Arch and vault structures Prof Schierle 1

Size: px
Start display at page:

Download "Arch and vault structures Prof Schierle 1"

Transcription

1 Arch and vault Arch and vault structures Prof Schierle 1

2 Funicular vs. load Load type Funicular 1+2 Single point load Triangle 3+4 Two point loads Trapezoid 5+6 Uniform load Parabola 7+8 Mixed load Gothic curve 9+10 Self weight Catenary Radial load Circular Arch and vault structures Prof Schierle 2

3 11 12 Load and form 1 Polar polygon of parabolic cable 2 Parabolic funicular cable under uniform load 3 Polar polygon of parabolic funicular arch 4 Parabolic funicular arch under uniform load 5 Polar polygon of asymmetrically loaded cable 6 Funicular cable under asymmetric load 7 Polar polygon of asymmetrically loaded arch 8 Arch funicular under asymmetric load 9 Global moment of horizontal couple M = H d 10 Arch bending due to funicular offset M=Fe F=archforce e = arch offset from funicular line 11 Variable arch depth (optimal span/depth = 5) 12 Arch force vs. arch depth (rise) Arch and vault structures Prof Schierle 3

4 Arch hinges 1 Fixed-end arch 2 Fixed-end arch bend under temperature change 3 Fixed-end arch footing subject to overturn moment 4 Fixed-end arch bend under uneven settlements 5 Two-hinge arch 6 Two-hinge arch, bend under temperature variation 7 Two-hinge arch footing without overturn moment 8 Two-hinge arch, bend under uneven settlements 9 Three-hinge arch 10 Three-hinge arch, free to move under temperature change without secondary bending stress 11 Three-hinge arch foundation, with vertical and horizontal loads 12 Three-hinge arch, free to move under uneven settlement without secondary bending stress Arch and vault structures Prof Schierle 4

5 Exhibit hall Klagenfurt, Austria (1966) Architect: O Loider Engineer: Timber construction contractor The 96x75m hall 3-hinge wood arches span 96 m Arches of twin I-beam cross-sections, spaced 6.8 m, are crescent-shaped to fit the funicular pressure line for various loads to minimize bending stress. 1 Axon 2 Wind racing detail 3 Arch crescent profile 4 Arch cross-section A B C D E Glue-lam twin arches, 2-16x100 to 187 cm Arch flanges, 16x41cm glue-lam Roof purlins, 8x22cm solid wood L-shaped purlins, 2 8x22cm, brace arches Wind bracing, 8x8 cm Arch and vault structures Prof Schierle 5

6 Storage hall Walsum, Germany Engineer: Bauabteilung Brüninghof The circular hall of 94.6 m diameter is 20.8 m high Eight radial 3-hinge glue-lam arches span 94.6 m A concrete tension ring/wall resists the lateral arch thrust Arches are crescent-shaped to fit the funicular pressure line for various loads to minimize bending stress. 1 Roof framing plan 2 Cross-section 3 Hinge support 4 Arch bracing detail A Glue-lam arch, 20x cm, crescent shaped B Glue-lam beams, 8-16/16-70 cm, based on span C Arch bracing, 8x16cm D Steel hinge E Concrete tension ring Arch and vault structures Prof Schierle 6

7 Wood arch design Assume: Glue-lam arches, spaced 16, three-hinged for ease of transportation and to avoid settlement stress. Available dimensions: ¾ laminations; 3 1/8, 5 1/8, 6 3/4, 8 3/4, 10 3/4 wide). Based on case studies, use conservative allowable buckling stress: F c = 200 psi Code live load of 20 psf, reduced 40% to 12 psf for tributary area > 600 sq. ft. Loads: LL = 12 psf DL = 18 psf = 30 psf Arch and vault structures Prof Schierle 7

8 Distributed load w = 30 psf x16 /1000 w = 0.48 klf Global moment M = w L 2 /8 = 0.48 x / 8 M = 600 k Horizontal reaction H = M/d = 600 / 20 H = 30 k Vertical reaction R= wl/2= 0.48x100/2 R = 24 k Arch compression (max.) C= (H 2 +R 2 ) 1/2 =( ) 1/2 C = 38 k Cross section area A= C/F c = 38/0.2 ksi A = 190 in 2 Glue-lam depth (try 51/8 wide glue-lam) t =A/width =190/5.125= 37 Use 50 boards of ¾ t = 37.5 C H R Check slenderness ratio L/t= 100 x12 /37.5 L/t = 32, OK Arch and vault structures Prof Schierle 8

9 Note Arch slenderness L/t is usually about 30 to 40; hence 32 is OK; while the 5 1/8 arch width is braced against buckling by roof diaphragm. Graphic Method Draw equilibrium vector at support. starting with computed vertical reaction Draw a line parallel to support tangent and a horizontal line Measure length of unknown vectors: horizontal vector is horizontal reaction sloping vector is is max. arch force. Arch and vault structures Prof Schierle 9

10 Wood arch details 1 Two-hinge arch 2 Three-hinge arch 3 Crown hinge concealed 4 Crown hinge exposed 5 Base hinge concealed 6 Base hinge exposed 7 Base moment joint concealed 8 Base moment joint exposed Arch and vault structures Prof Schierle 10

11 Bus Station Chur, Switzerland (1992) Architect: Richard Brosi / Robert Obrist Engineer: Toscano / Ove Arup (Peter Rice) Located over a train station, the bus station connects ski resorts. The glass roof provides scenic mountain views. Inclined 16 steel arches span a 164 platform. Radial strands resist lateral thrust and buckling. Arches are suspended from outrigger masts. Arch/strut triangles resist lateral load. Arch and vault structures Prof Schierle 11

12 Assume: Arch span L = 50 m / 0,3048 L ~ 164 Arch rise d ~ 30 Arch spacing e = (7.5 m/2) / e = 12.3 Arch outside =406 mm / 25.4 ~ 16 Arch wall thickness t ~ ¼ Arch inside diameter i = 15.5 Allowable steel stress F a =0.6x50 ksi F a = 30 ksi Allowable strand stress F a = 210/3 F a = 70 ks LL = 1.6 kpa x 0.145x144 in 2 /ft 2 LL = 33 psf DL (estimate) DL = 27 psf LL+DL = 60 psf Uniform arch load w = 60 psf x 12.3 / 1000 w = 0.74 klf Global moment M = w L 2 /8 = 0.74 x /8 M = 2488 k Horizontal reaction H =M / d = 2488 / 30 H = 83 k Vertical reaction R = w L /2 = 0.74 x 164 /2 R = 61 k Max arch compression C = (H 2 + R 2 ) 1/2 = ( ) 1/2 C = 103 k Arch and vault structures Prof Schierle 12

13 Max arch compression (from last slide) C = 103 k Check allowable buckling stress Radius of gyration r = ( 2 + i 2 ) 1/2 /4 = ( ) 1/2 /4 r = 5.48 Unbraced length (between strands) KL = 1.1 x164 / 7 KL = 26 Slenderness ratio KL/r = 26 x 12 / 5.48 KL/r = 57 Allowable buckling stress (AISC table) F a =23 ksi Arch cross section A = ( 2 - i 2 )/4= ( )/4 A = 12 in 2 A = r 2 r 2 =A/ = 2r =2(A/ ) 1/2 Max. arch stress f a = C/A= 103 / 12 f a = 8.6 ksi Check f a F a 8.6<23, OK Max strand force T ~ H = 83 T~ 83 k Required metallic strand area A m = T/F a = 83 / 70 A m = 1.2 in 2 Gross strand area (70% metallic) A g = A m /07 = 1.2/0.7 A g = 1.7 in 2 Strand size = 2(A/ ) 1/2 = 2(1.7/ ) 1/2 = 1.47 Use 1 ½ Arch and vault structures Prof Schierle 13

14 Arch and vault structures Prof Schierle 14

15 Vault cross sections 1 Cylindrical vault 2 Rib vault 3 Inverted cylindrical vault 4 Folded vault 5 Undulated vault 6 Corrugated vault Vault compositions Some vault compositions generate cross vaults with intersections that provide implied ribs for improved buckling resistance. Arch and vault structures Prof Schierle 15

16 Exposition hall, Turin ( ) Engineer: Pierre Luigi Nervi The 75/94 m concrete vault of prefab Ferro-cement units to resist buckling, are joined by site-cast concrete. The wire mesh ferro-cement units integrate natural lighting. A Ferro-cement unit B Site-cast concrete rib C Skylight Arch and vault structures Prof Schierle 16

17 Garden Festival Hall, Liverpool Architect/Engineer: Ove Arup This 78/62 m project was designed for a dual purpose: Central focal point for the festival - and afterwards Sports center with pool, a multipurpose hall squash courts, a gymnasium, and related facilities Structure: Three-hinge truss arches, spaced 3m provides the flexibility required for both programs Steel pylons support gravity load and lateral thrust The vault has translucent 2 cm polycarbonate panels The round endings are glad with corrugated aluminum Arch and vault structures Prof Schierle 17

18 Airship hanger, Orly airport, France Engineer: Eugène Freyssinet The first of two hangers, build in 1915 was the first reinforced concrete vault. Each vault spans 80m, is 300m long and 56m high. The parabolic cross-section fits the funicular pressure line for uniform load distributed horizontally. To resist buckling under unbalanced load, the vaults Consist of ribs of required depth without great dead load. The 6 cm concrete ribs are 7.5 m wide, and vary in depth from 5.4 m at the base to 3 m on top. Skylights are integrated with the ribs. Palace Ctesiphon (531 AD) The ancient Palce Ctesiphon (Mesopotamien plain) has a brick vault of 80 ft span (about 1/3 of Fryssinet s vault). The vault cross section approximates the parabolic funicular pressure line for minimal bending stress. Arch and vault structures Prof Schierle 18

19 IBM traveling exhibit Architect: Renzo Piano Engineer: Ove Arup/Peter Rice The design objective for this traveling exhibit pavilion was light weight and ease of assembly and disassembly. The 10x50 m pavilion was on exhibit in major European cities. Translucent polycarbonate pyramids for natural daylight are supported by two sets of glue-lam arches on the inside and outside Aluminum joints link arch segments The three-hinge vault allows thermal change without secondary stress A base platform adjusts for local sites Arch and vault structures Prof Schierle 19

20 Architect: Minoru Yamasaki; Engineer: Roberts & Schaefer Architect: Camelot Maily Zehrfuss Engineer: Nicholas Esquillan Air terminal St. Louis CNIT exhibit hall Paris (At 600 ft span the longest span structure in the world) Alternate design by Nervi Arch and vault structures Prof Schierle 20

21 Design great arches Arch and vault structures Prof Schierle 21

Suspended high-rise. Suspended high-rise Copyright G G Schierle, press Esc to end, for next, for previous slide 1

Suspended high-rise. Suspended high-rise Copyright G G Schierle, press Esc to end, for next, for previous slide 1 Suspended high-rise Suspended high-rise Copyright G G Schierle, 2001-06 press Esc to end, for next, for previous slide 1 Suspended high-rise 1 Gravity load path 2 Differential deflection 3 Prestress to

More information

Basis of Structural Design

Basis of Structural Design Basis of Structural Design Course 2 Structural action: cables and arches Course notes are available for download at http://www.ct.upt.ro/users/aurelstratan/ Structural action Structural action: the way

More information

Example Stayed beam with two pylons

Example Stayed beam with two pylons Example Stayed beam with two pylons A roof structure is a stayed beam. The roof span is 300 ft. Stay vertical run is 20 ft. The deck is weighs 12 PSF. Beams have a transverse spacing equal to 40 feet.

More information

STRUCTURE AND DESIGN

STRUCTURE AND DESIGN STRUCTURE AND DESIGN G G Schierle, PhD, FAIA Digital Review with Selections from the Following Chapters: Part I: Background -Chapter 1: Historic Evolution -Chapter 2: Loads Part II: Mechanics -Chapter

More information

GLOBAL EDITION. Structural Analysis. Ninth Edition in SI Units. R. C. Hibbeler

GLOBAL EDITION. Structural Analysis. Ninth Edition in SI Units. R. C. Hibbeler GLOAL EDITION Structural Analysis Ninth Edition in SI Units R. C. Hibbeler STRUCTURAL ANALYSIS NINTH EDITION IN SI UNITS R. C. HIELER SI Conversion by Kai eng Yap oston Columbus Indianapolis New York San

More information

1. The general principles of the stability of masonry

1. The general principles of the stability of masonry On lines of thrust and stability of masonry arches V. Quintas D^arfamafzfo ok EsYrwcfwra? ^ ^z/?c6zczo^, E. 71&AM Universidad Politecnica de Madrid, Avda. Juan de Herrera, 4; Abstract The use of lines

More information

The Islamic University of Gaza Department of Civil Engineering ENGC Design of Spherical Shells (Domes)

The Islamic University of Gaza Department of Civil Engineering ENGC Design of Spherical Shells (Domes) The Islamic University of Gaza Department of Civil Engineering ENGC 6353 Design of Spherical Shells (Domes) Shell Structure A thin shell is defined as a shell with a relatively small thickness, compared

More information

CHAPTER The linear arch

CHAPTER The linear arch CHAPTER 6 The Romans were the first to use arches as major structural elements, employing them, mainly in semicircular form, in bridge and aqueduct construction and for roof supports, particularly the

More information

Design of Reinforced Concrete Structures (II)

Design of Reinforced Concrete Structures (II) Design of Reinforced Concrete Structures (II) Discussion Eng. Mohammed R. Kuheil Review The thickness of one-way ribbed slabs After finding the value of total load (Dead and live loads), the elements are

More information

Chapter 9: Column Analysis and Design

Chapter 9: Column Analysis and Design Chapter 9: Column Analysis and Design Introduction Columns are usually considered as vertical structural elements, but they can be positioned in any orientation (e.g. diagonal and horizontal compression

More information

Suspended Beam Roof with Pylons

Suspended Beam Roof with Pylons Cable Supported Structures George.Hearn@colorado.edu 25 Suspended Beam Roof with Pylons A roof structure is a suspended beam. The roof span is 200 ft. Main cable sag is 20 ft. Suspender length varies.

More information

Properties of Sections

Properties of Sections ARCH 314 Structures I Test Primer Questions Dr.-Ing. Peter von Buelow Properties of Sections 1. Select all that apply to the characteristics of the Center of Gravity: A) 1. The point about which the body

More information

UNIT-III ARCHES Introduction: Arch: What is an arch? Explain. What is a linear arch?

UNIT-III ARCHES Introduction: Arch: What is an arch? Explain. What is a linear arch? UNIT-III RCES rches as structural forms Examples of arch structures Types of arches nalysis of three hinged, two hinged and fixed arches, parabolic and circular arches Settlement and temperature effects.

More information

three Equilibrium 1 and planar trusses ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2015 lecture ARCH 614

three Equilibrium 1 and planar trusses ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2015 lecture ARCH 614 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2015 lecture three equilibrium and planar trusses Equilibrium 1 Equilibrium balanced steady resultant of forces

More information

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur Module 6 Approximate Methods for Indeterminate Structural Analysis Lesson 35 Indeterminate Trusses and Industrial rames Instructional Objectives: After reading this chapter the student will be able to

More information

Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1.

Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1. NAME CM 3505 Fall 06 Test 2 Part 1 is to be completed without notes, beam tables or a calculator. Part 2 is to be completed after turning in Part 1. DO NOT turn Part 2 over until you have completed and

More information

General Comparison between AISC LRFD and ASD

General Comparison between AISC LRFD and ASD General Comparison between AISC LRFD and ASD 1 General Comparison between AISC LRFD and ASD 2 AISC ASD and LRFD AISC ASD = American Institute of Steel Construction = Allowable Stress Design AISC Ninth

More information

Chapter 7: Bending and Shear in Simple Beams

Chapter 7: Bending and Shear in Simple Beams Chapter 7: Bending and Shear in Simple Beams Introduction A beam is a long, slender structural member that resists loads that are generally applied transverse (perpendicular) to its longitudinal axis.

More information

Rigid and Braced Frames

Rigid and Braced Frames RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram

More information

host structure (S.F.D.)

host structure (S.F.D.) TABLE 00.4 FBC Typical Mansard Beam [AAF] Allowable Span of Mansard Screen Enclosure Self-Mating Beams in accordance with requirements of Table 00.4 (and the 005 Aluminum Design Manual) using 6005T5 alloy:

More information

T4/1 Analysis of a barrel vault simplified calculation

T4/1 Analysis of a barrel vault simplified calculation T4. MASONRY STRUCTURES 1/4 T4/1 Analysis of a barrel vault simplified calculation Exercise: Check the given masonry vault for symmetrical loading! ata: q k = 4 kn/m (live load) ρ masonry = 17 kn/m 3 (specific

More information

A Simply supported beam with a concentrated load at mid-span: Loading Stages

A Simply supported beam with a concentrated load at mid-span: Loading Stages A Simply supported beam with a concentrated load at mid-span: Loading Stages P L/2 L PL/4 MOMNT F b < 1 lastic F b = 2 lastic F b = 3 lastoplastic 4 F b = Plastic hinge Plastic Dr. M.. Haque, P.. (LRFD:

More information

CH. 5 TRUSSES BASIC PRINCIPLES TRUSS ANALYSIS. Typical depth-to-span ratios range from 1:10 to 1:20. First: determine loads in various members

CH. 5 TRUSSES BASIC PRINCIPLES TRUSS ANALYSIS. Typical depth-to-span ratios range from 1:10 to 1:20. First: determine loads in various members CH. 5 TRUSSES BASIC PRINCIPLES Typical depth-to-span ratios range from 1:10 to 1:20 - Flat trusses require less overall depth than pitched trusses Spans: 40-200 Spacing: 10 to 40 on center - Residential

More information

Chapter 8: Bending and Shear Stresses in Beams

Chapter 8: Bending and Shear Stresses in Beams Chapter 8: Bending and Shear Stresses in Beams Introduction One of the earliest studies concerned with the strength and deflection of beams was conducted by Galileo Galilei. Galileo was the first to discuss

More information

ENG1001 Engineering Design 1

ENG1001 Engineering Design 1 ENG1001 Engineering Design 1 Structure & Loads Determine forces that act on structures causing it to deform, bend, and stretch Forces push/pull on objects Structures are loaded by: > Dead loads permanent

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 05 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Beams By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering 71 Introduction

More information

Support Idealizations

Support Idealizations IVL 3121 nalysis of Statically Determinant Structures 1/12 nalysis of Statically Determinate Structures nalysis of Statically Determinate Structures The most common type of structure an engineer will analyze

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

UNIVERSITY OF AKRON Department of Civil Engineering

UNIVERSITY OF AKRON Department of Civil Engineering UNIVERSITY OF AKRON Department of Civil Engineering 4300:401-301 July 9, 2013 Steel Design Sample Quiz 2 1. The W10 x 54 column shown has both ends pinned and consists of A992 steel (F y = 50 ksi, F u

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 04 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Compression Members By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering

More information

Chapter 4 Seismic Design Requirements for Building Structures

Chapter 4 Seismic Design Requirements for Building Structures Chapter 4 Seismic Design Requirements for Building Structures where: F a = 1.0 for rock sites which may be assumed if there is 10 feet of soil between the rock surface and the bottom of spread footings

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

By Dr. Mohammed Ramidh

By Dr. Mohammed Ramidh Engineering Materials Design Lecture.6 the design of beams By Dr. Mohammed Ramidh 6.1 INTRODUCTION Finding the shear forces and bending moments is an essential step in the design of any beam. we usually

More information

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS Cor-Ten Steel Sculpture By Richard Serra Museum of Modern Art Fort Worth, TX (AISC - Steel Structures of the Everyday) FALL 2013 lecture

More information

Theory of Structures

Theory of Structures SAMPLE STUDY MATERIAL Postal Correspondence Course GATE, IES & PSUs Civil Engineering Theory of Structures C O N T E N T 1. ARCES... 3-14. ROLLING LOADS AND INFLUENCE LINES. 15-9 3. DETERMINACY AND INDETERMINACY..

More information

Supplement: Statically Indeterminate Trusses and Frames

Supplement: Statically Indeterminate Trusses and Frames : Statically Indeterminate Trusses and Frames Approximate Analysis - In this supplement, we consider an approximate method of solving statically indeterminate trusses and frames subjected to lateral loads

More information

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES UNIT - I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These

More information

CHAPTER 5. T a = 0.03 (180) 0.75 = 1.47 sec 5.12 Steel moment frame. h n = = 260 ft. T a = (260) 0.80 = 2.39 sec. Question No.

CHAPTER 5. T a = 0.03 (180) 0.75 = 1.47 sec 5.12 Steel moment frame. h n = = 260 ft. T a = (260) 0.80 = 2.39 sec. Question No. CHAPTER 5 Question Brief Explanation No. 5.1 From Fig. IBC 1613.5(3) and (4) enlarged region 1 (ASCE 7 Fig. -3 and -4) S S = 1.5g, and S 1 = 0.6g. The g term is already factored in the equations, thus

More information

If you take CT5143 instead of CT4143 then write this at the first of your answer sheets and skip problem 4 and 6.

If you take CT5143 instead of CT4143 then write this at the first of your answer sheets and skip problem 4 and 6. Delft University of Technology Faculty of Civil Engineering and Geosciences Structural Mechanics Section Write your name and study number at the top right-hand of your work. Exam CT4143 Shell Analysis

More information

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

More information

IVIL.COM, C. English - Arabic. Arrow Assume Assumption Available Average Axes Axial Axis

IVIL.COM, C. English - Arabic. Arrow Assume Assumption Available Average Axes Axial Axis Abrupt Action Accuracy Accurate Advantage Algebra Algebraic Algebraic equation English - Arabic Algebraic expression Algebraic sum Allow Allowable Ambiguous Analyze Analysis f sections Structural analysis

More information

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column:

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column: APRIL 2015 DR. Z s CORNER Conquering the FE & PE exams Formulas, Examples & Applications Topics covered in this month s column: PE Exam Specifications (Geotechnical) Transportation (Horizontal Curves)

More information

Chapter 7: Internal Forces

Chapter 7: Internal Forces Chapter 7: Internal Forces Chapter Objectives To show how to use the method of sections for determining the internal loadings in a member. To generalize this procedure by formulating equations that can

More information

Structural Calculations For:

Structural Calculations For: Structural Calculations For: Project: Address: Job No. Revision: Date: 1400 N. Vasco Rd. Livermore, CA 94551 D031014 Delta 1 - Plan Check May 8, 2015 Client: Ferreri & Blau MEMBER REPORT Roof, Typical

More information

Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati

Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati Module 3 Lecture 6 Internal Forces Today, we will see analysis of structures part

More information

5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

5. What is the moment of inertia about the x - x axis of the rectangular beam shown? 1 of 5 Continuing Education Course #274 What Every Engineer Should Know About Structures Part D - Bending Strength Of Materials NOTE: The following question was revised on 15 August 2018 1. The moment

More information

Announcements. Trusses Method of Joints

Announcements. Trusses Method of Joints Announcements Mountain Dew is an herbal supplement Today s Objectives Define a simple truss Trusses Method of Joints Determine the forces in members of a simple truss Identify zero-force members Class

More information

techie-touch.blogspot.com DEPARTMENT OF CIVIL ENGINEERING ANNA UNIVERSITY QUESTION BANK CE 2302 STRUCTURAL ANALYSIS-I TWO MARK QUESTIONS UNIT I DEFLECTION OF DETERMINATE STRUCTURES 1. Write any two important

More information

Serviceability Deflection calculation

Serviceability Deflection calculation Chp-6:Lecture Goals Serviceability Deflection calculation Deflection example Structural Design Profession is concerned with: Limit States Philosophy: Strength Limit State (safety-fracture, fatigue, overturning

More information

2/23/ WIND PRESSURE FORMULA 2. PERCENT OF ALLOWABLE STRESS 3. FATIGUE DESIGN

2/23/ WIND PRESSURE FORMULA 2. PERCENT OF ALLOWABLE STRESS 3. FATIGUE DESIGN Original Title Presented by Northwest Signal copyright 2010 Designing & Building Structural Steel Products since 1976 Primary Users Traffic Signal Strain & Mast Arm Poles Cantilever & Bridge Sign Structures

More information

Wood Design. fv = shear stress fv-max = maximum shear stress Fallow = allowable stress Fb = tabular bending strength = allowable bending stress

Wood Design. fv = shear stress fv-max = maximum shear stress Fallow = allowable stress Fb = tabular bending strength = allowable bending stress Wood Design Notation: a = name for width dimension A = name for area Areq d-adj = area required at allowable stress when shear is adjusted to include self weight b = width of a rectangle = name for height

More information

Sway Column Example. PCA Notes on ACI 318

Sway Column Example. PCA Notes on ACI 318 Sway Column Example PCA Notes on ACI 318 ASDIP Concrete is available for purchase online at www.asdipsoft.com Example 11.2 Slenderness Effects for Columns in a Sway Frame Design columns C1 and C2 in the

More information

CH. 4 BEAMS & COLUMNS

CH. 4 BEAMS & COLUMNS CH. 4 BEAMS & COLUMNS BEAMS Beams Basic theory of bending: internal resisting moment at any point in a beam must equal the bending moments produced by the external loads on the beam Rx = Cc + Tt - If the

More information

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

L13 Structural Engineering Laboratory

L13 Structural Engineering Laboratory LABORATORY PLANNING GUIDE L13 Structural Engineering Laboratory Content Covered subjects according to the curriculum of Structural Engineering... 2 Main concept... 4 Initial training provided for laboratory

More information

MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I

MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I Engineering Mechanics Branch of science which deals with the behavior of a body with the state of rest or motion, subjected to the action of forces.

More information

7 STATICALLY DETERMINATE PLANE TRUSSES

7 STATICALLY DETERMINATE PLANE TRUSSES 7 STATICALLY DETERMINATE PLANE TRUSSES OBJECTIVES: This chapter starts with the definition of a truss and briefly explains various types of plane truss. The determinancy and stability of a truss also will

More information

Entrance exam Master Course

Entrance exam Master Course - 1 - Guidelines for completion of test: On each page, fill in your name and your application code Each question has four answers while only one answer is correct. o Marked correct answer means 4 points

More information

This procedure covers the determination of the moment of inertia about the neutral axis.

This procedure covers the determination of the moment of inertia about the neutral axis. 327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

More information

ENCE 455 Design of Steel Structures. III. Compression Members

ENCE 455 Design of Steel Structures. III. Compression Members ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

Physics 8 Wednesday, November 20, 2013

Physics 8 Wednesday, November 20, 2013 Physics 8 Wednesday, November 20, 2013 I plan next time to use Statics & Strength of Materials for Architecture & Building Construction by Onouye & Kane for these few weeks supplemental topics. Used copies

More information

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1 of 6 Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1. As a practical matter, determining design loads on structural members involves several

More information

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.)

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.) ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

Three torques act on the shaft. Determine the internal torque at points A, B, C, and D.

Three torques act on the shaft. Determine the internal torque at points A, B, C, and D. ... 7. Three torques act on the shaft. Determine the internal torque at points,, C, and D. Given: M 1 M M 3 300 Nm 400 Nm 00 Nm Solution: Section : x = 0; T M 1 M M 3 0 T M 1 M M 3 T 100.00 Nm Section

More information

Unit 21 Couples and Resultants with Couples

Unit 21 Couples and Resultants with Couples Unit 21 Couples and Resultants with Couples Page 21-1 Couples A couple is defined as (21-5) Moment of Couple The coplanar forces F 1 and F 2 make up a couple and the coordinate axes are chosen so that

More information

CIV 207 Winter For practice

CIV 207 Winter For practice CIV 07 Winter 009 Assignment #10 Friday, March 0 th Complete the first three questions. Submit your work to Box #5 on the th floor of the MacDonald building by 1 noon on Tuesday March 31 st. No late submissions

More information

From Table 1 4. DL = [12 lb/ft 2 # in.(6 in.)] (15 ft)(10 ft) = 10,800 lb. LL = (250 lb/ft 2 )(15 ft)(10 ft) = 37,500 lb.

From Table 1 4. DL = [12 lb/ft 2 # in.(6 in.)] (15 ft)(10 ft) = 10,800 lb. LL = (250 lb/ft 2 )(15 ft)(10 ft) = 37,500 lb. 1 1. The floor of a heavy storage warehouse building is made of 6-in.-thick stone concrete. If the floor is a slab having a length of 15 ft and width of 10 ft, determine the resultant force caused by the

More information

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a. E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 S017abn Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. Building description The building is a three-story office building

More information

Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module No. # 1.

Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module No. # 1. Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module No. # 1.3 Lecture No. # 03 Review of Basic Structural Analysis -1 (Refer Slide

More information

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VIII Dr. Jason E. Charalambides Failure in Flexure!

More information

Analysis of Shear Lag Effect of Box Beam under Dead Load

Analysis of Shear Lag Effect of Box Beam under Dead Load Analysis of Shear Lag Effect of Box Beam under Dead Load Qi Wang 1, a, Hongsheng Qiu 2, b 1 School of transportation, Wuhan University of Technology, 430063, Wuhan Hubei China 2 School of transportation,

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1. C3 Flexural Members C3.1 Bending The nominal flexural strength [moment resistance], Mn, shall be the smallest of the values calculated for the limit states of yielding, lateral-torsional buckling and distortional

More information

NAME: Given Formulae: Law of Cosines: Law of Sines:

NAME: Given Formulae: Law of Cosines: Law of Sines: NME: Given Formulae: Law of Cosines: EXM 3 PST PROBLEMS (LESSONS 21 TO 28) 100 points Thursday, November 16, 2017, 7pm to 9:30, Room 200 You are allowed to use a calculator and drawing equipment, only.

More information

dv dx Slope of the shear diagram = - Value of applied loading dm dx Slope of the moment curve = Shear Force

dv dx Slope of the shear diagram = - Value of applied loading dm dx Slope of the moment curve = Shear Force Beams SFD and BMD Shear and Moment Relationships w dv dx Slope of the shear diagram = - Value of applied loading V dm dx Slope of the moment curve = Shear Force Both equations not applicable at the point

More information

Steel Structures Design and Drawing Lecture Notes

Steel Structures Design and Drawing Lecture Notes Steel Structures Design and Drawing Lecture Notes INTRODUCTION When the need for a new structure arises, an individual or agency has to arrange the funds required for its construction. The individual or

More information

Design of a Balanced-Cantilever Bridge

Design of a Balanced-Cantilever Bridge Design of a Balanced-Cantilever Bridge CL (Bridge is symmetric about CL) 0.8 L 0.2 L 0.6 L 0.2 L 0.8 L L = 80 ft Bridge Span = 2.6 L = 2.6 80 = 208 Bridge Width = 30 No. of girders = 6, Width of each girder

More information

2012 MECHANICS OF SOLIDS

2012 MECHANICS OF SOLIDS R10 SET - 1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~

More information

Physics 8 Wednesday, October 28, 2015

Physics 8 Wednesday, October 28, 2015 Physics 8 Wednesday, October 8, 015 HW7 (due this Friday will be quite easy in comparison with HW6, to make up for your having a lot to read this week. For today, you read Chapter 3 (analyzes cables, trusses,

More information

and F NAME: ME rd Sample Final Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points)

and F NAME: ME rd Sample Final Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points) ME 270 3 rd Sample inal Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points) IND: In your own words, please state Newton s Laws: 1 st Law = 2 nd Law = 3 rd Law = PROBLEM

More information

Structural Specialization

Structural Specialization Structural Specialization Project: Size beams for the given structural layout using loading conditions specified in the International Building Code. Contents Typical Floor Beam Layout... 2 Building Sections...

More information

three Point Equilibrium 1 and planar trusses ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

three Point Equilibrium 1 and planar trusses ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture three point equilibrium http:// nisee.berkeley.edu/godden and planar trusses Point Equilibrium 1 Equilibrium balanced

More information

Critical Load columns buckling critical load

Critical Load columns buckling critical load Buckling of Columns Buckling of Columns Critical Load Some member may be subjected to compressive loadings, and if these members are long enough to cause the member to deflect laterally or sideway. To

More information

Annex - R C Design Formulae and Data

Annex - R C Design Formulae and Data The design formulae and data provided in this Annex are for education, training and assessment purposes only. They are based on the Hong Kong Code of Practice for Structural Use of Concrete 2013 (HKCP-2013).

More information

Method of Sections for Truss Analysis

Method of Sections for Truss Analysis Method of Sections for Truss Analysis Notation: (C) = shorthand for compression P = name for load or axial force vector (T) = shorthand for tension Joint Configurations (special cases to recognize for

More information

AISC LRFD Beam Design in the RAM Structural System

AISC LRFD Beam Design in the RAM Structural System Model: Verification11_3 Typical Floor Beam #10 W21x44 (10,3,10) AISC 360-05 LRFD Beam Design in the RAM Structural System Floor Loads: Slab Self-weight: Concrete above flute + concrete in flute + metal

More information

DESIGN EXAMPLES APPENDIX A

DESIGN EXAMPLES APPENDIX A APPENDIX A DESIGN EXAMPLES Comparative Shrinkage of Sawn Timber and Glulam Beams / 499 Simple Beam Design / 500 Upside-Down Beam Analysis / 50 Tension-face Notch / 504 Compression-face Notch / 505 Sloped

More information

NOVEL FLOWCHART TO COMPUTE MOMENT MAGNIFICATION FOR LONG R/C COLUMNS

NOVEL FLOWCHART TO COMPUTE MOMENT MAGNIFICATION FOR LONG R/C COLUMNS NOVEL FLOWCHART TO COMPUTE MOMENT MAGNIFICATION FOR LONG R/C COLUMNS Abdul Kareem M. B. Al-Shammaa and Ehsan Ali Al-Zubaidi 2 Department of Urban Planning Faculty of Physical Planning University of Kufa

More information

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate. 1 of 6 EQUILIBRIUM OF A RIGID BODY AND ANALYSIS OF ETRUCTURAS II 9.1 reactions in supports and joints of a two-dimensional structure and statically indeterminate reactions: Statically indeterminate structures

More information

1 Introduction to shells

1 Introduction to shells 1 Introduction to shells Transparent Shells. Form, Topology, Structure. 1. Edition. Hans Schober. 2016 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG Z = p R 1 Introduction to

More information

ERRATA for PE Civil Structural Practice Exam ISBN Copyright 2014 (July 2016 Second Printing) Errata posted

ERRATA for PE Civil Structural Practice Exam ISBN Copyright 2014 (July 2016 Second Printing) Errata posted Errata posted 8-16-2017 Revisions are shown in red. Question 521, p. 47: Question 521 should read as follows: 521. The W10 22 steel eam (Fy = 50 ksi) shown in the figure is only raced at the center of

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Structural Description The two pinned (at the bases) portal frame is stable in its plane due to the moment connection

More information

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 2 3 Determine the magnitude of the resultant force FR = F1 + F2 and its direction, measured counterclockwise from the

More information

Science In Action 7 Structures and Forces Section Quiz

Science In Action 7 Structures and Forces Section Quiz Section 2 External and Internal Forces Act on Structures 2.1 Measuring Forces 1. A force is a push or a pull that tends to cause an object to change its height or length B. movement or shape C. colour

More information

What is a shell structure and how do they work?

What is a shell structure and how do they work? 1 What is a shell structure and how do they work? Classification of structural shapes Structures can be classified in many ways according to their shape, their function and the materials from which they

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight.

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight. 1 1 wooden block of mass 0.60 kg is on a rough horizontal surface. force of 12 N is applied to the block and it accelerates at 4.0 m s 2. wooden block 4.0 m s 2 12 N hat is the magnitude of the frictional

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT STATIC EQUILIBRIUM MULTIPLE CHOICE / 33 OPEN ENDED / 80 TOTAL / 113 NAME: 1. State the condition for translational equilibrium. A. ΣF = 0 B. ΣF

More information