of 1 kg each and move along the paths shown with a speed of 10 m/s. The third
More informationΣF=ma SECOND LAW. Make a freebody diagram for EVERY problem!
PHYSICS HOMEWORK #31 SECOND LAW ΣF=ma NEWTON S LAWS Newton s Second Law of Motion The acceleration of an object is directly proportional to the force applied, inversely proportional to the mass of the
More informationPhysics Precomp diagnostic Answers
Name Element Physics Precomp diagnostic Answers Grade 8 20172018 Instructions: THIS TEST IS NOT FOR A GRADE. It is to help you determine what you need to study for the precomps. Just do your best. Put
More informationPHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.
PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion
More informationCHAPTER 4 TEST REVIEW  Answer Key
AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 MultiResponse Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST
More informationSlide 1 / 133. Slide 2 / 133. Slide 3 / How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m?
1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 1 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 2 / 133 3 A ball rotates
More informationSlide 2 / 133. Slide 1 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133
Slide 1 / 133 1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 2 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 3 / 133
More informationPHYSICS 221 Fall 2016 EXAM 2: November 02, :15pm 10:15pm. Name (printed): Recitation Instructor: Section #:
PHYSICS 221 Fall 2016 EXAM 2: November 02, 2016 8:15pm 10:15pm Name (printed): Recitation Instructor: Section #: INSTRUCTIONS: This exam contains 25 multiplechoice questions, plus 2 extracredit questions,
More information3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4.
AP Physics Multiple Choice Practice Momentum and Impulse 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass,
More informationExtra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.
Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?
More informationContents. Objectives IAI motion w/o force motion with force F=ma third law work and energy circular motion Final Exam mechanics questions Recap IAI
Physics 121 for Majors Section 1 IAI Review 4 Review for IAI and Final Exam Exam Details In the Testing Center Friday  Wednesday Wed. is a late day with a $5 fee Hours: 8 am 9 pm Friday 10 am 3 pm Saturday
More informationPhysics 116A, Section 2, Second Exam Version B, February 26, Name (Please print)
Physics 116A, Section 2, Second Exam Version B, February 26, 2008 Name (Please print) Mulitiple choice questions are worth 3 points each. Mark your answers in the space provided at the right, and on the
More informationPhysics 116A, Section 2, Second Exam A, February 26, Name (Please print)
Physics 116A, Section 2, Second Exam A, February 26, 2008 Name (Please print) Mulitiple choice questions are worth 3 points each. Mark your answers in the space provided at the right, and on the OPSCAN
More information1. The diagram below shows the variation with time t of the velocity v of an object.
1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the timeaxis represents A. the average velocity of the object. B. the displacement
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
PH 105 Exam 2 VERSION A Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Is it possible for a system to have negative potential energy? A)
More informationThe Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis
The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces
More informationExam II. Spring 2004 Serway & Jewett, Chapters Fill in the bubble for the correct answer on the answer sheet. next to the number.
Agin/Meyer PART I: QUALITATIVE Exam II Spring 2004 Serway & Jewett, Chapters 610 Assigned Seat Number Fill in the bubble for the correct answer on the answer sheet. next to the number. NO PARTIAL CREDIT:
More informationUse the following to answer question 1:
Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to
More informationPHYSICS 221 SPRING EXAM 1: February 20, 2014; 8:15pm 10:15pm
PHYSICS 221 SPRING 2014 EXAM 1: February 20, 2014; 8:15pm 10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiplechoice questions plus 2 extra credit questions,
More informationPHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011
PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a righthanded Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this
More informationPHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 111, 1314
Final Review: Chapters 111, 1314 These are selected problems that you are to solve independently or in a team of 23 in order to better prepare for your Final Exam 1 Problem 1: Chasing a motorist This
More informationPH201 Chapter 5 Solutions
PH201 Chapter 5 Solutions 5.4. Set Up: For each object use coordinates where +y is upward. Each object has Call the objects 1 and 2, with and Solve: (a) The freebody diagrams for each object are shown
More informationFALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym
FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 13 pages. Make sure none are missing 2.
More informationUNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 16, 2000 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
PH 105 Exam 2 VERSION B Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A boy throws a rock with an initial velocity of 2.15 m/s at 30.0 above
More informationComprehensive Exam Session III Classical Mechanics Physics Department Proctor: Dr. Jack Straton (Sun. Jan 11 th, 2015) (3 hours long 1:00 to 4:00 PM)
Letter Comprehensive Exam Session III Classical Mechanics Physics Department Proctor: Dr. Jack Straton (Sun. Jan 11 th, 2015) (3 hours long 1:00 to 4:00 PM) If you cannot solve the whole problem, write
More informationPhysics 201 Midterm Exam 3
Name: Date: _ Physics 201 Midterm Exam 3 Information and Instructions Student ID Number: Section Number: TA Name: Please fill in all the information above Please write and bubble your Name and Student
More informationP211 Spring 2004 Form A
1. A 2 kg block A traveling with a speed of 5 m/s as shown collides with a stationary 4 kg block B. After the collision, A is observed to travel at right angles with respect to the initial direction with
More information