CALENDERING AND REELING

Size: px
Start display at page:

Download "CALENDERING AND REELING"

Transcription

1 UNIVERSITY OF VICTORIA MECH 450D PULP AND PAPER TECHNOLOGY CALENDERING AND REELING 1 Introduction After the dryer, paper passes through a calender stack and then is wound into a reel of paper as shown in Figure 1. These two operations are linked and therefore will be discussed together in this lecture. Figure 1 Calendering, shown in Figure 2, is a unit operation which compresses the paper web between one or more rolling nips. When carried out on a paper machine, it is called machine calendering. Reeling is the subsequent operation of uniformly winding paper into a jumbo roll at the end of the paper machine. Calendering compresses paper to a uniform thickness and imparts smoothness to the paper surface. The thickness uniformity is necessary to build a uniform reel, which affects the runnability of paper in the press room. The smoothness affects paper printability, that is, how well print and images can be reproduced on the paper surface. Both runnability and printability are key quality factors for press rooms. Of these, runnability is the more important. If paper cannot get through presses without breaking, it is worthless to printers, particularly those running to tight deadlines such as newspapers.

2 Figure 2 Figure 3

3 2 Calendering 2.1 Thickness Reduction and Smoothness Typical machine calendering takes place in a vertical column of steel rolls resting on one another, supported by a king roll at the bottom. The roll next up is the queen roll, which is often the driven roll. The others run by friction from the driven roll. The paper web is threaded down the stack, and thereby sees a series of nips of increasing pressure. This compresses the web thickness as shown in Figure 3. The flat rolls surface impose smoothness on the paper. 2.2 Major Variables The major variables in calendering are moisture and temperature for paper, and the number of rolls, roll diameter, and roll temperature for the calender stack. The relative importance of these is shown in Figures 4 and 5. Figure 5 shows that while a target thickness reduction can be obtained in a number of ways, high temperature calendering gives slightly better smoothness, much better gloss, and a lower strength loss. 2.3 Nip Mechanics Figure 4 The degree of paper compression in a nip is governed by the paper compressive properties and the applied pressure and time. In a calender nip, the latter are not known. The independent machine variables are line loading and speed. These, together with paper deformation properties, determine nip pressure and dwell time, as shown in Figure 6.

4 Figure 5 Figure 6

5 Table I: The Calendering Equation = A+ µ B i where the permanent relative compression is defined as: and the nip intensity factor µ is defined as: ( ) = B B B i f i µ = a + a log L + a log S + a log R + a θ + a M o L s R θ M Limits: - The equation applies between the limits: - Outside these limits: i ( ) A µ B 1 A 2µ B = B for B < A µ f i i f 2 ( ) ( ) B = 1 A 4µ for B > 1 A 2µ Parameters Coefficients B i Initial bulk (cm 3 /g) B f Final bulk (cm 3 /g) L Nip load (kn/m) a L S Machine speed (m/min) a S R Equivalent roll radius (m) a R θ Average mid-nip web temperature ( C) a θ M Web moisture (%) a M Intercepts A, a o The coefficents must be determined experimentally. They are a function of the furnish properties. Also, a R can be approximated as i ( ) a = a + a 2 R L S Figure 7

6 2 δ ϕp ρcp δϕ = 2 δz kp δt (1) φ p = temperature of paper at Z t = time k p = thermal conductivity ρ = density c p = specific heat K = k p /ρc p thermal diffusivity Bi s = Biot Number = Ch/k p C = thickness of paper h = contact resistance of paper k p = as above Temperature, φ p T c ( ) ( s ( z )) φ 2e cos Bi 1 p = 1 φ 2 + Bi cos Bi R s s c (2) when T c > 0.05 and T c kpbiss = C WCV p S = contact time with roll V = speed W = basis weight Figure 8

7 The rheology of paper in compression is time-dependent and non-linear with both pressure and time. Thus, prediction of paper compression in rolling nips is not simple. To accomplish this, empirical expressions have been developed from platten press data for pressure and time, and these have been converted to speed and loading in the calendering equation developed by Kerekes and Crotogino and shown in Figure 7. Thickness reduction in a stack is calculated by applying this equation from nip to nip, i.e. the thickness emerging from one nip becomes the entry thickness at the next nip. 2.4 Heat Transfer Heating paper makes it more pliable, and therefore easier to calender. Accordingly, one or more hot rolls are often included in calender stacks to transfer heat to paper. Given the high speeds of modern paper machines, this heat transfer is often incomplete in raising the temperature through the thickness of paper to the roll temperature. Instead, the paper surface in contact with the roll surface is at high temperature while the outer thickness remains at a lower temperature. These temperature gradients can be estimated from transient-state heat conduction, suitably modified for paper, as shown in Figure 8. Temperature gradients have been exploited to achieve a desired an often-desired objective in calendering: high surface smoothness with minimal thickness reduction. The concept is called temperature gradient calendering and is illustrated in Figure 9. Figure 9

8 3 On-Line Soft-Nip Calendering A recent development in calendering has been the use of on-line soft-nip calendering shown in Figure 10. Here, paper is passed through two calender nips without roll wrap. One of the rolls is a soft polymeric material which deforms to give a wider nip (see later in supercalendering). The other roll is a high-temperature, heated roll. These calenders achieve a superior finish by a more pliable nip and by temperature gradient calendering. They are used on-line. Figure 10 4 Reeling In addition to imparting smoothness to paper, the calender stack serves an important role in producing a uniform reel. When paper of non -uniform thickness in the CD direction is wound into a reel, the local roll diameter of the paper roll becomes slightly larger. This requires that paper stretch more in this zone compared to adjacent zones. This is defined as a hard spot, as shown in Figure 11. This in turn induces more permanent tensile deformation in paper in this zone compared to adjacent zones. Consequently, when the paper is unwound, this zone will be under less tension than adjacent zones under a given tension. Indeed it may be sag, i.e. be baggy, relative to the adjacent taut zones. To overcome this, press

9 rooms must increase the average tension, which leads to stress gradients in the web, which greatly increase the probability of breaks. Figure 11 For these reasons, press rooms require that all delivered rolls meet a standard of uniformity, and monitor this by routinely measuring roll hardness profiles. CD non-uniformities may originate in the headbox, slice, or press, e.g. plugged fabric). Whatever the source, often the only place for immediate remedial action is at the calender stack. Evening out paper thickness is accomplished by local heating or cooling of calender rolls in specific CD zones. This causes a slight roll diameter expansion or contraction locally, which in turn causes the roll loading to shift to or away from this zone. This in turn changes the level of paper compression and thereby the level of local thickness reduction. For example, local cooling increases local web thickness as illustrated in exaggerated form in Figure 12. Figure 12 Local heat or cooling of calender rolls is attained by air showers or by local induction heating. These are illustrated in Figure 13.

10 Figure 13 Figure 14

11 5 Other Issues in Calendering 5.1 Blackening Over-calendering of paper leads to calender blackening. Here calendering is so severe that fibres fuse together, causing a loss of light scattering surface. Incident light therefore passes through the paper, giving a dark appearance to the observer. This is illustrated in Figure 14. This frequently becomes a problem if paper moisture content is too high, for example 10% or more. Blackening can be remedied by lowering moisture or reducing calender loading. 5.2 Calender Barring A calender stack is a spring-mass-dashpot system, with the paper as a spring/dashpot and the rolls as the mass. Consequently, the stack has natural vibration frequencies and may therefore be excited to vibrate. The source of excitation may be regular MD variations in paper or vibrations coming through the floor from other equipment. When caused to vibrate, the rolls over-compress paper on the downward portion of their cycle, in essence blackening the web in a line across the machine. This is visible to the eye and is called barring. Remedial action consists of reducing the number of rolls, precompressing the paper in a breaker stack, or offsetting rolls. All these are aimed at changing the frequency response of the stack, i.e. the spring constant, the number of harmonics, the excitation frequency.

DESIGN AND APPLICATION

DESIGN AND APPLICATION III. 3.1 INTRODUCTION. From the foregoing sections on contact theory and material properties we can make a list of what properties an ideal contact material would possess. (1) High electrical conductivity

More information

Strain Measurement. Prof. Yu Qiao. Department of Structural Engineering, UCSD. Strain Measurement

Strain Measurement. Prof. Yu Qiao. Department of Structural Engineering, UCSD. Strain Measurement Strain Measurement Prof. Yu Qiao Department of Structural Engineering, UCSD Strain Measurement The design of load-carrying components for machines and structures requires information about the distribution

More information

PREDICTIONS OF MD AND CD TENSILE PROPERTY PROFILES

PREDICTIONS OF MD AND CD TENSILE PROPERTY PROFILES Preferred citation: T. Wahlström. Predictions of MD and CD tensile property profiles. In Advances in Pulp and Paper Research, Cambridge 2013, Trans. of the XVth Fund. Res. Symp. Cambridge, 2013, (S.J.

More information

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS 3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

More information

Operating Instructions For the Series Weavexx Tensometer Instrument

Operating Instructions For the Series Weavexx Tensometer Instrument Operating Instructions For the 12-0000 Series Weavexx Tensometer Instrument Description The Weavexx Tensometer is a patented instrument for measuring tension in flexible, thin textile conveyor belts, paper,

More information

ME 207 Material Science I

ME 207 Material Science I ME 207 Material Science I Chapter 3 Properties in Tension and Compression Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus Case study 2 In field of Physics, it explains how an object deforms under an applied force Real rigid bodies are elastic we can

More information

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland Agricultural Science 1B Principles & Processes in Agriculture Mike Wheatland (m.wheatland@physics.usyd.edu.au) Outline - Lectures weeks 9-12 Chapter 6: Balance in nature - description of energy balance

More information

Lecture 8 Viscoelasticity and Deformation

Lecture 8 Viscoelasticity and Deformation Read: pg 130 168 (rest of Chpt. 4) 1 Poisson s Ratio, µ (pg. 115) Ratio of the strain in the direction perpendicular to the applied force to the strain in the direction of the applied force. For uniaxial

More information

CHAPTER 4. Stresses in Beams

CHAPTER 4. Stresses in Beams CHAPTER 4 Stresses in Beams Problem 1. A rolled steel joint (RSJ) of -section has top and bottom flanges 150 mm 5 mm and web of size 00 mm 1 mm. t is used as a simply supported beam over a span of 4 m

More information

Objectives: After completion of this module, you should be able to:

Objectives: After completion of this module, you should be able to: Chapter 12 Objectives: After completion of this module, you should be able to: Demonstrate your understanding of elasticity, elastic limit, stress, strain, and ultimate strength. Write and apply formulas

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

4.1 Derivation and Boundary Conditions for Non-Nipped Interfaces

4.1 Derivation and Boundary Conditions for Non-Nipped Interfaces Chapter 4 Roller-Web Interface Finite Difference Model The end goal of this project is to allow the correct specification of a roller-heater system given a general set of customer requirements. Often the

More information

Interpretation of Pile Integrity Test (PIT) Results

Interpretation of Pile Integrity Test (PIT) Results Annual Transactions of IESL, pp. 78-84, 26 The Institution of Engineers, Sri Lanka Interpretation of Pile Integrity Test (PIT) Results H. S. Thilakasiri Abstract: A defect present in a pile will severely

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information

How can a forming fabric reduce the energy consumption in the forming section Oliver Baumann, Stephan Ernst, Xerium Technologies

How can a forming fabric reduce the energy consumption in the forming section Oliver Baumann, Stephan Ernst, Xerium Technologies How can a forming fabric reduce the energy consumption in the forming section Oliver Baumann, Stephan Ernst, Xerium Technologies 15.02.2011 1. Introduction On a paper machine, the forming fabric is in

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

Difference Between Fixed and Floating Reference Points AASHTO T-321

Difference Between Fixed and Floating Reference Points AASHTO T-321 Difference Between Fixed and Floating Reference Points AASHTO T-321 Fixed Reference LVDT with Target Attached to the Beam Neutral Axis (Mid-Height, Mid-Length) 2 Old ASTM D7460 Graph Improper Representation

More information

External Pressure... Thermal Expansion in un-restrained pipeline... The critical (buckling) pressure is calculated as follows:

External Pressure... Thermal Expansion in un-restrained pipeline... The critical (buckling) pressure is calculated as follows: External Pressure... The critical (buckling) pressure is calculated as follows: P C = E. t s ³ / 4 (1 - ν ha.ν ah ) R E ³ P C = Critical buckling pressure, kn/m² E = Hoop modulus in flexure, kn/m² t s

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05010302 Set No. 1 I B.Tech Supplimentary Examinations, February 2008 ENGINEERING MECHANICS ( Common to Mechanical Engineering, Mechatronics, Metallurgy & Material Technology, Production Engineering,

More information

CONNECTION DESIGN. Connections must be designed at the strength limit state

CONNECTION DESIGN. Connections must be designed at the strength limit state CONNECTION DESIGN Connections must be designed at the strength limit state Average of the factored force effect at the connection and the force effect in the member at the same point At least 75% of the

More information

4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS 4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

More information

Coefficient of Thermal Expansion for 477-T16 ACCR

Coefficient of Thermal Expansion for 477-T16 ACCR Coefficient of Thermal Expansion for 477-T16 ACCR Summary: The Coefficient of Thermal Expansion (CTE) was measured for a 477-T16 ACCR conductor. Thermal expansion as a function of temperature displays

More information

CHAPTER 5 Statically Determinate Plane Trusses

CHAPTER 5 Statically Determinate Plane Trusses CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS TYPES OF ROOF TRUSS ROOF TRUSS SETUP ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

2014 MECHANICS OF MATERIALS

2014 MECHANICS OF MATERIALS R10 SET - 1 II. Tech I Semester Regular Examinations, March 2014 MEHNIS OF MTERILS (ivil Engineering) Time: 3 hours Max. Marks: 75 nswer any FIVE Questions ll Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~

More information

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS 1 TYPES OF ROOF TRUSS ROOF TRUSS SETUP 2 ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

PHYS 1441 Section 002 Lecture #23

PHYS 1441 Section 002 Lecture #23 PHYS 1441 Section 002 Lecture #23 Monday, April 29, 2013 Conditions for Equilibrium Elastic Properties of Solids Young s Modulus Bulk Modulus Density and Specific Gravity luid and Pressure Today s homework

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 117.3 MIDTERM TEST February 13, 2014 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Strength of Material. Shear Strain. Dr. Attaullah Shah

Strength of Material. Shear Strain. Dr. Attaullah Shah Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

Mechanical properties 1 Elastic behaviour of materials

Mechanical properties 1 Elastic behaviour of materials MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

Members Subjected to Torsional Loads

Members Subjected to Torsional Loads Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular

More information

M61 1 M61.1 PC COMPUTER ASSISTED DETERMINATION OF ANGULAR ACCELERATION USING TORQUE AND MOMENT OF INERTIA

M61 1 M61.1 PC COMPUTER ASSISTED DETERMINATION OF ANGULAR ACCELERATION USING TORQUE AND MOMENT OF INERTIA M61 1 M61.1 PC COMPUTER ASSISTED DETERMINATION OF ANGULAR ACCELERATION USING TORQUE AND MOMENT OF INERTIA PRELAB: Before coming to the lab, you must write the Object and Theory sections of your lab report

More information

Chapter 6: Efficiency and Heating. 9/18/2003 Electromechanical Dynamics 1

Chapter 6: Efficiency and Heating. 9/18/2003 Electromechanical Dynamics 1 Chapter 6: Efficiency and Heating 9/18/2003 Electromechanical Dynamics 1 Losses As a machine transforms energy from one form to another there is always a certain power loss the loss is expressed as heat,

More information

MECHANICAL PROPERTIES OF SOLIDS

MECHANICAL PROPERTIES OF SOLIDS Chapter Nine MECHANICAL PROPERTIES OF SOLIDS MCQ I 9.1 Modulus of rigidity of ideal liquids is (a) infinity. (b) zero. (c) unity. (d) some finite small non-zero constant value. 9. The maximum load a wire

More information

STRESS, STRAIN AND DEFORMATION OF SOLIDS

STRESS, STRAIN AND DEFORMATION OF SOLIDS VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I -------------------------------------------------------------------------------------------------------------------------------

More information

Write your class, index number and name in the spaces at the top of this page. For Examiner s Use

Write your class, index number and name in the spaces at the top of this page. For Examiner s Use 1 DUNMAN HIGH SCHOOL Preliminary Examinations Year 6 Higher 1 CANDIDATE NAME CLASS INDEX NUMBER PHYSICS Paper 2 Structured Questions Candidates answer on the Question Paper. No Additional Materials are

More information

HOOKE S LAW FORCE AND STRETCH OF A SPRING

HOOKE S LAW FORCE AND STRETCH OF A SPRING HOOKE S LAW FORCE AND STRETCH OF A SPRING NAME DATE PERIOD Hooke's Law Lab Report 1 of 5 PURPOSE: The purpose of this experiment was to determine the relationship between the stretch of a spring and the

More information

Chapter 12. Static Equilibrium and Elasticity

Chapter 12. Static Equilibrium and Elasticity Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial

More information

SERVICEABILITY LIMIT STATE DESIGN

SERVICEABILITY LIMIT STATE DESIGN CHAPTER 11 SERVICEABILITY LIMIT STATE DESIGN Article 49. Cracking Limit State 49.1 General considerations In the case of verifications relating to Cracking Limit State, the effects of actions comprise

More information

Statics. Phys101 Lectures 19,20. Key points: The Conditions for static equilibrium Solving statics problems Stress and strain. Ref: 9-1,2,3,4,5.

Statics. Phys101 Lectures 19,20. Key points: The Conditions for static equilibrium Solving statics problems Stress and strain. Ref: 9-1,2,3,4,5. Phys101 Lectures 19,20 Statics Key points: The Conditions for static equilibrium Solving statics problems Stress and strain Ref: 9-1,2,3,4,5. Page 1 The Conditions for Static Equilibrium An object in static

More information

Contents of The Universe and Deforming Solids

Contents of The Universe and Deforming Solids Skyscrapers in the 2011 Japan Earthquake Contents of The Universe and Deforming Solids For most of this course, we ve talked about physics we ve known about for > 100 years. Today, we ll discuss some physics

More information

Physics 117 Mock Midterm Sunday, February 10, 2019 * 2 pm Room 241 Arts Building *

Physics 117 Mock Midterm Sunday, February 10, 2019 * 2 pm Room 241 Arts Building * Physics 117 Mock Midterm Sunday, February 10, 2019 * 2 pm Room 241 Arts Building * Note: This mock test consists of questions covered in Physics 117. This test is not comprehensive. The problems on this

More information

ELASTICITY (MDM 10203)

ELASTICITY (MDM 10203) ELASTICITY () Lecture Module 3: Fundamental Stress and Strain University Tun Hussein Onn Malaysia Normal Stress inconstant stress distribution σ= dp da P = da A dimensional Area of σ and A σ A 3 dimensional

More information

9 MECHANICAL PROPERTIES OF SOLIDS

9 MECHANICAL PROPERTIES OF SOLIDS 9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body

More information

Finite element simulation of residual stresses in laser heating

Finite element simulation of residual stresses in laser heating IAS-2008-66-546ST Finite element simulation of residual stresses in laser heating G. H. Farrahi 1, M. Sistaninia 2, H. Moeinoddini 3 1,2-School of Mechanical Engineering, Sharif University of Technology,

More information

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Further Applications of Newton s Laws - Friction Static and Kinetic Friction

Further Applications of Newton s Laws - Friction Static and Kinetic Friction urther pplications of Newton s Laws - riction Static and Kinetic riction The normal force is related to friction. When two surfaces slid over one another, they experience a force do to microscopic contact

More information

1. Explain the various methods of methods of grounding. In power system, grounding or earthing means connecting frame of electrical equipment (non-cur

1. Explain the various methods of methods of grounding. In power system, grounding or earthing means connecting frame of electrical equipment (non-cur 1. Explain the various methods of methods of grounding. In power system, grounding or earthing means connecting frame of electrical equipment (non-current carrying part) or some electrical part of the

More information

22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus

22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus PhysicsndMathsTutor.com Which of the following correctly defines the terms stress, strain and Young modulus? 97/1/M/J/ stress strain Young modulus () x (area) (extension) x (original length) (stress) /

More information

Name (Print) ME Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM

Name (Print) ME Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM Name (Print) (Last) (First) Instructions: ME 323 - Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM Circle your lecturer s name and your class meeting time. Gonzalez Krousgrill

More information

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) I B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) Term-End Examination 00 December, 2009 Co : ENGINEERING MECHANICS CD Time : 3 hours Maximum Marks : 70 Note : Attempt

More information

Elasticity. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M.

Elasticity. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M. Elasticity A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M. Lepore Elasticity Photo Vol. 10 PhotoDisk/Getty BUNGEE jumping utilizes

More information

Which one of the following correctly describes the velocities of the two bodies after the collision?

Which one of the following correctly describes the velocities of the two bodies after the collision? Q1.In which of the following do both quantities have the same unit? Electrical resistivity and electrical resistance. Work function Planck constant Pressure and the Young modulus. cceleration and rate

More information

SELECTED PROBLEMS OF SHORT CIRCUIT WITHSTANDABILITY Section II - POWER TRANSFORMER October 2004, Vigo - Spain

SELECTED PROBLEMS OF SHORT CIRCUIT WITHSTANDABILITY Section II - POWER TRANSFORMER October 2004, Vigo - Spain Dr. Władysław Pewca Institute of Power Engineering, Transformer Division (IenOT( IenOT), Poland SELECTED PROBLEMS OF SHORT CIRCUIT WITHSTANDABILITY Section II - POWER TRANSFORMER 28-30 October 2004, Vigo

More information

Theory at a Glance (for IES, GATE, PSU)

Theory at a Glance (for IES, GATE, PSU) 1. Stress and Strain Theory at a Glance (for IES, GATE, PSU) 1.1 Stress () When a material is subjected to an external force, a resisting force is set up within the component. The internal resistance force

More information

THEORETICAL DESIGN OF A NAILED OR BOLTED JOINT UNDER LATERAL LOAD 1. Summary

THEORETICAL DESIGN OF A NAILED OR BOLTED JOINT UNDER LATERAL LOAD 1. Summary THEORETICAL DESIGN OF A NAILED OR BOLTED JOINT UNDER LATERAL LOAD 1 BY EDWARD W. KUENZI, 2 Engineer Forest Products Laboratory,3 Forest Service U. S. Department of Agriculture Summary This report presents

More information

The basic dynamic load rating C is a statistical number and it is based on 90% of the bearings surviving 50 km of travel carrying the full load.

The basic dynamic load rating C is a statistical number and it is based on 90% of the bearings surviving 50 km of travel carrying the full load. Technical data Load Rating & Life Under normal conditions, the linear rail system can be damaged by metal fatigue as the result of repeated stress. The repeated stress causes flaking of the raceways and

More information

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there? High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the

More information

@Copyright 2016 SKAPS Industries.

@Copyright 2016 SKAPS Industries. SKAPS INDUSTRIES 571 Industrial Pkwy, Commerce, GA 30529 Phone: (706) 336 7000 Fax: (706) 336 7007 E Mail: contact@skaps.com SKAPS GEOCOMPOSITE DROP IN SPECIFICATIONS @Copyright 2016 SKAPS Industries www.skaps.com

More information

1.053J/2.003J Dynamics and Control I Fall Final Exam 18 th December, 2007

1.053J/2.003J Dynamics and Control I Fall Final Exam 18 th December, 2007 1.053J/2.003J Dynamics and Control I Fall 2007 Final Exam 18 th December, 2007 Important Notes: 1. You are allowed to use three letter-size sheets (two-sides each) of notes. 2. There are five (5) problems

More information

CHAPTER 4: BENDING OF BEAMS

CHAPTER 4: BENDING OF BEAMS (74) CHAPTER 4: BENDING OF BEAMS This chapter will be devoted to the analysis of prismatic members subjected to equal and opposite couples M and M' acting in the same longitudinal plane. Such members are

More information

Chapter 11: Elasticity and Periodic Motion

Chapter 11: Elasticity and Periodic Motion Chapter 11 Lecture Chapter 11: Elasticity and Periodic Motion Goals for Chapter 11 To study stress, strain, and elastic deformation. To define elasticity and plasticity. To follow periodic motion to a

More information

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction and classes of properties Case studies showing selection of the right material for the job Deformation of material under the action of a

More information

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education PHYSICS 0625/06

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education PHYSICS 0625/06 Centre Number Candidate Number Name CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education PHYSICS 0625/06 Paper 6 Alternative to Practical Candidates answer on the

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

Design issues of thermal induced effects and temperature dependent material properties in Abaqus

Design issues of thermal induced effects and temperature dependent material properties in Abaqus Materials Characterisation VII 343 Design issues of thermal induced effects and temperature dependent material properties in Abaqus I. Both 1, F. Wald 1 & R. Zaharia 2 1 Department of Steel and Timber

More information

Science 7 Unit B: Structures and Forces. Topic 4. Forces, Loads, & Stresses. pp WORKBOOK. Name:

Science 7 Unit B: Structures and Forces. Topic 4. Forces, Loads, & Stresses. pp WORKBOOK. Name: Science 7 Unit B: Structures and Forces Topic 4 Forces, Loads, & Stresses pp. 305-314 WORKBOOK Name: Every object that provides support is a structure. A structure may be made up of one or more parts,

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

More information

Stress in Flip-Chip Solder Bumps due to Package Warpage -- Matt Pharr

Stress in Flip-Chip Solder Bumps due to Package Warpage -- Matt Pharr Stress in Flip-Chip Bumps due to Package Warpage -- Matt Pharr Introduction As the size of microelectronic devices continues to decrease, interconnects in the devices are scaling down correspondingly.

More information

Regupol. Vibration

Regupol. Vibration Regupol Vibration 48 www.vibratec.se Standard forms of delivery, ex warehouse Rolls Thickness: 15 mm Length: 1, mm, special length available Width: 1,25 mm Stripping/Plates On request Die-cutting, water-jet

More information

COPPER FOR BUSBARS CHAPTER 4: SHORT-CIRCUIT EFFECTS

COPPER FOR BUSBARS CHAPTER 4: SHORT-CIRCUIT EFFECTS European Copper Institute COPPER FOR BUSBARS CHAPTER 4: SHORT-CIRCUIT EFFECTS David Chapman August 2011 ECI Available from www.leonardo-energy.org Document Issue Control Sheet Document Title: Publication

More information

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Introduction to Heat Transfer What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Thermal Resistance Thermal Capacitance Thermal

More information

Regufoam. Vibration 270 Plus.

Regufoam. Vibration 270 Plus. Regufoam Vibration 27 Plus www.vibratec.se Standard forms of delivery, ex warehouse Rolls Thickness: 12.5 and 25 mm, special thicknesses on request Length: 5, mm, special lengths available Width: 1,5 mm

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

Lecture 8 Viscoelasticity and Deformation

Lecture 8 Viscoelasticity and Deformation HW#5 Due 2/13 (Friday) Lab #1 Due 2/18 (Next Wednesday) For Friday Read: pg 130 168 (rest of Chpt. 4) 1 Poisson s Ratio, μ (pg. 115) Ratio of the strain in the direction perpendicular to the applied force

More information

This is the accepted version of a paper presented at 2014 IEEE Electrical Insulation Conference (EIC).

This is the accepted version of a paper presented at 2014 IEEE Electrical Insulation Conference (EIC). http://www.diva-portal.org Postprint This is the accepted version of a paper presented at 2014 IEEE Electrical Insulation Conference (EIC). Citation for the original published paper: Girlanda, O., Tjahjanto,

More information

5. Forces and Free-Body Diagrams

5. Forces and Free-Body Diagrams 5. Forces and Free-Body Diagrams A) Overview We will begin by introducing the bulk of the new forces we will use in this course. We will start with the weight of an object, the gravitational force near

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

4.2. The Normal Force, Apparent Weight and Hooke s Law

4.2. The Normal Force, Apparent Weight and Hooke s Law 4.2. The Normal Force, Apparent Weight and Hooke s Law Weight The weight of an object on the Earth s surface is the gravitational force exerted on it by the Earth. When you weigh yourself, the scale gives

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 19. Home Page. Title Page. Page 1 of 36.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 19. Home Page. Title Page. Page 1 of 36. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics I Fall 2015 Lecture 19 Page 1 of 36 12. Equilibrium and Elasticity How do objects behave under applied external forces? Under

More information

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday Announcements Test Wednesday Closed book 3 page sheet sheet (on web) Calculator Chap 12.6-10, 13.1-6 Principle of Work and Energy - Sections 14.1-3 Today s Objectives: Students will be able to: a) Calculate

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level *8256494037* PHYSICS 9702/52 Paper 5 Planning, Analysis and Evaluation May/June 2012 1 hour 15 minutes

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

Design and Analysis of Adjustable Inside Diameter Mandrel for Induction Pipe Bender

Design and Analysis of Adjustable Inside Diameter Mandrel for Induction Pipe Bender International Journal of Engineering Trends and Technology (IJETT) Volume0Number - Apr 0 Design and Analysis of Adjustable Inside Diameter Mandrel for Induction Pipe Bender S.Nantha Gopan, M.Gowtham J.Kirubakaran

More information

SKIN EFFECT : ELECTROMAGNETIC WAVE OR DIFFUSION?

SKIN EFFECT : ELECTROMAGNETIC WAVE OR DIFFUSION? SKIN EFFECT : ELECTROMAGNETIC WAVE OR DIFFUSION? At high frequencies current in a conductor flows mainly on its surface, and this is known as the skin effect. Two possible mechanisms are given in the published

More information

DEVELOPMENT OF THERMOELASTIC STRESS ANALYSIS AS A NON-DESTRUCTIVE EVALUATION TOOL

DEVELOPMENT OF THERMOELASTIC STRESS ANALYSIS AS A NON-DESTRUCTIVE EVALUATION TOOL DEVELOPMENT OF THERMOELASTIC STRESS ANALYSIS AS A NON-DESTRUCTIVE EVALUATION TOOL S. Quinn*, R.K. Fruehmann and J.M. Dulieu-Barton School of Engineering Sciences University of Southampton Southampton SO17

More information

Shape Optimization of Oldham Coupling in Scroll Compressor

Shape Optimization of Oldham Coupling in Scroll Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 24 Shape Optimization of Oldham Coupling in Scroll Compressor In Hwe Koo LG Electronics

More information

Chapter 10 Lecture Outline. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 10 Lecture Outline. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10 Lecture Outline Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 10: Elasticity and Oscillations Elastic Deformations Hooke s Law Stress and

More information

Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 6 Physics, 4 th Edition James S. Walker Chapter 6 Applications of Newton s Laws Units of Chapter 6 Frictional Forces Strings and Springs Translational Equilibrium Connected Objects

More information

Basis of Structural Design

Basis of Structural Design Basis of Structural Design Course 2 Structural action: cables and arches Course notes are available for download at http://www.ct.upt.ro/users/aurelstratan/ Structural action Structural action: the way

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level *1643892600* PHYSICS 9702/42 Paper 4 A2 Structured Questions October/November 2011 2 hours Candidates

More information

CHAPTER OBJECTIVES CHAPTER OUTLINE. 4. Axial Load

CHAPTER OBJECTIVES CHAPTER OUTLINE. 4. Axial Load CHAPTER OBJECTIVES Determine deformation of axially loaded members Develop a method to find support reactions when it cannot be determined from euilibrium euations Analyze the effects of thermal stress

More information

Bearing Internal Clearance and Preload

Bearing Internal Clearance and Preload . Bearing Internal Clearance and Preload. Bearing internal clearance Bearing internal clearance is the amount of internal free movement before mounting. As shown in Fig.., when either the inner ring or

More information

End-of-unit 2. Answers to examination-style questions. Answers Marks Examiner s tips

End-of-unit 2. Answers to examination-style questions. Answers Marks Examiner s tips (a) Arrowed lines drawn to show: two components at right angles vertical component in line with weight (b) (i) Horizontal component of T is T cos 60 = 25 0.5 = 2.5 N or 3 N to 2 significant figures. (ii)

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

Chapter 05 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 05 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Class: Date: Chapter 05 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The SI unit of force preferred by scientists is the: a. kilogram. b. newton.

More information