Gaussove kvadraturne formule za numeričku integraciju

Size: px
Start display at page:

Download "Gaussove kvadraturne formule za numeričku integraciju"

Transcription

1 Sveučilište J. J. Strossmyer u Osijeku Odjel z mtemtiku Sveučilišni preddiplomski studij mtemtike Dnijel Jgnjc Gussove kvdrturne formule z numeričku integrciju Zvršni rd Osijek, 2017.

2 Sveučilište J. J. Strossmyer u Osijeku Odjel z mtemtiku Sveučilišni preddiplomski studij mtemtike Dnijel Jgnjc Gussove kvdrturne formule z numeričku integrciju Zvršni rd Voditelj: prof. dr. sc. Kristin Sbo Osijek, 2017.

3 Sdržj Uvod 1 1. Numeričke metode Trpezn formul Produljen trpezn formul Newton-Cotesove formule Simpsonov formul Generlizirn Simpsonov formul Ocjen pogreške kvdrturnih formul Gussove kvdrturne formule Opći oblik kvdrturne formule Guss-Legendreov formul Ocjen pogreške Gussove kvdrturne formule Usporedb metod 15 Litertur 17

4 Sžetk: Tem ovog zvršnog rd je numeričk integrcij. U rdu su ukrtko pojšnjene trpezn formul, Newton-Cotesove formule i Simpsonov formul te su dne njihove ocjene pogreški. Glvni dio rd je usmjeren n Gussove kvdrturne formule. Objsnit cemo ideju kojojm su nstle i izvesti njihov opci oblik. Detljnije ce biti pojšnjen Guss-Legendreov metod z koju ćemo, koristeći teoriju Penove jezgre, dti ocjenu pogreške. N krju cemo pomocu nekoliko konkretnih primjer usporediti sve nvedene metode. Ključne riječi: Numerič integrcij, Gussove kvdrturne formule, Guss-Legendreove kvdrturne formule, Penov jezgr, ocjen pogreške Abstrct: Subject of this finl pper is numericl integrtion. In order to introduce methods for numericl integrtion, we will briefly describe trpezoidl rule, Newton-Cotes formuls nd Simpson s rule, lso we will stte error bound for ech method. Min focus of the pper will be Gussin qudrture. We will explin the key ide underlying this method nd derive generl form of it. Guss-Legendre qudrture will be explined in more detil. Applying Peno kernel theory we will obtin error bounds for this method. To sum up, there will be given few exmples to compre how ech methods works. Key words: Numericl integrtion, Gussin qudrtures, Guss-Legendre qudrture, Peno kernel, error estimtes i

5 Uvod Ako je funkcij f : I R neprekidn i F : I R bilo koj primitivn funkcij funkcije f n I, ond z svki segment [, b] I vrijedi f(x)dx = F (b) F (). Nveden formul se nziv Newton- Leibnizov formul i koristi se z rčunnje Reimnovog integrl funkcije f n segmentu [, b]. U prksi se pokzlo d primjen Newton-Leibnizove formule vrlo često nije moguć. Rzlog tome je što se z veliki broj funkcij ne može odrediti primitivn funkcij n elementrn nčin ili ju je vrlo teško pronći. Ndlje, često se u primjeni funkcij f zdje u obliku tbličnih podtk ili ko rješenje diferencijlne jedndžbe. Kko bismo izrčunli integrle tkvih funkcij, dolzi do potrebe z uvodenjem numeričkih metod pomoću kojih proksimirmo vrijednosti tih integrl. U nstvku nvodimo primjere nekoliko funkcij čije integrle možemo izrčunti isključivo primjenom numeričkih metod. Primjer 0.1. U teoriji vjerojtnosti se vrlo često pojvljuju integrli koji se ne dju rješiti eksplicitno nego je potrebno koristiti neke numeričke metode. Jedn od tkvih primjer je funkcij distribucije stndrdne normlne distribucije koj se rčun ko: F (x) = 1 2π x e t2 2 dt, x R Primjer 0.2. Fresnelovi integrli, koji se oznčvju ko funkcije S(x) i C(x), primjen im je u fizici: S(x) = C(x) = x 0 x 0 sin t 2 dt cos t 2 dt Dkle, kd vrijednost integrl ne možemo egzktno izrčunti stndrdnim postupcim, koristimo numeričke metode. 1

6 1. Numeričke metode Temeljn idej svih metod je izrčunti proksimciju integrl f(x)dx koristeći vrijednosti funkcije u točkm x i, gdje je x i [, b] z i = 0, 1,..., n. Jedn od očiglednih nčin rješvnj dnog problem je proksimirnje funkcije f s nekom jednostvnom funkcijom koj se lko integrir, njčešće interpolcijskim polinomom. Oznk z prokscimciju integrl, u ovom rdu, će biti I, općenito ju možemo zpisti ko I = w i f(x i ). Tkv zpis se nziv numeričk kvdrturn formul ili numeričk integrcijsk formul. Sljedeći bitn pojm koji se pojvljuje je pogrešk proksimcije. Oznčvti ćemo ju s E = I I. Z svku metodu će biti definirn ocjen pogreške. U ovom poglvlju će ukrtko biti objšnjeno trpezno prvilo i Newton-Coteseove formule, kko bismo ih ndlje u rdu mogli usporedivti s Gussovim kvdrturnim formulm. 1.1 Trpezn formul Nek je zdn funkcij f : [, b] R. Funkciju f ćemo zmjeniti interpolcijskim polinomom prvog stupnj p 1. Čvorovi interpolcije su krjnje točke segment x 0 =, x 1 = b. Ako točke (, f(x)) i (b, f(b)) uvrstimo u jedndžbu prvc, dobijemo sljedeće: Td je točn vrijednost integrl p 1 (x) = f() + f(b) f() (x ). b proksimcij I* = I = p 1 (x)dx = f(x)dx, (f(b) f())(b ). 2 2

7 f(b) g f() b Slik 1: Trpezno prvilo Geometrijski promtrno, vrijednost integrl I* je površin trpez ispod prvc, vrijednost integrl I je površin ispod grf funkcije f, rzlik izmedu te dvije površine je pogrešk metode. Kko bismo ocijenili pogrešku, bit će nm potrebn sljedeći teorem. Teorem 1.1 ([6]). Nek je zdn funkcij f C (n+1) ([, b]), rzdiob segment = x 0 < x 1 < x 2 <... < x n = b i nek z svki i = 0, 1,..., n vrijedi y i = f(x i ). Nek je P n : [, b] R odgovrjući interpolcijski polinom tkv d P n (x i ) = y i z svki i = 0, 1,..., n. Ond z svki x [, b] postoji c <, b > tkv d je gdje je w(x) = (x x 0 )(x x 1 )...(x x n ). Dokz. Ako je x = x i, z neki i, ond slijedi f(x) P n (x) = f (n+1) (c) (n + 1)! w(x), f(x) p n (x) = f(x i ) p n (x i ) = y i y i = 0. Time smo dokzli ovj slučj. Ndlje, pretpostvimo d je x x i z svki i = 0, 1,..., n. Definirjmo funkciju g(x) = f(x) p n (x) kw(x), gdje ćemo konstntu k odrediti tko d je g(x) = 0. Uočimo kko je z svki i = 0, 1,..., n vrijedi g(x i ) = 0. Dkle funkcij g im n + 2 nultočke, prem Rolleovom teoremu g im brem n + 1 nultočku, g brem n nultočki, itd. N krju dodemo do (n + 1)-te derivcije funkcije g, koj im brem jednu nultočku, tj. brem jednu točku c <, b > tko d je g n+1 (c) = 0. Kd to uvrstimo u početnu definiciju funkcije g, dobijemo g n+1 (c) = f n+1 (c) P n+1 n (c) (kw(c)) n+1 = 0. 3

8 Derivirjući n + 1 put, polinom P n isčezv, od polinom w ostje konstnt. Tko d immo f n+1 (c) kw n+1 (c) = 0, odnosno k = f n+1 (c) (n + 1)!. Odredili smo konstntu k tko d vrijedi početn jednkost f(x) P n (x) = f (n+1) (c) (n + 1)! w(x). N osnovu Teorem 1.1 možemo dti ocjenu pogreške z trpeznu formulu. Teorem 1.2 ([6]). Nek je f C 2 ([, b]), td postoji c [, b] tkv d je I = f(x)dx = (b )3 f (c). 12 Dokz. Prem Teoremu 1.1 postoji c [, b] tko d je E = I I = = Integrirnjem i sredivnjem izrz dobijemo: Z ocjenu pogreške možemo uzeti f(x) p 1 (x)dx f (c) (x )(x b)dx. 2 E = I I = f (c) 12 (b )3. I I mx f (b )3 (x) x [,b] 12 (b ) 3 = M Produljen trpezn formul Nek su pretpostvke iste ko dosd, dkle, immo funkciju f definirnu n segmentu [, b]. Umjesto d funkciju proksimirmo jednim prvcem kroz krjnje točke segment, podjelimo tj segment n n dijelov i tj postupk ponovimo n svkom podsegmentu. N tj nčin ćemo dobiti produljenu trpeznu formulu. Nek je podjel ekvidistntn, s h oznčimo duljinu podsegment. Promtrmo proizvoljni segment [x i, x i ]. I i = xi h = b n. x i (y i + y i y i x i x i )(x x i )dx = h 2 (y i + y i ). 4

9 Končn proksimcij funkcij je sum svih I i I = h 2 (y 0 + y 1 ) + h 2 (y 1 + y 2 ) (y n + y n ) = h 2 (y 0 + 2y y n + y n ). Anlogno nvedenome, vrijedi d je ukupn pogrešk jednk zbroju pogrešk n svkom podintervlu, stog je 1.2 Newton-Cotesove formule E = h2 12 (b )f (c). Z ovu metodu potrebno je nprviti ekvidistntnu podjelu segment [, b] = x 0 < x 1 <... < x n = b tko d je duljin svkog dijel h = b n. Dkle, z svki i = 0,...n, vrijedi x i = + ih. Zdnu funkciju f : [, b] R interpolirti ćemo u točkm (x 0, f(x 0 )), (x 1, f(x 1 )),..., (x n, f(x n )). Koristit ćemo Lgrngeov oblik interpolcijskog polinom. L n (x) = f(x i )p i (x), i=0 gdje je Td vrijedi p k (x) = n i=0,i k x x i x k x i I = = = i=0 p n (x)dx f(x i )p i (x)dx i=0 = (b ) f(x i )p i (x)dx 1 f(x i ) b i=0 p i (x)dx. Oznčimo ω i = 1 b p b i(x)dx. Dkle proksimcij integrl je I* = (b ) ω i f(x i ). Npomen 1.1. Newton-Cotesov formul u slučju n = 1 je trpezn formul. i=0 5

10 1.3 Simpsonov formul Posebn slučj Newton-Cotesove formule, kd je n = 2 se nziv Simpsonov 1 formul. Točke rzdiobe su ond x 0 =, x 1 = +b, x 2 2 = b. Polinomi ω k se izrčunju i dobiju konstnte w 0 = 1, w 6 1 = 2, w 3 2 = 1. 6 Kd uvrstimo podtke, dobijemo sljedeću formulu I = (b )( 1 6 y y y 2) = (b ) (y 0 + 4y 1 + y 2 ) Generlizirn Simpsonov formul Simpsonovo prvilo se može generlizirti tko d se segment [, b] podijeli n n jednkih dijelov, pri čemu je n prn broj. Tko dobijemo formulu I = h 3 (y 0 + 4y 1 + 2y 2 + 4y 3 + 2y y n + y n ). Z ocjenu pogreške kod generlizirne Simpsonove formule vrijedi E n = (b ) h 4 f (4) (c) 180 (b ) h 4 M Ocjen pogreške kvdrturnih formul Kko bi se dl ocjen z pogreške kvdrturnih formul, koriste se Penove 2 jezgre. Definirti ćemo i krtko objsniti pojm Penove jezgre. Z svku dosd nbrojnu kvdrturnu formulu se posebno rčun Penov jezgr, budući d je postupk dost složen, izostvit ćemo detlje i koristiti već izrčunte Penove jezgre. Nek je Td je grešk E(f) = I(f) I*(f). I(f) = I*(f) = f(x)dx, w i f(x i ). Teorem 1.3 ([8]). Nek je E(p)=0 p P n i nek je f C (n+2) ([, b]) td vrijedi E(f) = gdje je K Penov jezgr definirn s f (n+1) (t)k(t)dt, K(t) = 1 n! E x((x t) n +) 1 Thoms Simpson ( ), britnski mtemtičr 2 Giuseppe Peno ( ), tlijnski mtemtičr 6

11 i (x t) n + = { (x t) n, z x > t 0, inče Ko što je već nvedeno, rčunnje Penovih jezgri može biti vrlo komplicirno stog ćemo nvesti smo jedn jednostvn primjer kko bismo bolje objsnili postupk. Primjer 1.1 ([5]). U cjelini 1.1. smo definirli metodu trpezne formule i dli ocjenu pogreške z nju, koj je glsil E(f) = I I = f (c) (b 12 )3. Koristeći teoriju Penovih jezgri vrijedi Ztim, E(f) = f (2) (t)k(t)dt. K(t)) = E x (x t) + = I(x t) + I (x t) +. Prisjetimo se i Iz čeg slijedi I = I = f()(b ) 2 f(x)dx + f(b)(b ). 2 I(x t) + I (x t) + = Vrtimo se u početnu jednkost (x t) + dx = 1 2 (x t)2 + b 1 α i (x i t) + i=0 b 2 ( t) + b 2 (b t) + = 1 2 ((b t)2 + ( t) 2 +) b 2 ( t) + b 2 (b t) + = 1 (b t)( t). 2 E(f) = = f (2) (t)k(t)dt f (2) (t) 1 (b t)( t)dt 2 = f (2) 12 (b )3. Uočimo kko smo dobili istu ocjenu pogreške ko i u prethodnom poglvlju. N krju nm ostje još dti ocjenu pogreške z Newton-Cotesovu metodu. 7

12 Teorem 1.4 ([4]). Nek je zdn podjel segment [, b] n n jednkih dijelov gdje je n prn broj. Nek je f C n+2 ([, b]). Td z pogrešku Newton-Cotesove formule vrijedi gdje je E(f) = K n (n + 2)! f (n+2) (c), < c < b; K n = xω(x)dx < 0. Teorem 1.5 ([4]). Nek je zdn podjel segment [, b] n n jednkih dijelov gdje je n neprn broj. Nek je f C n+1 ([, b]). Td z pogrešku Newton-Cotesove formule vrijedi E(f) = K n (n + 1)! f (n+1) (c), < c < b; gdje je K n = ω(x)dx < 0. 8

13 2. Gussove kvdrturne formule U dosdšnjim metodm smo pomoću zdnih n čvorov točno rčunli vrijednosti integrl polinom njviše n tog stupnj. Tko npr. trpezno prvilo rčun točno površinu ispod prvc, Simpsonov formul točno rčun površinu ispod grf polinom 2. stupnj. Znim ns možemo li konstruirti formule pomoću kojih točno rčunmo integrle polinom stupnj višeg od interpolcijskog polinom. Uprvo to svojstvo će imti Gussove kvdrture. 2.1 Opći oblik kvdrturne formule Gussove integrcijske formule, općenito su oblik w(x)f(x)dx = w i f(x i ), (1) gdje je w težinsk funkcij, pozitivn ili brem nenegtivn i integrbiln n [, b], w i su težinski koeficijenti, x i čvorovi integrcije. U rdu ćemo koristiti specijlni slučj, kd je w 1. Ovisno o izboru težinske funkcije, Gussov formul poprim drugčiji oblik i nziv. Tblic 1: Težinske funkcije. težinsk funkcij w intervl formul 1 [-1,1] Guss-Legendre 1 1 x 2 [-1,1] Guss-Chebyshev e t [0, Guss-Lguerre e t2, Guss-Hermit Definicij 2.1. Stupnj preciznosti kvdrturne formule je njveći broj m N tkv d je E(x k ) = 0, z svki k = 0, 1,..., m, li je E(x k + 1) 0. Vrijednost integrl I = f(x)dx proksimirmo kvdrturnom formulom koj je općenito oblik I = w i f(x i ). Želimo d je t formul stupnj preciznosti m, dkle d vrijedi x k dx w i x k i = 0, z svki k = 0, 1,..., m. Iz gornje jednkosti, dobijemo sustv s m + 1 jedndžbom, i 2n nepoznnic, nepoznnice su koeficijenti w i i čvorovi x i. Kko bi sustv imo jedinstveno rješenje, želimo d broj jedndžbi bude jednk broju nepoznnic. Ako uzmemo d je m = 2n 1, dobijemo tkv sustv. Stupnj preciznosti Gussove kvdrturne formule će biti 2n 1. Uočimo kko, rzliku od prethodnih metod, ovdje nemmo unprijed zdne čvorove, nego ih rčunmo iz sustv. 9

14 Npomen 2.1. Iz linernosti integrl slijedi d ko formul točno rčun potencije do m tog ond će točno rčunti i njihove linerne kombincije, tj. polinome do m tog stupnj. Primjer 2.1. Nek je n = 2, n segmentu [, 1] izrčunjmo kvdrturnu formulu. Sustv je zdn s Z k = 0 immo w 1 + w 2 = 2, k = 1, w 1 x 1 + w 2 x 2 = 0, k = 2, w 1 x w 2 x 2 2 = 2 3, k = 3, w 1 x w 2 x 3 2 = 0. x k dx w 1 x k 1 w 2 x k 2 = 0, z k = 0, 1, 2, 3. Rješvnjem gornjeg sustvm dobijemo w 1 = w 2 = 1, x 1 = 1 3, x 2 = 3 Vidimo kko već z n = 2 rješvnje sustv nije trivijlno, tj. općenito sustvi neće biti linerni, stog se umjesto stndrdnog rješvnj sustv koristi idej koju je uveo C.F.Guss Guss-Legendreov formul U tblici 1 je vidljivo kko, ovisno o izboru težinske funkcije i intervl, formul poprim drugčiji oblik. Koristit ćemo fmiliju koju čine Legendreovi polinomi, definirni n segmentu [, 1]. Kko postupk općenito ne bi ovisio o području integrcije, koristit ćemo supstituciju x = b 2 t + b + 2 Iz čeg slijedi f(x)dx = b 2 f( b 2 t + b + 2 )dt. Uvest ćemo oznku φ(t) = f( b 2 t + b + 2 ). Koristeći nvedene oznke i formulu (1) vrijedi I = b 2 w i φ(t i ). Ko što smo već rekli, koeficijenti w i i čvorovi t i su nm nepoznnice. ko nultočke Legendreovih polinom. Čvorove ćemo rčunti Npomen 2.2. Skup svih neprekidnih funkcij f n segmentu [, b] čini vektorski prostor s obzirom n stndrdne opercije zbrjnj i množenj funkcij sklrom. Nek su f, g : [, b] R neprekidne, definirjmo preslikvnje koje svkom pru funkcij pridružuje sklr n sljedeći nčin (f, g) = f g = f(x) g(x)dx. Lko se provjeri kko ovko definirno preslikvnje zdovoljv sv svojstv sklrnog produkt. 3 Crl Friedrich Guss ( ), njemčki mtemtičr 10

15 Npomen 2.3. Z dvije funkcije, f, g : [, b] R, kžemo d su medusobno ortogonlne ko vrijedi f g = f(x) g(x)dx = 0. Jedn od metod konstruirnj Legendreovih polinom je Grm-Schmidtovim postupkom ortogonlizcije knonske bze 1, t, t 2,... Tko dobiveni polinomi su P 0 (t) = 1 P 1 (t) = t (t, P 0) (P 0, P 0 ) P 0(t) = t P 2 (t) = t 2 (t2, P 0 ) (P 0, P 0 ) P 0(t) (t2, P 1 ) (P 1, P 1 ) P 1(t) =... = t P 3 (t) = t 2 (t3, P 0 ) (P 0, P 0 ) P 0(t) (t3, P 1 ) (P 1, P 1 ) P 1(t) (t3, P 2 ) (P 2, P 2 ) P 2(t) =... = t 3 3t 5 Čvorove integrcije x i rčunmo ko nultočke polinom P 0 P 1 P 2 P 3 Slik 2: Grfički prikz prv četiri Legendreov polinom Primjer 2.2. Izrčunjmo čvorove integrcije z n = 3. Tržimo nultočke Legeondreovog polinom P 3. P 3 = 0 t 3 3t 5 = 0 t(t ) = 0 Nultočke, odnosno čvorovi integrcije su t 1 = 11 3, t 5 2 = 0, t 3 = 3 5.

16 Preostlo nm je još izrčunti težinske koeficijente, w i. Nek su x i [, 1] i nek je p n,i = (x x 1)...(x x i )(x x x+1 )...(x x n ) (x i x 1 )...(x i x i )(x i x 1+1 )...(x i x n ). p n, i su polinomi koji se pojvjuju u Lgrngeovoj interpolciji, njihov stupnj je n 1, stog Gussov kvdrturn formul rčun točno njihove integrle. p n,i dx = w i p n,i. Vrijedi p n,i (x j ) = δ i,j Iz čeg slijedi p n,i dx = w i Primjer 2.3. Z n = 3 u primjeru 2.2 smo izrčunli čvorove, izrčunjmo sd težinske koeficijente prem formuli... (x x 2 )(x x 3 ) w 1 = p 2,1 dx = (x 1 x 2 )(x 1 x 3 ) dx = 5 3 (x x)dx =... = 5 9 w 2 = w 3 = (x x 1 )(x x 3 ) 5 dx = (x 2 x 1 )(x 2 x 3 ) 3 (x x 1 )(x x 2 ) (x 3 x 1 )(x 3 x 2 ) dx = 5 6 (x )dx =... = (x 2 5 x)dx =... = 5 9 Npomen 2.4. Čvorovi integrcije su smješteni u simetričnim točkm s obzirom n ishodište, koeficijenti simtričnih čvorov su jednki. Lem 2.1 ([8]). Svki Legendreov polinom stupnj n ortogonln je n polinome stupnj < n. Lem 2.2 ([8]). Nek su težinski koeficijenti zdni formulom w i = p n,i dx. Td je kvdrturn formul točn z polinome stupnj n-1. 12

17 Teorem 2.1 ([8]). Nek se težinski koeficijenti kvdrturne formule rčunju po Lemi 2.2 i nek su čvorovi te formule nultočke Legendreovog polinom P n (x). Td je t formul egzktn z polinome stupnj 2n 1. Dokz. Nek je p 2n proizvoljni polinom stupnj 2n 1.Podijelimo g Legendreovim polinomom P n. Prem teoremu o dijeljenju s osttkom postoje jedinstveni polinomi q n i r n tkvi d je p 2n = q n P n + r n. Koristeći Lemu 1. vrijedi p 2n (x)dx = = q n (x)p n (x)dx + r n (x)dx. r n (x)dx (2) Kko su x i, i = 1, 2,..., n nultočke polinom P n (x) vrijedi w i p 2n (xi) = = w i P n (xi)q n (x i ) + w i r n (xi). w i r n (xi) (3) Prem jednkosti 2 vrijedi d je p 2n (x)dx = r n (x)dx. Prem Lemi(2) vrijedi d je r n (x)dx = w i r n (xi). N krju iz jednkosti 3 dokžemo tvrdnju teorem p 2n (x)dx = w i p 2n (xi). Definicij 2.2 ([8]). Kvdrturn formul iz gornjeg teorem čiji su čvorovi korijeni Legenreovog polinom P n (x), težinski koeficijenti se birju po... i koj je egzktn z polinome stupnj 2n 1, nziv se Gussovom kvdrturnom formulom. 13

18 U tblici su nvedene vrijednosti čvorov integrcije i težin z nekoliko slučjev. Tblic 2: Guss-Legendreov formul n=2 x 1 = 1 3 w 1 = 1 x 2 = 1 3 w 2 = 1 n=3 x 1 = 3 5 w 1 = 5 9 x 2 = 0 x 3 = 3 5 w 2 = 8 9 w 3 = 5 9 n=4 x 1 = w 1 = x 2 = w 2 = x 3 = w 3 = x 4 = w 4 = n=5 x 1 = w 1 = x 2 = w 1 = x 3 = 0 w 2 = x 4 = w 3 = x 5 = w 4 = Primjer 2.4. Izrčunjmo integrl funkcije f(x) = 1 + 3x n segmentu [0, 1] koristeći Guss-Legendreovu metodu u 3 točke integrcije. Rčunmo I = 1 + 3xdx. 0 Kko smo Guss-Legendreovu metodu definirli n segmentu [, 1], nprvimo supstituciju Tko d je x = b 2 t + b + 2. I = x dx = t dt 3 5 w i x i. Uvrstimo podtke iz Tblice 2 i ko rezultt dobijemo I = Točn vrijednost integrl je I =

19 2.3 Ocjen pogreške Gussove kvdrturne formule Teorem 2.2. Nek je zdn funkcij f C 2n ([, b]). Td postoji točk c [, b] tkv d z ocjenu pogreške Guss-Legendreove metode integrcije vrijedi Primjer 2.5. Z n=3 vrijedi 3. Usporedb metod E n = (b )2n+1 (n!) 4 (2n + 1)((2n)!) 3 f 2n (c). E 3 = (b )7 (3!) 4 (7)(6!) 3 f 6 (c) = (b ) f 6 (c) Primjer 3.1 ([9]). Nek je zdn funkcij f(x) = x e 2x n segmentu [0, 4]. Primjenom Newton-Leibnizove formule, dobije se I = 4 0 x e 2x = 7 4 e Primjenit ćemo Gussovu i Newton-Cotesovu formulu, kko bismo vidjeli nkon koliko kork možemo dobiti rezultt s greškom mnjom od 1%. n Guss-Legendre Newton-Cotes Kod Gussovih kvdrturnih formul, z n=4, immo pogrešku od 0.37%, dok kod Newton- Cotesove formule se tek z n=6 postiže pogrešk od mnj od 1%, tj. 0.43% Primjer 3.2. Nek je zdn funkcij f(x) = e x 2 n segmentu [0, 4]. Funkcij f je primjer funkcije čiji se integrl ne može egzktno izrčunti. Koristeći ocjene pogreški z produljenu trpeznu i Simpsonovu formulu, izrčunjmo broj potrebnih kork z postiznje preciznosti od ε = Produljen trpezn formul: E n = h2 12 (b )f (c) h2 12 (b )M 2. 15

20 Iz čeg slijedi M2 (b ) n > (b ) = 4 12ε Njmnji n z koji se postiže tržen preciznost je n = 37. Generlizirn Simpsonov formul: Iz čeg slijedi E n = (b ) 180 h 4 f 4 (c) n > (b ) 4 M4 (b ) 180ε (b ) 180 = ε Njmnji n z koji se postiže tržen preciznost je n = 5. Guss-Legendreov formul: Z n=3 slijedi E n = (b )2n+1 (n!) 4 (2n + 1)((2n)!) 3 f 2n (c). E 3 47 (3!) 4 7(6!) 3 M h 4 M Guss-Legendreovom metodom z n=3 postižemo trženu preciznost. Vidimo kko s Guss-Legendreovom kvdrturnom formulom, u ob slučj, puno brže postižemo trženu preciznost. 16

21 Litertur [1] M. Abrmowitz, L.A. Stegun (Eds.), Hndbook of Mthemticl Functions with Formule, Grphs nd Mthemticl Tbles, Applied Mth. Series 55, Ntionl Bureu of Stndrds, 4th printing, Wshington, [2] S. Adjerid, Notes for Numericl Anlysis Mth 5466, Virgini Polytechnic Institute nd Stte University. Dosupno n: homepge/teching/s05/mth5466/ode.pdf [8. rujn 2017.] [3] Å. Björck, G. Dhlquist, Numericl Methods, Prentice-Hll, Inc., 1974., New Jersey [4] E. Iscson, H.B. Keller, Anlysis Of Numericl Methods, Dover, 1994., New York [5] J. Pečrić, N. Ujević, A representtion of the Peno kernel for some qudrture rules nd pplictions, Proceedings: Mthemticl, Physicl nd Engineering Sciences, Vol. 462, No (2006), [6] R. Scitovski, Numeričk mtemtik, Odjel z mtemtiku Sveučilišt u Osijeku, Osijek, [7] M. Schtzmn, Numericl Anlysis A mthemtic introduction, Clrendon Press, 2002., Oxford [8] N. Ujević, Uvod u numeričku mtemtiku, skript PMF-, Split, [9] Gussin Qudrtures, University of Mrylnd Institute for Advnced Computer Studies. Dostupno n: integrtion.pdf [8. rujn 2017.] 17

Numerička integracija

Numerička integracija Sveučilište J.J. Strossmyer u Osijeku Odjel z mtemtiku Preddiplomski studij mtemtike Snel Buljn Numeričk integrcij Zvršni rd Osijek, 015. Sveučilište J.J. Strossmyer u Osijeku Odjel z mtemtiku Preddiplomski

More information

Lecture 14 Numerical integration: advanced topics

Lecture 14 Numerical integration: advanced topics Lecture 14 Numericl integrtion: dvnced topics Weinn E 1,2 nd Tiejun Li 2 1 Deprtment of Mthemtics, Princeton University, weinn@princeton.edu 2 School of Mthemticl Sciences, Peking University, tieli@pku.edu.cn

More information

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

More information

1 The Lagrange interpolation formula

1 The Lagrange interpolation formula Notes on Qudrture 1 The Lgrnge interpoltion formul We briefly recll the Lgrnge interpoltion formul. The strting point is collection of N + 1 rel points (x 0, y 0 ), (x 1, y 1 ),..., (x N, y N ), with x

More information

ZANIMLJIV NAČIN IZRAČUNAVANJA NEKIH GRANIČNIH VRIJEDNOSTI FUNKCIJA. Šefket Arslanagić, Sarajevo, BiH

ZANIMLJIV NAČIN IZRAČUNAVANJA NEKIH GRANIČNIH VRIJEDNOSTI FUNKCIJA. Šefket Arslanagić, Sarajevo, BiH MAT-KOL (Banja Luka) XXIII ()(7), -7 http://wwwimviblorg/dmbl/dmblhtm DOI: 75/МК7A ISSN 5-6969 (o) ISSN 986-588 (o) ZANIMLJIV NAČIN IZRAČUNAVANJA NEKIH GRANIČNIH VRIJEDNOSTI FUNKCIJA Šefket Arslanagić,

More information

Hornerov algoritam i primjene

Hornerov algoritam i primjene Osječki matematički list 7(2007), 99 106 99 STUDENTSKA RUBRIKA Hornerov algoritam i primjene Zoran Tomljanović Sažetak. U ovom članku obrad uje se Hornerov algoritam za efikasno računanje vrijednosti polinoma

More information

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION Applied Mthemtics E-Notes, 5(005), 53-60 c ISSN 1607-510 Avilble free t mirror sites of http://www.mth.nthu.edu.tw/ men/ AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

More information

TEORIJA SKUPOVA Zadaci

TEORIJA SKUPOVA Zadaci TEORIJA SKUPOVA Zadai LOGIKA 1 I. godina 1. Zapišite simbolima: ( x nije element skupa S (b) d je član skupa S () F je podskup slupa S (d) Skup S sadrži skup R 2. Neka je S { x;2x 6} = = i neka je b =

More information

Numerical quadrature based on interpolating functions: A MATLAB implementation

Numerical quadrature based on interpolating functions: A MATLAB implementation SEMINAR REPORT Numericl qudrture bsed on interpolting functions: A MATLAB implementtion by Venkt Ayylsomyjul A seminr report submitted in prtil fulfillment for the degree of Mster of Science (M.Sc) in

More information

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b) GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS KUEI-LIN TSENG, GOU-SHENG YANG, AND SEVER S. DRAGOMIR Abstrct. In this pper, we estblish some generliztions

More information

B.Sc. in Mathematics (Ordinary)

B.Sc. in Mathematics (Ordinary) R48/0 DUBLIN INSTITUTE OF TECHNOLOGY KEVIN STREET, DUBLIN 8 B.Sc. in Mthemtics (Ordinry) SUPPLEMENTAL EXAMINATIONS 01 Numericl Methods Dr. D. Mckey Dr. C. Hills Dr. E.A. Cox Full mrks for complete nswers

More information

Orthogonal Polynomials

Orthogonal Polynomials Mth 4401 Gussin Qudrture Pge 1 Orthogonl Polynomils Orthogonl polynomils rise from series solutions to differentil equtions, lthough they cn be rrived t in vriety of different mnners. Orthogonl polynomils

More information

The logarithmic mean is a mean

The logarithmic mean is a mean Mthemticl Communictions 2(1997), 35-39 35 The logrithmic men is men B. Mond, Chrles E. M. Perce nd J. Pečrić Abstrct. The fct tht the logrithmic men of two positive numbers is men, tht is, tht it lies

More information

A Computational Method for Solving Linear Volterra Integral Equations

A Computational Method for Solving Linear Volterra Integral Equations Applied Mthemticl Sciences, Vol. 6, 01, no. 17, 807-814 A Computtionl Method for Solving Liner Volterr Integrl Equtions Frshid Mirzee Deprtment of Mthemtics, Fculty of Science Mlyer University, Mlyer,

More information

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1) TAMKANG JOURNAL OF MATHEMATICS Volume 41, Number 4, 353-359, Winter 1 NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX M. ALOMARI, M. DARUS

More information

Sveučilište Josipa Jurja Strossmayera u Osijeku Odjel za matematiku

Sveučilište Josipa Jurja Strossmayera u Osijeku Odjel za matematiku Sveučilište Josipa Jurja Strossmayera u Osijeku Odjel za matematiku Valentina Volmut Ortogonalni polinomi Diplomski rad Osijek, 2016. Sveučilište Josipa Jurja Strossmayera u Osijeku Odjel za matematiku

More information

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term An. Ştiinţ. Univ. Al. I. Cuz Işi. Mt. (N.S. Tomul LXIII, 07, f. A unified generliztion of perturbed mid-point nd trpezoid inequlities nd symptotic expressions for its error term Wenjun Liu Received: 7.XI.0

More information

Composite Mendeleev s Quadratures for Solving a Linear Fredholm Integral Equation of The Second Kind

Composite Mendeleev s Quadratures for Solving a Linear Fredholm Integral Equation of The Second Kind Globl Journl of Pure nd Applied Mthemtics. ISSN 0973-1768 Volume 12, Number (2016), pp. 393 398 Reserch Indi Publictions http://www.ripubliction.com/gjpm.htm Composite Mendeleev s Qudrtures for Solving

More information

An optimal 3-point quadrature formula of closed type and error bounds

An optimal 3-point quadrature formula of closed type and error bounds Revist Colombin de Mtemátics Volumen 8), págins 9- An optiml 3-point qudrture formul of closed type nd error bounds Un fórmul de cudrtur óptim de 3 puntos de tipo cerrdo y error de fronter Nend Ujević,

More information

Quasi-Newtonove metode

Quasi-Newtonove metode Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Milan Milinčević Quasi-Newtonove metode Završni rad Osijek, 2016. Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Milan Milinčević

More information

FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠTE U ZAGREBU Poslijediplomski znanstveni studij

FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠTE U ZAGREBU Poslijediplomski znanstveni studij FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠTE U ZAGREBU Poslijediplomski znnstveni studij Kiselo-zne titrcije u sustvu sl kiselin-jk z Seminrski rd Ante Prkić Mtični roj 111-D-IK Zgre, studeni

More information

2

2 1 Notes for Numericl Anlysis Mth 5466 by S. Adjerid Virgini Polytechnic Institute nd Stte University (A Rough Drft) 2 Contents 1 Differentition nd Integrtion 5 1.1 Introduction............................

More information

RAZLIČITE METODE DOKAZIVANJA JEDNE TEOREME U GEOMETRIJI. (Different methods of proofs of one geometric theorem)

RAZLIČITE METODE DOKAZIVANJA JEDNE TEOREME U GEOMETRIJI. (Different methods of proofs of one geometric theorem) MAT-KOL (Bnj Luk) XVII()(), 3-4 ISSN 354-6969 (p) ISSN 986-58 (o) Metoik mtemtike RAZLIČITE METODE DOKAZIVANJA JEDNE TEOREME U GEOMETRIJI (Different methos of proofs of one geometric theorem) Šefket Arslngić

More information

KVADRATNE INTERPOLACIJSKE METODE ZA JEDNODIMENZIONALNU BEZUVJETNU LOKALNU OPTIMIZACIJU 1

KVADRATNE INTERPOLACIJSKE METODE ZA JEDNODIMENZIONALNU BEZUVJETNU LOKALNU OPTIMIZACIJU 1 MAT KOL (Banja Luka) ISSN 0354 6969 (p), ISSN 1986 5228 (o) Vol. XXII (1)(2016), 5 19 http://www.imvibl.org/dmbl/dmbl.htm KVADRATNE INTERPOLACIJSKE METODE ZA JEDNODIMENZIONALNU BEZUVJETNU LOKALNU OPTIMIZACIJU

More information

Interpolation. Gaussian Quadrature. September 25, 2011

Interpolation. Gaussian Quadrature. September 25, 2011 Gussin Qudrture September 25, 2011 Approximtion of integrls Approximtion of integrls by qudrture Mny definite integrls cnnot be computed in closed form, nd must be pproximted numericlly. Bsic building

More information

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration.

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration. Advnced Computtionl Fluid Dynmics AA215A Lecture 3 Polynomil Interpoltion: Numericl Differentition nd Integrtion Antony Jmeson Winter Qurter, 2016, Stnford, CA Lst revised on Jnury 7, 2016 Contents 3 Polynomil

More information

Lecture Note 4: Numerical differentiation and integration. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 4: Numerical differentiation and integration. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 4: Numericl differentition nd integrtion Xioqun Zng Sngi Jio Tong University Lst updted: November, 0 Numericl Anlysis. Numericl differentition.. Introduction Find n pproximtion of f (x 0 ),

More information

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula. Generliztions of the Ostrowski s inequlity K. S. Anstsiou Aristides I. Kechriniotis B. A. Kotsos Technologicl Eductionl Institute T.E.I.) of Lmi 3rd Km. O.N.R. Lmi-Athens Lmi 3500 Greece Abstrct Using

More information

3.4 Numerical integration

3.4 Numerical integration 3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method COURSE 7 3. Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method The presence of derivatives in the remainder difficulties in applicability to practical problems

More information

Varijacioni račun i metoda Galerkina

Varijacioni račun i metoda Galerkina UNIVERZITET U NOVOM SADU PRIRODNO - MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Milot Čorb Vrijcioni rčun i metod Glerkin Mster rd Mentor: Prof. dr Nend Teofnov Novi Sd, 214. Sdržj Predgovor

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

Numerical Analysis. 10th ed. R L Burden, J D Faires, and A M Burden

Numerical Analysis. 10th ed. R L Burden, J D Faires, and A M Burden Numericl Anlysis 10th ed R L Burden, J D Fires, nd A M Burden Bemer Presenttion Slides Prepred by Dr. Annette M. Burden Youngstown Stte University July 9, 2015 Chpter 4.1: Numericl Differentition 1 Three-Point

More information

Položaj nultočaka polinoma

Položaj nultočaka polinoma Osječki matematički list 4 (204), 05-6 Položaj nultočaka polinoma Mandalena Pranjić Rajna Rajić Sažetak Prema Rolleovom teoremu, bilo koji segment čiji su krajevi međusobno različite realne nultočke polinoma

More information

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature COSC 336 Numericl Anlysis I Numericl Integrtion nd Dierentition III - Guss Qudrture nd Adptive Qudrture Edgr Griel Fll 5 COSC 336 Numericl Anlysis I Edgr Griel Summry o the lst lecture I For pproximting

More information

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2012-ARC-202 No.20 Vol.2012-HPC-137 No /12/14 Euler-Maclaurin 1 Euler-Maclaurin 1) Taylor Taylor Euler

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2012-ARC-202 No.20 Vol.2012-HPC-137 No /12/14 Euler-Maclaurin 1 Euler-Maclaurin 1) Taylor Taylor Euler Euler-Mclurin Euler-Mclurin Tylor Tylor Euler-Mclurin Tylor Performnce of te Numericl Integrtion by Euler-Mclurin summtion formul Hirosi Hirym Euler-Mclurin summtion formul cn be regrded s error evlution

More information

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t TAMKANG JOURNAL OF MATHEMATICS Volume 33, Numer, Summer 00 ON THE PERTURBED TRAPEZOID FORMULA N. S. BARNETT AND S. S. DRAGOMIR Astrct. Some inequlities relted to the pertured trpezoid formul re given.

More information

New general integral inequalities for quasiconvex functions

New general integral inequalities for quasiconvex functions NTMSCI 6, No 1, 1-7 18 1 New Trends in Mthemticl Sciences http://dxdoiorg/185/ntmsci1739 New generl integrl ineulities for usiconvex functions Cetin Yildiz Atturk University, K K Eduction Fculty, Deprtment

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

DOING PHYSICS WITH MATLAB MATHEMATICAL ROUTINES

DOING PHYSICS WITH MATLAB MATHEMATICAL ROUTINES DOIG PHYSICS WITH MATLAB MATHEMATICAL ROUTIES COMPUTATIO OF OE-DIMESIOAL ITEGRALS In Cooper School of Physics, University of Sydney in.cooper@sydney.edu.u DOWLOAD DIRECTORY FOR MATLAB SCRIPTS mth_integrtion_1d.m

More information

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS MOHAMMAD ALOMARI A MASLINA DARUS A AND SEVER S DRAGOMIR B Abstrct In terms of the first derivtive some ineulities of Simpson

More information

False. Vrednost XIC Stanje bita "a" naredbe 0 True. 1 False. Bit na adresi "a" dobija vrednost uslov. Bit na adresi "a" dobija vrednost uslov

False. Vrednost XIC Stanje bita a naredbe 0 True. 1 False. Bit na adresi a dobija vrednost uslov. Bit na adresi a dobija vrednost uslov Bit nredbe XIC - Exmine if closed (ispitivnje d li je kontkt ztvoren) Grfički simbol dres bit Tblic istinitosti Vrednost XIC Stnje bit "" nredbe 0 Flse Položj u rngu kcij 1 True XIO - Exmine if open (ispitivnje

More information

Arithmetic Mean Derivative Based Midpoint Rule

Arithmetic Mean Derivative Based Midpoint Rule Applied Mthemticl Sciences, Vol. 1, 018, no. 13, 65-633 HIKARI Ltd www.m-hikri.com https://doi.org/10.1988/ms.018.858 Arithmetic Men Derivtive Bsed Midpoint Rule Rike Mrjulis 1, M. Imrn, Symsudhuh Numericl

More information

III. Lecture on Numerical Integration. File faclib/dattab/lecture-notes/numerical-inter03.tex /by EC, 3/14/2008 at 15:11, version 9

III. Lecture on Numerical Integration. File faclib/dattab/lecture-notes/numerical-inter03.tex /by EC, 3/14/2008 at 15:11, version 9 III Lecture on Numericl Integrtion File fclib/dttb/lecture-notes/numerical-inter03.tex /by EC, 3/14/008 t 15:11, version 9 1 Sttement of the Numericl Integrtion Problem In this lecture we consider the

More information

COT4501 Spring Homework VII

COT4501 Spring Homework VII COT451 Spring 1 Homework VII The ssignment is due in clss on Thursdy, April 19, 1. There re five regulr problems nd one computer problem (using MATLAB). For written problems, you need to show your work

More information

Hermite-Hadamard type inequalities for harmonically convex functions

Hermite-Hadamard type inequalities for harmonically convex functions Hcettepe Journl o Mthemtics nd Sttistics Volume 43 6 4 935 94 Hermite-Hdmrd type ineulities or hrmoniclly convex unctions İmdt İşcn Abstrct The uthor introduces the concept o hrmoniclly convex unctions

More information

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality: FACTA UNIVERSITATIS NIŠ) Ser Mth Inform 9 00) 6 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Dedicted to Prof G Mstroinni for his 65th birthdy

More information

Familija ploha Heltocat

Familija ploha Heltocat Stručni rd Prihvćeno 15. 9. 2015. IVA KODRNJA ELIZABETA ŠAMEC Fmilij ploh Heltoct Fmily of Surfces Heltoct ABSTRACT In this pper the Heltoct fmily of surfces is defined ccording to [5]. It is shown tht

More information

Big idea in Calculus: approximation

Big idea in Calculus: approximation Big ide in Clculus: pproximtion Derivtive: f (x) = df dx f f(x +h) f(x) =, x h rte of chnge is pproximtely the rtio of chnges in the function vlue nd in the vrible in very short time Liner pproximtion:

More information

Mirela Nogolica Norme Završni rad

Mirela Nogolica Norme Završni rad Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Mirela Nogolica Norme Završni rad Osijek, 2014. Sveučilište J.J. Strossmayera u Osijeku Odjel za

More information

The Riemann-Lebesgue Lemma

The Riemann-Lebesgue Lemma Physics 215 Winter 218 The Riemnn-Lebesgue Lemm The Riemnn Lebesgue Lemm is one of the most importnt results of Fourier nlysis nd symptotic nlysis. It hs mny physics pplictions, especilly in studies of

More information

QUADRATURE is an old-fashioned word that refers to

QUADRATURE is an old-fashioned word that refers to World Acdemy of Science Engineering nd Technology Interntionl Journl of Mthemticl nd Computtionl Sciences Vol:5 No:7 011 A New Qudrture Rule Derived from Spline Interpoltion with Error Anlysis Hdi Tghvfrd

More information

Numerical Integration

Numerical Integration Chpter 5 Numericl Integrtion Numericl integrtion is the study of how the numericl vlue of n integrl cn be found. Methods of function pproximtion discussed in Chpter??, i.e., function pproximtion vi the

More information

Chapter 2. Numerical Integration also called quadrature. 2.2 Trapezoidal Rule. 2.1 A basic principle Extending the Trapezoidal Rule DRAWINGS

Chapter 2. Numerical Integration also called quadrature. 2.2 Trapezoidal Rule. 2.1 A basic principle Extending the Trapezoidal Rule DRAWINGS S Cpter Numericl Integrtion lso clled qudrture Te gol of numericl integrtion is to pproximte numericlly. f(x)dx Tis is useful for difficult integrls like sin(x) ; sin(x ); x + x 4 Or worse still for multiple-dimensionl

More information

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer. Homework 4 (1) If f R[, b], show tht f 3 R[, b]. If f + (x) = mx{f(x), 0}, is f + R[, b]? Justify your nswer. (2) Let f be continuous function on [, b] tht is strictly positive except finitely mny points

More information

1 The Riemann Integral

1 The Riemann Integral The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re

More information

Mathcad sa algoritmima

Mathcad sa algoritmima P R I M J E R I P R I M J E R I Mathcad sa algoritmima NAREDBE - elementarne obrade - sekvence Primjer 1 Napraviti algoritam za sabiranje dva broja. NAREDBE - elementarne obrade - sekvence Primjer 1 POČETAK

More information

S. S. Dragomir. 2, we have the inequality. b a

S. S. Dragomir. 2, we have the inequality. b a Bull Koren Mth Soc 005 No pp 3 30 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Abstrct Compnions of Ostrowski s integrl ineulity for bsolutely

More information

Harmonic Mean Derivative - Based Closed Newton Cotes Quadrature

Harmonic Mean Derivative - Based Closed Newton Cotes Quadrature IOSR Journl of Mthemtics (IOSR-JM) e-issn: - p-issn: 9-X. Volume Issue Ver. IV (My. - Jun. 0) PP - www.iosrjournls.org Hrmonic Men Derivtive - Bsed Closed Newton Cotes Qudrture T. Rmchndrn D.Udykumr nd

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 07-060X Print ISSN: 735-855 Online Bulletin of the Irnin Mthemticl Society Vol 3 07, No, pp 09 5 Title: Some extended Simpson-type ineulities nd pplictions Authors: K-C Hsu, S-R Hwng nd K-L Tseng

More information

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014 Lecture 17 Integrtion: Guss Qudrture Dvid Semerro University of Illinois t Urbn-Chmpign Mrch 0, 014 Dvid Semerro (NCSA) CS 57 Mrch 0, 014 1 / 9 Tody: Objectives identify the most widely used qudrture method

More information

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications Filomt 30:3 06, 360 36 DOI 0.9/FIL6360Q Pulished y Fculty of Sciences nd Mthemtics, University of Niš, Seri Aville t: http://www.pmf.ni.c.rs/filomt A Compnion of Ostrowski Type Integrl Inequlity Using

More information

arxiv:math/ v2 [math.ho] 16 Dec 2003

arxiv:math/ v2 [math.ho] 16 Dec 2003 rxiv:mth/0312293v2 [mth.ho] 16 Dec 2003 Clssicl Lebesgue Integrtion Theorems for the Riemnn Integrl Josh Isrlowitz 244 Ridge Rd. Rutherford, NJ 07070 jbi2@njit.edu Februry 1, 2008 Abstrct In this pper,

More information

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

Research Article On New Inequalities via Riemann-Liouville Fractional Integration Abstrct nd Applied Anlysis Volume 202, Article ID 428983, 0 pges doi:0.55/202/428983 Reserch Article On New Inequlities vi Riemnn-Liouville Frctionl Integrtion Mehmet Zeki Sriky nd Hsn Ogunmez 2 Deprtment

More information

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity Punjb University Journl of Mthemtics (ISSN 116-56) Vol. 45 (13) pp. 33-38 New Integrl Inequlities of the Type of Hermite-Hdmrd Through Qusi Convexity S. Hussin Deprtment of Mthemtics, College of Science,

More information

The Riemann Integral

The Riemann Integral Deprtment of Mthemtics King Sud University 2017-2018 Tble of contents 1 Anti-derivtive Function nd Indefinite Integrls 2 3 4 5 Indefinite Integrls & Anti-derivtive Function Definition Let f : I R be function

More information

THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS

THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS CARLOS SUERO, MAURICIO ALMANZAR CONTENTS 1 Introduction 1 2 Proof of Gussin Qudrture 6 3 Iterted 2-Dimensionl Gussin Qudrture 20 4

More information

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA ttp//sci.vut.edu.u/rgmi/reports.tml SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIABLE MAPPINGS AND APPLICATIONS P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS Astrct. Some generliztions of te Ostrowski

More information

PRIPADNOST RJEŠENJA KVADRATNE JEDNAČINE DANOM INTERVALU

PRIPADNOST RJEŠENJA KVADRATNE JEDNAČINE DANOM INTERVALU MAT KOL Banja Luka) ISSN 0354 6969 p) ISSN 1986 58 o) Vol. XXI )015) 105 115 http://www.imvibl.org/dmbl/dmbl.htm PRIPADNOST RJEŠENJA KVADRATNE JEDNAČINE DANOM INTERVALU Bernadin Ibrahimpašić 1 Senka Ibrahimpašić

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

JDEP 384H: Numerical Methods in Business

JDEP 384H: Numerical Methods in Business BT 3.4: Solving Nonliner Systems Chpter 4: Numericl Integrtion: Deterministic nd Monte Crlo Methods Instructor: Thoms Shores Deprtment of Mthemtics Lecture 20, Februry 29, 2007 110 Kufmnn Center Instructor:

More information

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but... Chpter 7 Numericl Methods 7. Introduction In mny cses the integrl f(x)dx cn be found by finding function F (x) such tht F 0 (x) =f(x), nd using f(x)dx = F (b) F () which is known s the nlyticl (exct) solution.

More information

International Jour. of Diff. Eq. and Appl., 3, N1, (2001),

International Jour. of Diff. Eq. and Appl., 3, N1, (2001), Interntionl Jour. of Diff. Eq. nd Appl., 3, N1, (2001), 31-37. 1 New proof of Weyl s theorem A.G. Rmm Mthemtics Deprtment, Knss Stte University, Mnhttn, KS 66506-2602, USA rmm@mth.ksu.edu http://www.mth.ksu.edu/

More information

Midpoint Approximation

Midpoint Approximation Midpoint Approximtion Sometimes, we need to pproximte n integrl of the form R b f (x)dx nd we cnnot find n ntiderivtive in order to evlute the integrl. Also we my need to evlute R b f (x)dx where we do

More information

Numerical integration

Numerical integration 2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

More information

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir RGMIA Reserch Report Collection, Vol., No., 999 http://sci.vu.edu.u/ rgmi AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS I. Fedotov nd S. S. Drgomir Astrct. An

More information

Construction of Gauss Quadrature Rules

Construction of Gauss Quadrature Rules Jim Lmbers MAT 772 Fll Semester 2010-11 Lecture 15 Notes These notes correspond to Sections 10.2 nd 10.3 in the text. Construction of Guss Qudrture Rules Previously, we lerned tht Newton-Cotes qudrture

More information

7. Numerical evaluation of definite integrals

7. Numerical evaluation of definite integrals 7. Numericl evlution of definite integrls Tento učení text yl podpořen z Operčního progrmu Prh - Adptilit Hn Hldíková Numericl pproximtion of definite integrl is clled numericl qudrture, the formuls re

More information

Metode izračunavanja determinanti matrica n-tog reda

Metode izračunavanja determinanti matrica n-tog reda Osječki matematički list 10(2010), 31 42 31 STUDENTSKA RUBRIKA Metode izračunavanja determinanti matrica n-tog reda Damira Keček Sažetak U članku su opisane metode izračunavanja determinanti matrica n-tog

More information

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

More information

Sections 5.2: The Definite Integral

Sections 5.2: The Definite Integral Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)

More information

p(x) = 3x 3 + x n 3 k=0 so the right hand side of the equality we have to show is obtained for r = b 0, s = b 1 and 2n 3 b k x k, q 2n 3 (x) =

p(x) = 3x 3 + x n 3 k=0 so the right hand side of the equality we have to show is obtained for r = b 0, s = b 1 and 2n 3 b k x k, q 2n 3 (x) = Norwegin University of Science nd Technology Deprtment of Mthemticl Sciences Pge 1 of 5 Contct during the exm: Elen Celledoni, tlf. 73593541, cell phone 48238584 PLESE NOTE: this solution is for the students

More information

cos 3 (x) sin(x) dx 3y + 4 dy Math 1206 Calculus Sec. 5.6: Substitution and Area Between Curves

cos 3 (x) sin(x) dx 3y + 4 dy Math 1206 Calculus Sec. 5.6: Substitution and Area Between Curves Mth 126 Clculus Sec. 5.6: Substitution nd Are Between Curves I. U-Substitution for Definite Integrls A. Th m 6-Substitution in Definite Integrls: If g (x) is continuous on [,b] nd f is continuous on the

More information

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes).

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes). CE 025 - Lecture 6 LECTURE 6 GAUSS QUADRATURE In general for ewton-cotes (equispaced interpolation points/ data points/ integration points/ nodes). x E x S fx dx hw' o f o + w' f + + w' f + E 84 f 0 f

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus The Fundmentl Theorem of Clculus MATH 151 Clculus for Mngement J. Robert Buchnn Deprtment of Mthemtics Fll 2018 Objectives Define nd evlute definite integrls using the concept of re. Evlute definite integrls

More information

Undergraduate Research

Undergraduate Research Undergrdute Reserch A Trigonometric Simpson s Rule By Ctherine Cusimno Kirby nd Sony Stnley Biogrphicl Sketch Ctherine Cusimno Kirby is the dughter of Donn nd Sm Cusimno. Originlly from Vestvi Hills, Albm,

More information

ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt

ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES P. CERONE Abstrct. Explicit bounds re obtined for the perturbed or corrected trpezoidl nd midpoint rules in terms of the Lebesque norms of the second derivtive

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1 Generl Mthemtics Vol. 6, No. (28), 7 97 Ostrowski Grüss Čebyšev type inequlities for functions whose modulus of second derivtives re convex Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn Abstrct In this pper,

More information

Modern Methods for high-dimensional quadrature

Modern Methods for high-dimensional quadrature Modern Methods for high-dimensionl qudrture WS 213/14 A. Griewnk, H. eövey V: Die. 11-13 RUD 25, 1.13 Mi. 9-11 RUD 25, 1.13 UE: Die. 13-15 RUD 25, 1.13 http://www2.mthemtik.huberlin.de/ gggle/w1314/mqi/uebung/qudrture.pdf

More information

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions Avilble online t www.tjns.com J. Nonliner Sci. Appl. 8 5, 7 Reserch Article Some ineulities of Hermite-Hdmrd type for n times differentible ρ, m geometriclly convex functions Fiz Zfr,, Humir Klsoom, Nwb

More information

ACCURACY OF NUMERICAL METHODS FOR ASSESSMENT OF FATIGUE CRACK GROWTH IN WELDED JOINTS

ACCURACY OF NUMERICAL METHODS FOR ASSESSMENT OF FATIGUE CRACK GROWTH IN WELDED JOINTS NUK ISTRŽIVNJE RZVOJ SCIENCE RESERCH DEVELOPMENT Zorn D. Perović CCURCY OF NUMERICL METHODS FOR SSESSMENT OF FTIGUE CRCK GROWTH IN WELDED JOINTS TČNOST NUMERIČKIH METOD Z PROCJENU RST ZMORNE PUKOTINE U

More information

Module 11.4: nag quad util Numerical Integration Utilities. Contents

Module 11.4: nag quad util Numerical Integration Utilities. Contents Qudrture Module Contents Module 11.4: ng qud util Numericl Integrtion Utilities ng qud util provides utility procedures for computtion involving integrtion of functions, e.g., the computtion of the weights

More information

Numerical integration. Quentin Louveaux (ULiège - Institut Montefiore) Numerical analysis / 10

Numerical integration. Quentin Louveaux (ULiège - Institut Montefiore) Numerical analysis / 10 Numericl integrtion Quentin Louveux (ULiège Institut Montefiore) Numericl nlysis 2018 1 / 10 Numericl integrtion We consider definite integrls Z b f (x)dx better to it use if known! A We do not ssume tht

More information

Integration Techniques

Integration Techniques Integrtion Techniques. Integrtion of Trigonometric Functions Exmple. Evlute cos x. Recll tht cos x = cos x. Hence, cos x Exmple. Evlute = ( + cos x) = (x + sin x) + C = x + 4 sin x + C. cos 3 x. Let u

More information

Lecture 20: Numerical Integration III

Lecture 20: Numerical Integration III cs4: introduction to numericl nlysis /8/0 Lecture 0: Numericl Integrtion III Instructor: Professor Amos Ron Scribes: Mrk Cowlishw, Yunpeng Li, Nthnel Fillmore For the lst few lectures we hve discussed

More information

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13 Revist Colombin de Mtemátics Volumen 4 7, págins 3 Ostrowski, Grüss, Čebyšev type inequlities for functions whose second derivtives belong to Lp,b nd whose modulus of second derivtives re convex Arif Rfiq

More information

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all 3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the

More information