Lecture 8 Viscoelasticity and Deformation


 Annice Bruce
 1 years ago
 Views:
Transcription
1 Read: pg (rest of Chpt. 4) 1
2 Poisson s Ratio, µ (pg. 115) Ratio of the strain in the direction perpendicular to the applied force to the strain in the direction of the applied force. For uniaxial compression: ε z = σ z /E, ε y = µ ε z and ε x = µ ε y 2
3 Poisson s Ratio For multiaxial compression See equations in 4.2 page 117 Maximum Poisson s = 0.5 for incompressible materials to 0.0 for easily compressed materials Examples: gelatin gel 0.50 Soft rubber 0.49 Cork 0.0 Potato flesh Apple flesh Wood 0.3 to 0.5 More porous means smaller Poisson s 3
4 In addition to Normal stresses: Shearing Stresses Shear stress: force per unit area acting in the direction parallel to the surface of the plane,τ Shear strain: change in the angle formed between two planes that are orthogonal prior to deformation that results from application of sheer stress, γ 4
5 Shear modulus: ratio of shear stress to shear strain, G = τ/γ Measured with parallel plate shear test (pg. 119) 5
6 6
7 Example Problem The bottom surface (8 cm x 12 cm) of a rectangular block of cheese (8 cm wide, 12 cm long, 3 cm thick) is clamped in a cheese grater. The grating mechanism moving across the top surface of the cheese applies a lateral force of 20N. The shear modulus, G, of the cheese is 3.7kPa. Assuming the grater applies the force uniformly to the upper surface, estimate the latera movement of the upper surface w/respect to the lower surface. 7
8 Stresses and Strains: described as deviatoric or dilitational Dilitational: causes change in volume Deviatoric: causes change in shape but negligible changes in volume Bulk Modulus, K: describes response of solid to dilitational stresses K = average normal stress/dilatation Dilatation: (V f V 0 )/V 0 8
9 K = average normal stress/dilatation Dilatation: (V f V 0 )/V 0 Average normal stress = P, uniform hydrostatic gauge pressure V = V f V 0 So: K = P/( V / V 0 ) V is negative, so K is negative Example of importance: K (Soybean oil) > K (diesel) Will effect the timing in an engine burning biodiesel 9
10 Apples compress easier than potatoes so they have a smaller bulk modulus, K (pg. 120) but larger bulk compressibility K 1 Lecture 8 Viscoelasticity and =bulk compressibility Strain energy density: area under the loading curve of stressstrain diagram Sharp drop in curve = failure 10
11 StressStrain Diagram, pg. 122 Area under curve until it fails = toughness Failure point = bioyield point Resilience: area under the unloading curve Resilient materials spring back all energy is recovered upon unloading Hysteresis = strain density resilience Figure 4.6, page 124 Figure 4.7, page
12 Factors Affecting Force Behavior Moisture Content, Fig. 4.6b Water Potential, Fig. 4.8 Strain Rate: More stress required for higher strain rate, Fig. 4.8 Repeated Loading, Fig
13 Stress Relaxation: Figure 4.10 pg 129 Material is deformed to a fixed strain and strain is held constant stress required to hold strain constant decreases with time. Creep: Figure 4.11 pg. 130 A continual increase in deformation (strain) with time with constant load 13
14 Tensile testing Not as common as compression testing Harder to do See figure 4.12 page
15 Tensile testing 15
16 Bending: E=modulus of elasticity D=deflection, F=force, I = moment of inertia E=L 3 (48DI) 1 I=bh 3 /12 16
17 Can be used for testing critical tensile stress at failure Max tensile stress occurs at bottom surface of beam σ max =3FL/(2bh 2 ) 17
18 Contact Stresses (handout from Mohsenin book) Hertz Problem of Contact Stresses Importance: In ag products the Hertz method can be used to determine the contact forces and displacements of individual units 18
19 Assumptions: Material is homogeneous Loads applied are static Hooke s law holds Contacting stresses vanish at the opposite ends Radii of curvature of contacting solid are very large compared to radius of contact surface Contact surface is smooth 19
20 S max 3 F = 2 π ab Maximum contact stress occurs at the center of the surface of contact a and b are the major and minor semiaxes of the elliptic contact area For ag. Products, consider bottom 2 figures in Figure
21 In the case of 2 contact spheres, pg 354: 1 3 FA a = 0.721, a = contact area diameter 1 d1 + 1 d2 ( ) 2 F d 1 d 2 Smax = 0.918, S 2 max = max contact stress A ( ) , combined deformation 1 3 D = F A d + d D = at point of contact 21
22 E Lecture 8 Viscoelasticity and To determine the elastic modulus, E for steel flat plate: ( µ ) K F =, R radius of curvature = D R1 R for steel spherical indentor: E ( µ ) K F = D R1 R 1 d
23 1 E µ = 1, µ = 2 3k Poisson's Ratio (ratio of transverse contraction strain to longitudinal extension strain in the direction of stretching force), k=bulk modulus K= for cost=0, and R 1 = R 1 23
24 Lecture 9 HW Assignment Due 2/15 Problem 1: An apple is cut in a cylindrical shape 28.7 mm in diameter and 22.3 mm in height. Using an Instron Universal Testing Machine, the apple cylinder is compressed. The travel distance of the compression head of the Instron is 3.9 mm. The load cell records a force of N. Calculate the stress ε z, and strain σ z on the apple cylinder. Biological Materials 24
25 Lecture 9 HW Assignment Due 2/15 Problem 2: A sample of freshly harvested miscanthus is shaped into a beam with a square cross section of 6.1 mm by 6.1 mm. Two supports placed 0.7 mm apart support the miscanthus sample and a load is applied halfway between the support points in order to test the Force required to fracture the sample. If ultimate tensile strength is 890 MPa, what would be the force F (newtons) required to cause this sample to fail? Biological Materials 25
26 HW Assignment Due 2/15 Problem 3: Ham is to be sliced for a deli tray. A prepared block of the ham has a bottom surface of 10 cm x 7 cm. The block is held securely in a meat slicing machine. A slicing blade moves across the top surface of the ham with a uniform lateral force of 27 N and slices a thin portion of meat from the block. The shear modulus, G, of the ham is 32.3 kpa. Estimate the deflection of the top surface with respect to the bottom surface of the block during slicing. Biological Materials 26
27 HW Assignment Due 2/15 Problem 4: Sam, the strawberry producer, has had complaints from the produce company that his strawberries are damaged during transit. Sam would like to know the force required to damage the strawberries if they are stacked three deep in their container. The damage occurs on the bottom layer at the interface with the parallel surface of the container and also at the point of contact between the layers of strawberries. An hydrostatic bulk compression test on a sample of Sam s strawberries indicates an average bulk modulus of 225 psi. Testing of specimens from Sam s strawberry crop shows a compression modulus E of 200 psi. The average strawberry diameter is 1.25 inches and the axial deformation due to the damage in transit averages 0.23 inches. The modulus of elasticity for Sam s variety of strawberries is reported to be 130 psi. Estimate the force Sam s strawberries may be encountering during transit. (Hertz method) Biological Materials 27
Lecture 8 Viscoelasticity and Deformation
HW#5 Due 2/13 (Friday) Lab #1 Due 2/18 (Next Wednesday) For Friday Read: pg 130 168 (rest of Chpt. 4) 1 Poisson s Ratio, μ (pg. 115) Ratio of the strain in the direction perpendicular to the applied force
More informationLab Exercise #5: Tension and Bending with Strain Gages
Lab Exercise #5: Tension and Bending with Strain Gages Prelab assignment: Yes No Goals: 1. To evaluate tension and bending stress models and Hooke s Law. a. σ = Mc/I and σ = P/A 2. To determine material
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading
MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain  Axial Loading Statics
More informationCHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES
CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric
More informationSamantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2
Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force
More informationN = Shear stress / Shear strain
UNIT  I 1. What is meant by factor of safety? [A/M15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M15]
More informationTensile stress strain curves for different materials. Shows in figure below
Tensile stress strain curves for different materials. Shows in figure below Furthermore, the modulus of elasticity of several materials effected by increasing temperature, as is shown in Figure Asst. Lecturer
More informationNORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.
NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric
More informationME 2570 MECHANICS OF MATERIALS
ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation
More informationLecture 15 Strain and stress in beams
Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME
More informationINTRODUCTION TO STRAIN
SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,
More informationStress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study
Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus Case study 2 In field of Physics, it explains how an object deforms under an applied force Real rigid bodies are elastic we can
More informationMECHANICS OF MATERIALS
Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:
More informationHardened Concrete. Lecture No. 16
Hardened Concrete Lecture No. 16 Fatigue strength of concrete Modulus of elasticity, Creep Shrinkage of concrete StressStrain Plot of Concrete At stress below 30% of ultimate strength, the transition
More informationStressStrain Behavior
StressStrain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.
More informationCOURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5
COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses
More information2012 MECHANICS OF SOLIDS
R10 SET  1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~
More informationUNIT I SIMPLE STRESSES AND STRAINS
Subject with Code : SM1(15A01303) Year & Sem: IIB.Tech & ISem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES
More informationModule4. Mechanical Properties of Metals
Module4 Mechanical Properties of Metals Contents ) Elastic deformation and Plastic deformation ) Interpretation of tensile stressstrain curves 3) Yielding under multiaxial stress, Yield criteria, Macroscopic
More informationMechanics of Materials Primer
Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus
More information[8] Bending and Shear Loading of Beams
[8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight
More informationMAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.
It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the
More informationMECE 3321 MECHANICS OF SOLIDS CHAPTER 3
MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.
More informationThe University of Melbourne Engineering Mechanics
The University of Melbourne 436291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 922 from Hibbeler  Statics and Mechanics of Materials) A short
More informationME 243. Mechanics of Solids
ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET Email: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil
More information1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor.
Elasticity Homework Problems 2014 Section 1. The Strain Tensor. 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. 2. Given a steel bar compressed with a deformation
More informationMembers Subjected to Torsional Loads
Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular
More information: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE
COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses
More information[5] Stress and Strain
[5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law
More informationMechanics PhD Preliminary Spring 2017
Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n
More informationQUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS
QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,
More informationTuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE
1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & FreeBody Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for
More informationChapter 3. Load and Stress Analysis
Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3
More informationSTRENGTH OF MATERIALSI. Unit1. Simple stresses and strains
STRENGTH OF MATERIALSI Unit1 Simple stresses and strains 1. What is the Principle of surveying 2. Define Magnetic, True & Arbitrary Meridians. 3. Mention different types of chains 4. Differentiate between
More informationChapter 7. Highlights:
Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true
More informationCOURSE TITLE : THEORY OF STRUCTURES I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6
COURSE TITLE : THEORY OF STRUCTURES I COURSE CODE : 0 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6 TIME SCHEDULE Module Topics Period Moment of forces Support reactions Centre
More informationMechanical Properties of Materials
Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of
More information1.103 CIVIL ENGINEERING MATERIALS LABORATORY (123) Dr. J.T. Germaine Spring 2004 LABORATORY ASSIGNMENT NUMBER 6
1.103 CIVIL ENGINEERING MATERIALS LABORATORY (123) Dr. J.T. Germaine MIT Spring 2004 LABORATORY ASSIGNMENT NUMBER 6 COMPRESSION TESTING AND ANISOTROPY OF WOOD Purpose: Reading: During this laboratory
More informationMechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection
Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts
More informationPERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR  VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK
PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR  VALLAM  613 403  THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310
More informationHigh Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?
High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the
More informationA concrete cylinder having a a diameter of of in. mm and elasticity. Stress and Strain: Stress and Strain: 0.
2011 earson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This material is protected under all copyright laws as they currently 8 1. 3 1. concrete cylinder having a a diameter of of 6.00
More informationQUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A
DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State
More informationModule III  Macromechanics of Lamina. Lecture 23. MacroMechanics of Lamina
Module III  Macromechanics of Lamina Lecture 23 MacroMechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the
More informationThe science of elasticity
The science of elasticity In 1676 Hooke realized that 1.Every kind of solid changes shape when a mechanical force acts on it. 2.It is this change of shape which enables the solid to supply the reaction
More informationStress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy
Stress Analysis Lecture 3 ME 276 Spring 20172018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress
More informationMechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002
student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity
More informationIntroduction to Engineering Materials ENGR2000. Dr. Coates
Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed
More informationGATE SOLUTIONS E N G I N E E R I N G
GATE SOLUTIONS C I V I L E N G I N E E R I N G From (1987018) Office : F16, (Lower Basement), Katwaria Sarai, New Delhi110016 Phone : 01165064 Mobile : 81309090, 9711853908 Email: info@iesmasterpublications.com,
More information6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and
6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile
More information9 MECHANICAL PROPERTIES OF SOLIDS
9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body
More informationfive Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS
More informationfive Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS
More informationUNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich
UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST
More information2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?
IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at
More informationPURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.
BENDING STRESS The effect of a bending moment applied to a crosssection of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally
More informationSEMM Mechanics PhD Preliminary Exam Spring Consider a twodimensional rigid motion, whose displacement field is given by
SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a twodimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e
More information3D Elasticity Theory
3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.
More informationPurpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.
ES230 STRENGTH OF MTERILS Exam 3 Study Guide Exam 3: Wednesday, March 8 th inclass Updated 3/3/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on
More informationMechanical properties 1 Elastic behaviour of materials
MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical
More informationDEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS).
DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). Lab Director: Coordinating Staff: Mr. Muhammad Farooq (Lecturer) Mr. Liaquat Qureshi (Lab Supervisor)
More informationOutline. TensileTest Specimen and Machine. StressStrain Curve. Review of Mechanical Properties. Mechanical Behaviour
TensileTest Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress  true strain (flow curve) mechanical properties:  Resilience  Ductility  Toughness  Hardness A standard
More informationTheory at a Glance (for IES, GATE, PSU)
1. Stress and Strain Theory at a Glance (for IES, GATE, PSU) 1.1 Stress () When a material is subjected to an external force, a resisting force is set up within the component. The internal resistance force
More informationCork Institute of Technology. Autumn 2007 Mechanics of Materials (Time: 3 Hours)
Cork Institute of Technology Bachelor of Engineering (Honours) in Mechanical Engineering Stage 2 (NFQ Level 8) Autumn 2007 Mechanics of Materials (Time: 3 Hours) Instructions Answer Five Questions Question
More informationMSC Elastomers Seminar Some Things About Elastomers
MSC Elastomers Seminar Some Things About Elastomers Kurt Miller, Axel Products, Inc. www.axelproducts.com Visit us at: axelproducts.com 2 Your Presenter Kurt Miller Founded Axel Products 1994 Instron Corporation,
More informationChapter 13 ELASTIC PROPERTIES OF MATERIALS
Physics Including Human Applications 280 Chapter 13 ELASTIC PROPERTIES OF MATERIALS GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions
More informationR13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PARTA
SET  1 II B. Tech I Semester Regular Examinations, Jan  2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (PartA and PartB)
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)
More informationD : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.
D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having
More informationAdvanced Structural Analysis EGF Section Properties and Bending
Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear
More informationTENSILE TESTS (ASTM D 638, ISO
MODULE 4 The mechanical properties, among all the properties of plastic materials, are often the most important properties because virtually all service conditions and the majority of enduse applications
More informationSymmetric Bending of Beams
Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications
More informationPDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics
Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.
More informationENG1001 Engineering Design 1
ENG1001 Engineering Design 1 Structure & Loads Determine forces that act on structures causing it to deform, bend, and stretch Forces push/pull on objects Structures are loaded by: > Dead loads permanent
More informationOutline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications
Sensor devices Outline 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Introduction Two Major classes of mechanical
More information3. BEAMS: STRAIN, STRESS, DEFLECTIONS
3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets
More informationCHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS
CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a crosssectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress
More information12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka
Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction and classes of properties Case studies showing selection of the right material for the job Deformation of material under the action of a
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1  LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS
EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1  LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering
More informationSolid Mechanics Chapter 1: Tension, Compression and Shear
Solid Mechanics Chapter 1: Tension, Compression and Shear Dr. Imran Latif Department of Civil and Environmental Engineering College of Engineering University of Nizwa (UoN) 1 Why do we study Mechanics
More informationBending Load & Calibration Module
Bending Load & Calibration Module Objectives After completing this module, students shall be able to: 1) Conduct laboratory work to validate beam bending stress equations. 2) Develop an understanding of
More informationSTANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius
MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen
More informationCE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR
CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR 20142015 UNIT  1 STRESS, STRAIN AND DEFORMATION OF SOLIDS PART A 1. Define tensile stress and tensile strain. The stress induced
More informationMATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle?
MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: A. Composition
More informationME 176 Final Exam, Fall 1995
ME 176 Final Exam, Fall 1995 Saturday, December 16, 12:30 3:30 PM, 1995. Answer all questions. Please write all answers in the space provided. If you need additional space, write on the back sides. Indicate
More informationME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2)
ME 582 Advanced Materials Science Chapter 2 Macromechanical Analysis of a Lamina (Part 2) Laboratory for Composite Materials Research Department of Mechanical Engineering University of South Alabama, Mobile,
More informationGEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE
GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of Civil Engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.02225767328 email: cejnm@civil.iitb.ac.in Module13 LECTURE
More information**********************************************************************
Department of Civil and Environmental Engineering School of Mining and Petroleum Engineering 333 Markin/CNRL Natural Resources Engineering Facility www.engineering.ualberta.ca/civil Tel: 780.492.4235
More informationPES Institute of Technology
PES Institute of Technology Bangalore south campus, Bangalore5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject
More informationSRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA
SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA (Declared as Deemedtobe University under Section 3 of the UGC Act, 1956, Vide notification No.F.9.9/92U3 dated 26 th May 1993 of the Govt. of
More informationCHAPTER 4: BENDING OF BEAMS
(74) CHAPTER 4: BENDING OF BEAMS This chapter will be devoted to the analysis of prismatic members subjected to equal and opposite couples M and M' acting in the same longitudinal plane. Such members are
More informationNAME: Given Formulae: Law of Cosines: Law of Sines:
NME: Given Formulae: Law of Cosines: EXM 3 PST PROBLEMS (LESSONS 21 TO 28) 100 points Thursday, November 16, 2017, 7pm to 9:30, Room 200 You are allowed to use a calculator and drawing equipment, only.
More informationMATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS
MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS 3 rd Edition Michael S. Mamlouk Arizona State University John P. Zaniewski West Virginia University Solution Manual FOREWORD This solution manual includes
More informationAE3610 Experiments in Fluid and Solid Mechanics TRANSIENT MEASUREMENTS OF HOOP STRESSES FOR A THINWALL PRESSURE VESSEL
Objective AE3610 Experiments in Fluid and Solid Mechanics TRANSIENT MEASUREMENTS OF OOP STRESSES FOR A TINWA PRESSURE VESSE This experiment will allow you to investigate hoop and axial stress/strain relations
More informationSample Question Paper
Scheme I Sample Question Paper Program Name : Mechanical Engineering Program Group Program Code : AE/ME/PG/PT/FG Semester : Third Course Title : Strength of Materials Marks : 70 Time: 3 Hrs. Instructions:
More informationJUT!SI I I I TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER:
JUT!SI I I I TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER: COURSE: Tutor's name: Tutorial class day & time: SPRING
More information3 Hours/100 Marks Seat No.
*17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full
More information4.MECHANICAL PROPERTIES OF MATERIALS
4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stressstrain diagram
More informationLaboratory 4 Bending Test of Materials
Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective
More informationMECHANICS OF MATERIALS
2009 The McGrawHill Companies, Inc. All rights reserved. Fifth SI Edition CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes:
More information