Cavity optomechanics. Mishkat Bhattacharya Omjyoti Dutta Swati Singh

Size: px
Start display at page:

Download "Cavity optomechanics. Mishkat Bhattacharya Omjyoti Dutta Swati Singh"

Transcription

1 Cavity optomechanics Pierre Meystre B Institute, Dept. of Physics and College of Optical Sciences The University of Arizona Mishkat Bhattacharya Omjyoti Dutta Swati Singh ARO NSF ONR

2 quantum metrology How can quantum resources be exploited with maximal robustness and minimal technical overhead? What are the inherent sensitivity-reliability tradeoffs in quantum sensors? What is the role of particle statistics in quantum metrology? How do decoherence mechanisms set fundamental limits to measurement precision? This talk: Cooled nanoscale cantilevers for quantum control of AMO systems

3 outline Brief review of optomechanical mirror cooling Two- and three-mirror cavities Cantilever coupling to dipolar molecules Single molecule Phonon squeezing in molecular lattice Coherent control Outlook (J. Sankey, Yale University)

4 micromechanical cantilevers single-particle detectors Micromechanical cantilever with a single E. Coli cell A micromechanical cantilever with a single E. Coli cell attached. The cantilever is used to detect changes in mass due to selectively attached biological agents present in small quantities. Craighead Research Group, Cornell University Protein detection Three cantilevers coated with antibodies to PSA, a prostate cancer marker found in the blood. The left cantilever bends as the protein PSA binds to the antibody. Photo courtesy of Kenneth Hsu/UC Berkeley & the Protein Data Bank

5 micromirrors D. Kleckner & D. Bouwmeester, Nature 444, 75 (006) SEM photograph of a vertical thermal actuator with integrated micromirror. Application of a current to the actuator arm produces vertical motion of the mirror, which can either reflect an optical beam or allow it to be transmitted. (Southwest Research Institute,

6 radiation pressure mirror cooling Basic idea: change frequency and damping of a mirror mounted on a spring using radiation pressure Number of quanta of vibrational motion: n k T kbt env Γ M hωeff hωef f Γeff B eff = [ H. Metzger and K. Karrai, Nature 43, 100 (004) ] Cold damping: laser radiation increases mirror damping. Requires laser tuned below cavity resonance Little change in mirror frequency Increase effective mirror frequency Requires laser tuned above cavity resonance Use two lasers! [ T. Corbitt et al, PRL 98, (007) ]

7 basic optomechanics cold damping Goal: increasing Ω eff Trapping due to `optical spring : k opt = df rp dx ( x) B. S. Sheard et al. PRA 69, (R) (004) Need blue-detuned cavity

8 basic optomechanics mirror cooling Goal: decreasing T = Γ Γ eff Tenv ( M / eff ) Cooling due to asymmetric pumping of sidebands ω 0 Ω F ω 0 + Ω ω 0 ω0 Ω M. Lucamarini et al., PRA 74, (006) A. Schliesser et al. PRL 97, (006) Need red-detuned cavity

9 competing requirements Blue detuned cavity Restoring force (optical spring) Antidamping Red detuned cavity Anti-restoring force Damping

10 two-wavelengths approach T. Corbitt et al, PRL 98, (007) Spring constant damping k>0 Γ>0 Dynamically unstable (subcarrier) k>0 Γ<0 Stable k<0 Γ>0 anti-stable k<0 Γ<0 Statically unstable (carrier)

11 Prehistory V. Braginsky, Measurement of weak forces in physics experiments (Univ. of Chicago Press, Chicago, 1977). V.B. Braginsky and F.Y. Khalili, "Quantum measurement'' Cambridge University Press, Cambridge, 199 C. M. Caves, Quantum mechanical noise in an interferometer, Phys. Rev. D3, 1693 (1981).

12 prehistory

13 early history Cavity cooling of a microlever, C. Höhberger-Metzger & K. Karrai, Nature 43, 100 (004) 18K

14 recent history S. Gigan et al. (Zeilinger group) Self-cooling of a micromirror by radiation pressure, Nature 444, 67 (006) < 10K O. Arcizet et al. (Pinard/Heidman group) Radiation pressure cooling and optomechanical instability of a micromirror, Nature 444, 71 (006) 10K D. Kleckner et al. (Bouwmeester group) Sub-Kelvin optical cooling of a micromechanical resonator, Nature 444, 75 (006) 135 mk A. Schliesser et al. (Vahala/Kippenberg groups) Radiation pressure cooling of a micromechanical oscillator using dynamical back-action PRL 97, (006) T. Corbitt et al. (LIGO) An all-optical trap for a gram-scale mirror, PRL 98, (007), Optical dilution and feedback cooling of a gram-scale oscillator, PRL 99, (007) 11K 6.9 mk A. Vinante et al (AURIGA gravitational wave detector mirror), M eff = 1,100 Kg, PRL 101, (008) 0.17 mk

15 systems From T. Kippenberg and K. Vahala Science 31, 117 (008)

16 three-mirror geometry [ A. Dorsel et al., PRL 51, 1550 (1983); PM et al, JOSA B11, 1830 (1985); J. D. McCullen et al., Optics Lett. 9, 193 (1984) ]

17 three-mirror cavity Nature 45, 7 (008) See also: M. Bhattacharya and PM, PRL 99, (007) M. Bhattacharya et al, PRA 77, (008) Early discussion: PM et al., JOSA B, 1830 (1985)

18 basic optomechanics quantum approach p 1 H = hωn( q) a a + mω q m + M But: nπ c 1 q ωn( q) = = ωn ωn 1 L + q 1 + q / L L So: H p 1 hωna a + + mω M q hξa aq m

19 three-mirror cavity, R=1 ω ω n, l n, r ω (1 q / L) n ω (1 + q / L) n L 0 q L H p 1 = hωn ( a a + b b) + + mω M q hξ ( a a b b) q m

20 three-mirror cavity, R<1 q0 0 ω ω δ ξ n, e n e L( q q 0) ω ω + δ + ξ n, o n o L( q q 0) q / L W. J. Fader, IEEE J. Quant. Electron. 1, 1838 (1985) p 1 H = h( ωn δe) a a + h( ωn + δo) b b + + mω M q hξl( a a b b) q m

21 three-mirror cavity, R< 1 q0 0, ξq ( 0) ωn e ωn q q, ω + + ξq ( 0) ωn o n o q q q / L H p 1 = h( ω δ ) ω δ + ξ ( m n e a a + h( n + o) b b + mω M q h Q a a b b) q allows preparation of energy eigenstates & observation of quantum jumps

22 linear vs. quadratic coupling Linear coupling Quadratic coupling back-action: mirror motion changed cavity frequency changed intracavity power changed radiation pressure Important when storage time of light comparable to inverse mirror oscillation frequency Quadratic opto-mechanical coupling simply modifies the effective frequency of oscillating mirror Purely dispersive Requires asymmetry in frequency change for two directions of mirror motion

23 a flavor of the theory (R=1) p 1 ( ) Ω M q hξ ( ) H = hωc a a + b b + + m a a b b q m Quantum Langevin equations of motion, input-output formalism: ( ξ ) a& = i Q + γ / a + b& = i ( ξ Q ) + γ / b + q& = p / m p& γ a γ b in in ( ) ( M / ) mωm q + hξ a a b b Γ m p = + ε in Noise operators: ( ) ( ) ( ) ( ) ain t = ain, s + δ ain t δ ain t, δ ain t ' = δ ( t t ') ΓM dω iω ( t t ') hω εin ( t) = 0 εin ( t) εin ( t ') = e ω 1 coth m h + π kbt

24 steady-state linear coupling Effective frequency: in Ωeff ΩM ML δ 4ξγ P 1 [( γ / ) + δ ] Cooling: 4ξγ P 1 δ ML [( γ / ) + δ ] in Γeff ΓM + 3 stiffening field: δ δ > 0 P s in P s cooling field: δ δ < 0 P c in P c M. Bhattacharya and PM, PRL 99, (007) M. Bhattacharya, H. Uys and PM, PRA 77, (008)

25 steady-state quadratic coupling Effective frequency: ξ γ P 1 Ω Ω + + Q in eff M Mωn ( γ / ) δ Effective stiffness: Γ eff Γ M maximized on resonance

26 cooling of rotational motion H Lz 1 = hωca a + + Iωφφ hξφa aφ I [ L, φ ] = ih I z = MR / Spiral phase elements with opposite windings on both sides ω D ξ γ P φ in eff ωφ Iωc [ + ( γ / ) ] ξ γ P φ in eff Dφ + 3 Iωc [ + ( γ / ) ] as = ωc ωφ hξφ Iω φ M. Bhattacharya & PM, PRL 99, (007)

27 rovibrational entanglement scaling: z : h / Mω p : hmω z z z φ : h / Iω L : hiω φ z φ Hamiltonian (dimensionless form) hω hω z φ H = hωca a + ( pz + z ) + ( Lz + φ ) hg za az + hgφa aφ g z ω h cl h L M L Iω c = gφ = ωz φ

28 rovibrational entanglement Entanglement measure: Ru ( ω) Rv ( ω) E( ω) [ R ( ω), R ( ω)] z p Rovibrational entanglement for E( ω ) < 1 z δu = δ z δφ δ v = δ p + δ L R u z z = [ δu( ω) + δu( ω)] / M. Bhattacharya P.-L Giscard and PM, PRA 77, (R) (008)

29 Schrödinger drum Relative motion: q = q m ω eff eff q 1 = m / = 3ω m Center-of-mass motion: Q = ( q + q ) / M eff eff 1 = m Ω = ω m Cavity spectrum (allowed values of k) sin ( θ + 3 kl) + sin θ sin k(3 L q) = sinθ cos( θ + kq) cos kq sinθ = R M. Bhattacharya and PM, PRA78, (R) (008)

30 cavity spectrum ω ( q, Q) = + B ( q q ) + M ( q q ) n, i n, i n, i 0 n, i + B ' n, i ( Q Q ) + M ( Q Q n, i 0 n, i 0 + P ( q q )( Q Q ) ) o Can cool normal modes separately can perform QND energy measurements on normal modes separately Can use mode coupling to control one mode with the other Can generate quantum entanglement of modes (Hartmann and Plenio, PRL to be published)

31 cantilevers for quantum detection and control Pushing quantum mechanics to truly macroscopic systems Quantum superpositions and entanglement in macroscopic systems Novel detectors Coherent control Single-domain ferromagnet with oscillatory component B(t) couples to atomic spin F Described by Tavis-Cummings Hamiltonian [P. Treutlein et al., PRL 99, (007)]

32 Tavis-Cummings Hamiltonian Magnetic field at center of microtrap: B ( t) = G a( t) e $ x r m Cantilever-condensate interaction: H = µ B ( t) = µ g F a( t) r b F x Detuning: µ B gf B0 δ = ω L ω c = ω c h Hamiltonian: H = H + H + V = ω S + ω a a + g S a + S a + BEC r h L z h c h ( ) spin N/ g = µ BGm h h mω r [P. Treutlein et al., PRL 99, (007)]

33 cantilever coupling to dipolar molecules

34 single molecule Used in Magnetic Force Microscopy Frequency shift squeezing G dd = 1 4πε Electric dipoles 0 ω t = ωt + π 3d m d c 5 ε0mr 1/ G dd = µ 0 4π Magnetic dipoles r = ( R + xc ) + x m 1/

35 motional squeezing Classical cantilever motion, = I ( ) V = hc b + b ω ω c t C 15dmd c h = N 6 4πεo mωt R mcωc 1/ N = k B T c / hω c u = Ct S. Singh, M. Bhattacharya, O. Dutta, PM, arxiv:

36 lattice of molecular dipoles E-field One-dimensional molecular chain: H p N N pi dm 1 = + + V 3 t i m 4π ε o i< j x x i j l Small displacements: ω = ω sin( kl / ) k ω = d 0 (3 / πε ml ) 0 m 0 5 1/ Acoustic phonons H ω 1 p = h k bk bk + k P. Rabl and P. Zoller PRA (007)

37 coupling to micromechanical oscillator Hc = hω c a a + k 1 V I dmd c 3( R + xc ) = 1 3 i ri ri Lengths hierarchy: qi l Nl R Squeezing! Frequency shift: ω ω + k k 1 4πε 0 6dmd mω R k c 5 Phonons-oscillator interaction ( )( ) V = hc a + a b b + b b + b b + b b I k k k k k k k k k k C k 3dmd c h = 6 πεo mωk R mcωc 1/

38 phonon squeezing Classical cantilever motion, RWA, VI = h NCk ( bk b k + b kbk ) Two-mode squeezing: 1 ( k k k k ) s1 = b + b + b + b 1 ( k k k k ) s = b b b + b i ω = MHz SrO molecule 16 m = 10 Kg c c N = 100 d c = 10 1 R = µ m l = 00 nm C = k u= C k Cm Nt

39 coherent control V = m c [ R x 7 com + xrel + xc ε0r 4 ( ) 48R x x 48R x x 140lx + 60lx x 60lx d d 8π 3 c com c com rel rel com x + 10lx x x rel c c rel com ] Center-of-mass and relative modes of motion, classical cantilever V exp[ ( ω ω ω )] +.. Lc ab i rel com c ( t) h c a, a b, b L c = N h mcωc 1/ Varied for coherent control

40 simple case ψ (0) = 1,0 com rel ψ ( t) = α 1,0 + β 0,1 com rel com rel Cantilever frequency dependence last generation

41 More interesting start from a thermal state Average occupation Cantilever frequency generation time (Preliminary results) Mean energy generation

42 outlook Limits of cooling Preparation of exotic states Quantized cantilever motion Quantum phase transitions Wenzhou Chen & PM (under construction) Condensates in high-q cavities Esslinger et al, Science 3, 35 (008) Stamper-Kurn et al, Nature Physics 4, 561 (008)

Optomechanics and spin dynamics of cold atoms in a cavity

Optomechanics and spin dynamics of cold atoms in a cavity Optomechanics and spin dynamics of cold atoms in a cavity Thierry Botter, Nathaniel Brahms, Daniel Brooks, Tom Purdy Dan Stamper-Kurn UC Berkeley Lawrence Berkeley National Laboratory Ultracold atomic

More information

From trapped ions to macroscopic quantum systems

From trapped ions to macroscopic quantum systems 7th International Summer School of the SFB/TRR21 "Control of Quantum Correlations in Tailored Matter 21-13 July 2014 From trapped ions to macroscopic quantum systems Peter Rabl Yesterday... Trapped ions:

More information

Young-Shin Park and Hailin Wang Dept. of Physics and Oregon Center for Optics, Univ. of Oregon CLEO/IQEC, June 5, Supported by NSF and ARL

Young-Shin Park and Hailin Wang Dept. of Physics and Oregon Center for Optics, Univ. of Oregon CLEO/IQEC, June 5, Supported by NSF and ARL Resolved--sideband cooling of an optomechanical Resolved resonator in a cryogenic environment Young-Shin Park and Hailin Wang Dept. of Physics and Oregon Center for Optics, Univ. of Oregon CLEO/IQEC, June

More information

Day 3: Ultracold atoms from a qubit perspective

Day 3: Ultracold atoms from a qubit perspective Cindy Regal Condensed Matter Summer School, 2018 Day 1: Quantum optomechanics Day 2: Quantum transduction Day 3: Ultracold atoms from a qubit perspective Day 1: Quantum optomechanics Day 2: Quantum transduction

More information

Radiation pressure effects in interferometric measurements

Radiation pressure effects in interferometric measurements Laboratoire Kastler Brossel, Paris Radiation pressure effects in interferometric measurements A. Heidmann M. Pinard J.-M. Courty P.-F. Cohadon T. Briant O. Arcizet T. Caniard C. Molinelli P. Verlot Quantum

More information

The Quantum Limit and Beyond in Gravitational Wave Detectors

The Quantum Limit and Beyond in Gravitational Wave Detectors The Quantum Limit and Beyond in Gravitational Wave Detectors Gravitational wave detectors Quantum nature of light Quantum states of mirrors Nergis Mavalvala GW2010, UMinn, October 2010 Outline Quantum

More information

Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime

Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime Bijita Sarma and Amarendra K Sarma Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039,

More information

An Opto-Mechanical Microwave-Rate Oscillator

An Opto-Mechanical Microwave-Rate Oscillator An Opto-Mechanical Microwave-Rate Oscillator Tal Carmon and Kerry Vahala California Institute of Technology Diameter of a human hair Opto excited Vibration: Explanation Pump Res Wavelength Experimental

More information

Advanced Workshop on Nanomechanics September Quantum Measurement in an Optomechanical System

Advanced Workshop on Nanomechanics September Quantum Measurement in an Optomechanical System 2445-03 Advanced Workshop on Nanomechanics 9-13 September 2013 Quantum Measurement in an Optomechanical System Tom Purdy JILA - NIST & University of Colorado U.S.A. Tom Purdy, JILA NIST & University it

More information

Cavity optomechanics: interactions between light and nanomechanical motion

Cavity optomechanics: interactions between light and nanomechanical motion Cavity optomechanics: interactions between light and nanomechanical motion Florian Marquardt University of Erlangen-Nuremberg, Germany, and Max-Planck Institute for the Physics of Light (Erlangen) DARPA

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Light Sources and Interferometer Topologies - Introduction -

Light Sources and Interferometer Topologies - Introduction - Light Sources and Interferometer Topologies - Introduction - Roman Schnabel Albert-Einstein-Institut (AEI) Institut für Gravitationsphysik Leibniz Universität Hannover Light Sources and Interferometer

More information

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013 Ground state cooling via Sideband cooling Fabian Flassig TUM June 26th, 2013 Motivation Gain ultimate control over all relevant degrees of freedom Necessary for constant atomic transition frequencies Do

More information

Measured Transmitted Intensity. Intensity 1. Hair

Measured Transmitted Intensity. Intensity 1. Hair in Radiation pressure optical cavities Measured Transmitted Intensity Intensity 1 1 t t Hair Experimental setup Observes oscillations Physical intuition Model Relation to: Other nonlinearities, quantum

More information

Cavity optomechanics in new regimes and with new devices

Cavity optomechanics in new regimes and with new devices Cavity optomechanics in new regimes and with new devices Andreas Nunnenkamp University of Basel 1. What? Why? How? 2. Single-photon regime 3. Dissipative coupling Introduction Cavity optomechanics radiation

More information

Introduction to Optomechanics

Introduction to Optomechanics Centre for Quantum Engineering and Space-Time Research Introduction to Optomechanics Klemens Hammerer Leibniz University Hannover Institute for Theoretical Physics Institute for Gravitational Physics (AEI)

More information

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Peer Review File Description: Optical frequency (THz) 05. 0 05. 5 05.7

More information

8 Quantized Interaction of Light and Matter

8 Quantized Interaction of Light and Matter 8 Quantized Interaction of Light and Matter 8.1 Dressed States Before we start with a fully quantized description of matter and light we would like to discuss the evolution of a two-level atom interacting

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA.

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA. Funding NIST NSA/LPS DARPA Boulder, CO Control and measurement of an optomechanical system using a superconducting qubit Florent Lecocq PIs Ray Simmonds John Teufel Joe Aumentado Introduction: typical

More information

Optomechanics: Hybrid Systems and Quantum Effects

Optomechanics: Hybrid Systems and Quantum Effects Centre for Quantum Engineering and Space-Time Research Optomechanics: Hybrid Systems and Quantum Effects Klemens Hammerer Leibniz University Hannover Institute for Theoretical Physics Institute for Gravitational

More information

Quantum cavity optomechanics with nanomembranes

Quantum cavity optomechanics with nanomembranes Quantum cavity optomechanics with nanomembranes David Vitali School of Science and Technology, Physics Division, University of Camerino, Italy, in collaboration with: M. Karuza, C. Biancofiore, G. Di Giuseppe,

More information

Cavity optomechanics: manipulating mechanical resonators with light

Cavity optomechanics: manipulating mechanical resonators with light Cavity optomechanics: manipulating mechanical resonators with light David Vitali School of Science and Technology, Physics Division, University of Camerino, Italy in collaboration with M. Abdi, Sh. Barzanjeh,

More information

Optomechanically induced transparency of x-rays via optical control: Supplementary Information

Optomechanically induced transparency of x-rays via optical control: Supplementary Information Optomechanically induced transparency of x-rays via optical control: Supplementary Information Wen-Te Liao 1, and Adriana Pálffy 1 1 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg,

More information

Nonlinear Oscillators and Vacuum Squeezing

Nonlinear Oscillators and Vacuum Squeezing Nonlinear Oscillators and Vacuum Squeezing David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts

More information

Mechanical mode dependence of bolometric back-action in an AFM microlever

Mechanical mode dependence of bolometric back-action in an AFM microlever Mechanical mode dependence of bolometric back-action in an AFM microlever Guillaume Jourdan, Fabio Comin, Joël Chevrier To cite this version: Guillaume Jourdan, Fabio Comin, Joël Chevrier. Mechanical mode

More information

Aspects Of Multimode Quantum Optomechanics

Aspects Of Multimode Quantum Optomechanics Aspects Of Multimode Quantum Optomechanics Item Type text; Electronic Dissertation Authors Seok, HyoJun Publisher The University of Arizona. Rights Copyright is held by the author. Digital access to this

More information

Quantum Effects in Optomechanics

Quantum Effects in Optomechanics Centre for Quantum Engineering and Space-Time Research Quantum Effects in Optomechanics Klemens Hammerer Leibniz University Hannover Institute for Theoretical Physics Institute for Gravitational Physics

More information

Quantum-noise reduction techniques in a gravitational-wave detector

Quantum-noise reduction techniques in a gravitational-wave detector Quantum-noise reduction techniques in a gravitational-wave detector AQIS11 satellite session@kias Aug. 2011 Tokyo Inst of Technology Kentaro Somiya Contents Gravitational-wave detector Quantum non-demolition

More information

Cavity optomechanics: Introduction to Dynamical Backaction

Cavity optomechanics: Introduction to Dynamical Backaction Cavity optomechanics: Introduction to Dynamical Backaction Tobias J. Kippenberg Collaborators EPFL-CMI K. Lister J. (EPFL) P. Kotthaus J. P. Kotthaus (LMU) W. Zwerger W. Zwerger (TUM) I. Wilson-Rae (TUM)

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS6012W1 SEMESTER 1 EXAMINATION 2012/13 Coherent Light, Coherent Matter Duration: 120 MINS Answer all questions in Section A and only two questions in Section B. Section A carries

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology Towards quantum metrology with N00N states enabled by ensemble-cavity interaction Hao Zhang Monika Schleier-Smith Robert McConnell Jiazhong Hu Vladan Vuletic Massachusetts Institute of Technology MIT-Harvard

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

Resonantly Enhanced Microwave Photonics

Resonantly Enhanced Microwave Photonics Resonantly Enhanced Microwave Photonics Mankei Tsang Department of Electrical and Computer Engineering Department of Physics National University of Singapore eletmk@nus.edu.sg http://www.ece.nus.edu.sg/stfpage/tmk/

More information

Optically detecting the quantization of collective atomic motion

Optically detecting the quantization of collective atomic motion Optically detecting the quantization of collective atomic motion Nathan Brahms,, Thierry Botter, Sydney Schreppler, Daniel W.C. Brooks, and Dan M. Stamper-Kurn, Department of Physics, University of California,

More information

The optomechanics of deformable optical cavities has seen a

The optomechanics of deformable optical cavities has seen a published online: 3 March 2009 doi: 0.038/nphoton.2009.42 optomechanics of deformable optical cavities ivan Favero and Khaled Karrai 2,3 Resonant optical cavities such as Fabry Perot resonators or whispering-gallery

More information

QND for advanced GW detectors

QND for advanced GW detectors QND techniques for advanced GW detectors 1 for the MQM group 1 Lomonosov Moscow State University, Faculty of Physics GWADW 2010, Kyoto, Japan, May 2010 Outline Quantum noise & optical losses 1 Quantum

More information

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator Research on optomechanical systems is of relevance to gravitational wave detection

More information

Advanced Workshop on Nanomechanics September Optomechanics with micro and nano-mirrors

Advanced Workshop on Nanomechanics September Optomechanics with micro and nano-mirrors 2445-09 Advanced Workshop on Nanomechanics 9-13 September 2013 Optomechanics with micro and nano-mirrors Samuel Deléglise Laboratoire Kastler Brossel Universite P. et M. Curie Optomechanics with micro

More information

Quantum optics and optomechanics

Quantum optics and optomechanics Quantum optics and optomechanics 740nm optomechanical crystals LIGO mirror AMO: Alligator nanophotonic waveguide quantum electro-mechanics Oskar Painter, Jeff Kimble, Keith Schwab, Rana Adhikari, Yanbei

More information

Towards new states of matter with atoms and photons

Towards new states of matter with atoms and photons Towards new states of matter with atoms and photons Jonas Larson Stockholm University and Universität zu Köln Aarhus Cold atoms and beyond 26/6-2014 Motivation Optical lattices + control quantum simulators.

More information

Feedback control of atomic coherent spin states

Feedback control of atomic coherent spin states Feedback control of atomic coherent spin states Andrea Bertoldi Institut d Optique, France RG Colloquium Hannover 13/12/2012 Feedback control h(t) Constant flow is required to keep time P = r H2O g h(t)

More information

opto-mechanical filtering

opto-mechanical filtering opto-mechanical filtering Robert L. Ward Australian National University Gravitational Wave Advanced Detector Workshop Waikoloa, HI, 22 squeezing accomplished now that we ve got the ellipse we need, let

More information

Optical Coatings and Thermal Noise in Precision Measurements

Optical Coatings and Thermal Noise in Precision Measurements Optical Coatings and Thermal Noise in Precision Measurements Embry-Riddle Aeronautical University Physics Colloquium October 25, 2011 Gregory Harry American University LIGO-G1101150 Thermal Noise Random

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Mesoscopic field state superpositions in Cavity QED: present status and perspectives

Mesoscopic field state superpositions in Cavity QED: present status and perspectives Mesoscopic field state superpositions in Cavity QED: present status and perspectives Serge Haroche, Ein Bokek, February 21 st 2005 Entangling single atoms with larger and larger fields: an exploration

More information

Phasor Calculations in LIGO

Phasor Calculations in LIGO Phasor Calculations in LIGO Physics 208, Electro-optics Peter Beyersdorf Document info Case study 1, 1 LIGO interferometer Power Recycled Fabry-Perot Michelson interferometer 10m modecleaner filters noise

More information

UNIVERSITY OF CALGARY. Roohollah Ghobadi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

UNIVERSITY OF CALGARY. Roohollah Ghobadi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE UNIVERSITY OF CALGARY Towards Macroscopic Quantum Effects Using Optomechanical and Optical Systems by Roohollah Ghobadi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE

More information

Atomic Physics (Phys 551) Final Exam Solutions

Atomic Physics (Phys 551) Final Exam Solutions Atomic Physics (Phys 551) Final Exam Solutions Problem 1. For a Rydberg atom in n = 50, l = 49 state estimate within an order of magnitude the numerical value of a) Decay lifetime A = 1 τ = 4αω3 3c D (1)

More information

Cavity Optomechanics:

Cavity Optomechanics: Cavity Cavity Optomechanics: Optomechanics: Toward TowardQuantum QuantumControl Controlof ofmacroscopic MacroscopicDevices Devices GDR-IQFA 2012 / Grenoble (28-29-30 / 11 / 2012) Aurélien G. Kuhn, A. Heidmann

More information

I. Introduction. What s the problem? Standard quantum limit (SQL) for force detection. The right wrong story III. Beating the SQL.

I. Introduction. What s the problem? Standard quantum limit (SQL) for force detection. The right wrong story III. Beating the SQL. Quantum limits on estimating a waveform II. I. Introduction. What s the problem? Standard quantum limit (SQL) for force detection. The right wrong story III. Beating the SQL. Three strategies Carlton M.

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Beyond Heisenberg uncertainty principle in the negative mass reference frame. Eugene Polzik Niels Bohr Institute Copenhagen

Beyond Heisenberg uncertainty principle in the negative mass reference frame. Eugene Polzik Niels Bohr Institute Copenhagen Beyond Heisenberg uncertainty principle in the negative mass reference frame Eugene Polzik Niels Bohr Institute Copenhagen Trajectories without quantum uncertainties with a negative mass reference frame

More information

arxiv: v1 [cond-mat.mes-hall] 12 Feb 2009

arxiv: v1 [cond-mat.mes-hall] 12 Feb 2009 arxiv:0902.2163v1 [cond-mat.mes-hall] 12 Feb 2009 OPTOMECHANICS Björn Kubala, Max Ludwig, and Florian Marquardt Department of Physics, Arnold Sommerfeld Center for Theoretical Physics, and Center for NanoScience,

More information

Quantum Noise in Mirror-Field Systems: Beating the Standard Quantum IARD2010 Limit 1 / 23

Quantum Noise in Mirror-Field Systems: Beating the Standard Quantum IARD2010 Limit 1 / 23 Quantum Noise in Mirror-Field Systems: Beating the Standard Quantum Limit Da-Shin Lee Department of Physics National Dong Hwa University Hualien,Taiwan Presentation to Workshop on Gravitational Wave activities

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 17 Jan 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 17 Jan 2007 Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion arxiv:cond-mat/746v [cond-mat.mes-hall] 7 Jan 27 Florian Marquardt, Joe P. Chen, 2 A.A. Clerk, 3 and S.M. Girvin 2 Department of

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Mechanical Quantum Systems

Mechanical Quantum Systems Mechanical Quantum Systems Matt LaHaye Syracuse University 09 Nov. 2013 Outline My field: Mechanical Quantum Systems - What are these systems? - Why are they interesting? What are some of the experimental

More information

Stationary entanglement between macroscopic mechanical. oscillators. Abstract

Stationary entanglement between macroscopic mechanical. oscillators. Abstract Stationary entanglement between macroscopic mechanical oscillators Stefano Mancini 1, David Vitali 1, Vittorio Giovannetti, and Paolo Tombesi 1 1 INFM, Dipartimento di Fisica, Università di Camerino, I-603

More information

BEC meets Cavity QED

BEC meets Cavity QED BEC meets Cavity QED Tilman Esslinger ETH ZürichZ Funding: ETH, EU (OLAQUI, Scala), QSIT, SNF www.quantumoptics.ethz.ch Superconductivity BCS-Theory Model Experiment Fermi-Hubbard = J cˆ ˆ U nˆ ˆ i, σ

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Optomechanics - light and motion in the nanoworld

Optomechanics - light and motion in the nanoworld Optomechanics - light and motion in the nanoworld Florian Marquardt [just moved from: Ludwig-Maximilians-Universität München] University of Erlangen-Nuremberg and Max-Planck Institute for the Physics of

More information

arxiv: v1 [quant-ph] 10 Mar 2013

arxiv: v1 [quant-ph] 10 Mar 2013 Dynamical Localization of Bose-Einstein condensate in Optomechanics Muhammad Ayub, 1, Kashif Ammar Yasir, 1 and Farhan Saif 1 1 Department of Electronics, Quaid-i-Azam University, 4530, Islamabad, Pakistan.

More information

Integrated Optomechanical (and Superconducting) Quantum Circuits

Integrated Optomechanical (and Superconducting) Quantum Circuits KITP Program on Synthetic Quantum Matter October 4, 2016 Integrated Optomechanical (and Superconducting) Quantum Circuits Oskar Painter Institute for Quantum Information and Matter, Thomas J. Watson, Sr.,

More information

arxiv:quant-ph/ v2 17 May 2007

arxiv:quant-ph/ v2 17 May 2007 Stationary entanglement between two movable mirrors in a classically driven Fabry-Perot cavity arxiv:quant-ph/0611038v 17 May 007 David Vitali, Stefano Mancini, and Paolo Tombesi Dipartimento di Fisica,

More information

From cavity optomechanics to the Dicke quantum phase transition

From cavity optomechanics to the Dicke quantum phase transition From cavity optomechanics to the Dicke quantum phase transition (~k; ~k)! p Rafael Mottl Esslinger Group, ETH Zurich Cavity Optomechanics Conference 2013, Innsbruck Motivation & Overview Engineer optomechanical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Qiang Lin Jessie Rosenberg Darrick Chang Ryan Camacho Matt Eichenfield Kerry J. Vahala and Oskar Painter Thomas J. Watson Sr. Laboratory of Applied Physics California Institute

More information

arxiv:quant-ph/ v1 25 Nov 2003

arxiv:quant-ph/ v1 25 Nov 2003 Beating quantum limits in interferometers with quantum locking of mirrors arxiv:quant-ph/0311167v1 5 Nov 003 1. Introduction Antoine Heidmann, Jean-Michel Courty, Michel Pinard and Julien Lears Laoratoire

More information

Supplementary information

Supplementary information Supplementary information April 16, 2008 Development of collective modes The atoms in our system are confined at many locations within a one dimensional optical lattice of wavevector k t /850 nm, yet interact

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Nonequilibrium dynamics of interacting systems of cold atoms

Nonequilibrium dynamics of interacting systems of cold atoms Nonequilibrium dynamics of interacting systems of cold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin,

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Advisor: M. Özgür Oktel Co-Advisor: Özgür E. Müstecaplıoğlu Outline Superradiance and BEC Superradiance

More information

Einstein-Podolsky-Rosen entanglement t of massive mirrors

Einstein-Podolsky-Rosen entanglement t of massive mirrors Einstein-Podolsky-Rosen entanglement t of massive mirrors Roman Schnabel Albert-Einstein-Institut t i tit t (AEI) Institut für Gravitationsphysik Leibniz Universität Hannover Outline Squeezed and two-mode

More information

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris Les Puces à Atomes Jakob Reichel Laboratoire Kastler Brossel de l E.N.S., Paris Atom chips: Cold atoms meet the nanoworld ~ 100 nm BEC (~ 10 5 atoms, ~ 100 nk) microstructured surface bulk material ( ~

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008 Precision Interferometry with a Bose-Einstein Condensate Cass Sackett Research Talk 17 October 2008 Outline Atom interferometry Bose condensates Our interferometer One application What is atom interferometry?

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

Quantum Information Processing with Electrons?

Quantum Information Processing with Electrons? Quantum Information Processing with 10 10 Electrons? René Stock IQIS Seminar, October 2005 People: Barry Sanders Peter Marlin Jeremie Choquette Motivation Quantum information processing realiations Ions

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University Quantum optics Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik M. Suhail Zubairy Quaid-i-Azam University 1 CAMBRIDGE UNIVERSITY PRESS Preface xix 1 Quantum theory of radiation

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

Squeezing manipulation with atoms

Squeezing manipulation with atoms Squeezing manipulation with atoms Eugeniy E. Mikhailov The College of William & Mary March 21, 2012 Eugeniy E. Mikhailov (W&M) Squeezing manipulation LSC-Virgo (March 21, 2012) 1 / 17 About the college

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0 (two-qubit gate): tools: optical dipole force P 3/2 P 1/2 F = -1.5 F n=3 n=3 n=0 S 1/2 n=0 optical dipole force is state dependent tools: optical dipole force (e.g two qubits) ω 2 k1 d ω 1 optical dipole

More information

Niels Bohr Institute Copenhagen University. Eugene Polzik

Niels Bohr Institute Copenhagen University. Eugene Polzik Niels Bohr Institute Copenhagen University Eugene Polzik Ensemble approach Cavity QED Our alternative program (997 - ): Propagating light pulses + atomic ensembles Energy levels with rf or microwave separation

More information

Quantum Noise and Quantum Measurement

Quantum Noise and Quantum Measurement Quantum Noise and Quantum Measurement (APS Tutorial on Quantum Measurement)!F(t) Aashish Clerk McGill University (With thanks to S. Girvin, F. Marquardt, M. Devoret) t Use quantum noise to understand quantum

More information

A few issues on molecular condensates

A few issues on molecular condensates A few issues on molecular condensates Outline Background Atomic dark state and creating ground molecular BEC Superchemistry and coherent atom-trimer conversion Quantum dynamics of a molecular matterwave

More information

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction Eugeniy E. Mikhailov The College of William & Mary, USA New Laser Scientists, 4 October 04 Eugeniy E. Mikhailov

More information

Quantum optics and squeezed states of light

Quantum optics and squeezed states of light Quantum optics and squeezed states of light Eugeniy E. Mikhailov The College of William & Mary June 15, 2012 Eugeniy E. Mikhailov (W&M) Quantum optics June 15, 2012 1 / 44 From ray optics to semiclassical

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

OIST, April 16, 2014

OIST, April 16, 2014 C3QS @ OIST, April 16, 2014 Brian Muenzenmeyer Dissipative preparation of squeezed states with ultracold atomic gases GW & Mäkelä, Phys. Rev. A 85, 023604 (2012) Caballar et al., Phys. Rev. A 89, 013620

More information

Squeezed Light for Gravitational Wave Interferometers

Squeezed Light for Gravitational Wave Interferometers Squeezed Light for Gravitational Wave Interferometers R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, and K. Danzmann. Institut für Atom- und Molekülphysik, Universität Hannover Max-Planck-Institut

More information

Sensing the quantum motion of nanomechanical oscillators

Sensing the quantum motion of nanomechanical oscillators Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki Joseph Kerckhoff Collaborators John Teufel Cindy Regal Ray Simmonds Kent Irwin Graduate students Jennifer

More information