A new source term in the parameterized TKE equation being of relevance for the stable boundary layer - The circulation term

Size: px
Start display at page:

Download "A new source term in the parameterized TKE equation being of relevance for the stable boundary layer - The circulation term"

Transcription

1 A new source term in the parameteried TKE equation being of releance for the stable boundary layer - The circulation term Matthias Raschendorfer DWD Ref.: Principals of a moist non local roughness layer extension of atmospheric turbulence closure M. Raschendorfer, 006, DWD internal document, going to be published NetFam Matthias Raschendorfer Toulouse 007

2 Single column solution for turbulent flux densities:. Using closure assumptions: -nd order budgets reduce to a 5X5 linear system of equations built of all second order moments of the ariable set {, q, u,, w }. Using horiontal boundary layer approximation: Flux gradient representation of the only releant ertical flux densities: turbulent master length scale ρφ w ρφ w ρk φ φˆ K φ : = ql S φ turbulent diffusion coefficient q TKE stability function NetFam Matthias Raschendorfer Toulouse 007

3 The limit of the pure turbulent BL approximation (here of the ordinary TKE-equation) for stabile stratification: D t ρq anishing mean wind stable thermal stratification ρu w ρk M u + g g H ( u) ρk ε < 0 0 ρ w ε < 0 free atmospheric turbulence closure NetFam Matthias Raschendorfer Toulouse 007

4 What processes can preent TKE form decreasing to ero (what is missing)? 0. Prognostic extension Sub grid scale transport. Moist extension Sub grid scale condensation. Roughness layer extension Canopy terms. Non turbulence scale (non local, multi scale) extension Circulation terms NetFam Matthias Raschendorfer Toulouse 007

5 The moist extension - sub grid cloud processes: Inclusion of sub grid scale condensation: -Using conseratie ariables with respect to condensation: c w = ql q l l c p q + = Correlations with condensation source terms are considered implicitly for non precipitating and not icing clouds. Soling for cloud water and cloud fraction by using the statistical condensation scheme (according to SD): L d q -Normal distribution of saturation deficiency -Expressing ariance of by ariance of and Δq sat Δq sat l qw, both generated from the turbulence scheme Δq sat 0 x NetFam Matthias Raschendorfer Toulouse 007

6 Mathematical reason for the canopy terms: Sub grid scale slope of the model layers or Intersections of roughness elements Aeraging and differentiation in space (flux diergence) can no longer be commuted ( ) x σ Canopy terms in the aeraged model equations 0 x σ D g x Wake turbulence production for TKE NetFam Matthias Raschendorfer Toulouse 007

7 The general budget of sub grid scale kinetic energy SKE: grid olume reduction effect by intersections molecular friction Dt ρq : = t ρq + E + E total flux conergence lnr a = Q bod molecular strain on intersected bodies 0 i=, ( ) ρ ~ + e~ ˆ μ Q i i i i + total shear stress including effect of sub grid scale surface slopes ( ~ ) 0 i=, molecular dissipation < 0 prs pressure source NetFam Matthias Raschendorfer Toulouse 007

8 ρk g ˆ Q prs ρ w = pure atmospheric terms 0 gρw for stable stratification only the turbulent part ˆ is necessarily negatie ρ w + ρ w turb circ p = p ~ total pressure transport + p expansion work p buoyant production p ~ lnr roughness layer terms ( ) ( ) p NetFam Matthias Raschendorfer Toulouse 007 a + + p G h ˆ h + s B p n d form drag wake and buoyant production due to intersections σ h σ ˆ form drag wake production due to sub grid scale slopes of the grid box in case of down hill density flows 0 buoyant production due to sub grid scale slopes of the grid box h s 0 0

9 w turb = K w circ x 0 Δx Een for anishing mean wind and negatie turbulent buoyancy there remains a positie definite source term SKE will not anish if there are thermal surface patterns 0 w NetFam Matthias Raschendorfer Toulouse 007

10 How to deal with the multi-scale problem? In general there are non turbulent, arranged circulation structures present as well: -different length scales of sub grid structures -turbulent scales -circulation scales (conection, down hill density flows, body wakes) More general closure assumptions alid for both, turbulence and circulations Impossible without knowing moments of as much classes as we hae length scales for Separation of turbulence and circulations with adopted closure assumptions for each class and related quite easy particular solutions NetFam Matthias Raschendorfer Toulouse 007

11 What are the postulates of turbulence: - Equilibrium of the source terms in all second order budgets (except that for TKE): - neglect of grid scale and sub grid scale transport - spectral density of contributing modes follows a power law in terms of wae length in each direction: inertial sub range spectrum - whole spectrum in a gien direction is determined by a single peak wae length - the peak wae length is the same for samples in all directions: isotropic length scale - pressure correlation and dissipation can be closed using a single turbulent master length scale for each location Turbulence is that class of sub grid scale structures being in agreement with turbulence closure assumptions! NetFam Matthias Raschendorfer Toulouse 007

12 What is the remaining difficulty with circulations (beside sub grid icing and precipitation)? - they are related with at least one additional spectral peak - or they cause different peak waelengths in ertical direction compared to the horiontal directions: ρφ ψ ln k dk anisotropic peak wae length - larger peak wae length in ertical direction in case of labile stratification ( dk) conectie peak in ertical spectrum at least a two scale problem Resoled Structures Circulations - slope in case of TKE labile neutral stabile Turbulence catabatic peak Microphysics ln D g ln L p L p : largest turbulent wae length lnk NetFam Matthias Raschendorfer Toulouse 007

13 How to find a particular solution for turbulence? turbulence closure is only alid for scales not larger than -the smallest peak wae length L p, in any direction -and the largest dimension D g of the control olume Spectral separation by considering budgets with respect to the separation scale L = min{, } and aeraging these budgets along the whole control olume -Additional scale interaction term in TKE equation due to non linear shear term L p D g D t ρ q L = ρk M ( uˆ ) + ˆ i L i=, shear turbulent buoyancy g + ρ w ˆ shear by circulation motions S C L dissipation q ρ α L MM l NetFam Matthias Raschendorfer Toulouse 007

14 Budgets for the circulation structures: Physical meaning of the circulation term: Dt ρ φ ψ ρφ ψ L = ( ˆ ) ( ˆ ψ +ρψ φ) ρφ L L L L + φψ S C Circulation term is the scale interaction term shifting SKE or any other ariance form the circulation part of the spectrum (CKE) to the turbulent part (TKE) by irtue of shear generated by the circulation flow patterns. CKE S C TKE NetFam Matthias Raschendorfer Toulouse 007

15 Parameteriation of the buoyant circulation term for thermal drien (direct) circulations: - a first attempt -. In all budgets: circulation structures are negligible during neutral stratification Since local shear production of circulation motions acts also for neutral stratification, this should be negligible: a ertical constant circulation time scale for expressing scale interaction loss and pressure destruction a mass flux approach for circulation patterns. In the CKE budget: scale interaction loss = buoyant production. In the budget for circulation scale heat and moisture flux : scale interaction loss + pressure destruction = buoyant production 4. In the budget for circulation scale temperature ariance : scale interaction loss = ertical flux diergence from the surface flux gradient form of temperature ariance flux with a ertical constant circulation scale diffusion coefficient NetFam Matthias Raschendorfer Toulouse 007

16 () ρ ρ ρ ρ pat C C V CB V g L 0 H w g w g S L L L L L ˆ ˆ exp ˆ ˆ ˆ ˆ ˆ ˆ Δ ( ) ( ) C C C H g a a a w = γ ˆ Δˆ circulation boundary layer height horiontal updraft fraction difference between updraft and downdraft other circulation scale -nd order moments hae a similar representation turbulent and circulation scale flux densities can be added: - in the first order budgets - as input for the statistical condensation scheme Circulation term ~ circulation scale temperature ariance ~ circulation scale buoyant heat flux pattern length NetFam Matthias Raschendorfer Toulouse 007 in general a form drag circulation term has to be considered as well: S CD CD CB C S S S + =

17 Simulated midnight profile of potential temperature NetFam Matthias Raschendorfer Toulouse 007

18 Conclusions:. Een for anishing mean wind shear and stable thermal stratification there are source terms for TKE in general: transport from other locations (by the mean wind, by turbulent transport e.g. from the surface layer) sub grid scale condensation wake turbulence production shear production from circulation scale sub grid motions (circulation term) - here: direct thermal circulations, drien by differential heating or cooling. Volume aeraging along a grid box with solid intersections or sub grid scale slopes along the earth surface leads to the wake turbulence terms: non commutability of differentiation in space and aeraging. Scale separation approach leads to a parameteriation of the circulation term: transport of circulation scale temperature ariance from the surface ~ circulation scale upward heat flux ~ thermal production of CKE ~ shear production of TKE by circulation motions NetFam Matthias Raschendorfer Toulouse 007

19 Some remaining problems:. Inclusion of deep conection seems to be impossible sub grid scale precipitation, - radiation, further different length scales We do it with a separate deep conection scheme, unless this process is already grid scale. Closure of circulation scale budgets is not yet ery sophisticated Introduction of at least an equation for the skewness in order to sole for the horiontal updraft fraction or without an additional mass flux approach and: A full set of -nd order equations Soling of at least one prognostic equation (circulation scale temperature ariance) Proper parameteriation of third order moments. Adaptation of the statistical condensation scheme to circulations Other distribution function of saturation deficiency for circulation class 4. Adaptation of deep conection and microphysical processes Separation of turbulent and circulation condensation from -Condensation due to deep conection: -Microphysical processes, like cloud ice formation and precipitation: NetFam Matthias Raschendorfer Toulouse 007

20 Thanks for your attention! NetFam Matthias Raschendorfer Toulouse 007

21 NetFam Matthias Raschendorfer Toulouse 007

22 ρζ ζ ˆ := ζ = 0 ρ ~ r h h σ ρ V : = V V ( ) e~ φ ( ) φ = a φ φ h h σ e kin = ρ = ρ q e kin ii : = = ρ E = ρ ρ E = ρq ˆ~ + ρ ~ + i=, i=, q : ~ e i i Q prs : = Q i=, ii prs = p Q bod : = i=, Q ii bod = G s B i=, e i i n d s = G ˆ i e i=, s B i n d s Dt ρq : = t ρq + E + E lnr a Q bod = + i=, i=, i ( ρ ~ i + e~ ) Q i i ˆ i μ i=, i + Q prs NetFam Matthias Raschendorfer Toulouse 007

ESCI 485 Air/sea Interaction Lesson 3 The Surface Layer

ESCI 485 Air/sea Interaction Lesson 3 The Surface Layer ESCI 485 Air/sea Interaction Lesson 3 he Surface Layer References: Air-sea Interaction: Laws and Mechanisms, Csanady Structure of the Atmospheric Boundary Layer, Sorbjan HE PLANEARY BOUNDARY LAYER he atmospheric

More information

1 Introduction to Governing Equations 2 1a Methodology... 2

1 Introduction to Governing Equations 2 1a Methodology... 2 Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................

More information

Implementation of the Quasi-Normal Scale Elimination (QNSE) Model of Stably Stratified Turbulence in WRF

Implementation of the Quasi-Normal Scale Elimination (QNSE) Model of Stably Stratified Turbulence in WRF Implementation of the Quasi-ormal Scale Elimination (QSE) odel of Stably Stratified Turbulence in WRF Semion Sukoriansky (Ben-Gurion University of the egev Beer-Sheva, Israel) Implementation of the Quasi-ormal

More information

ICON. The Icosahedral Nonhydrostatic model: Formulation of the dynamical core and physics-dynamics coupling

ICON. The Icosahedral Nonhydrostatic model: Formulation of the dynamical core and physics-dynamics coupling ICON The Icosahedral Nonhydrostatic model: Formulation of the dynamical core and physics-dynamics coupling Günther Zängl and the ICON deelopment team PDEs on the sphere 2012 Outline Introduction: Main

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) The ABL, though turbulent, is not homogeneous, and a critical role of turbulence is transport and mixing of air properties, especially in the

More information

1 The Richardson Number 1 1a Flux Richardson Number b Gradient Richardson Number c Bulk Richardson Number The Obukhov Length 3

1 The Richardson Number 1 1a Flux Richardson Number b Gradient Richardson Number c Bulk Richardson Number The Obukhov Length 3 Contents 1 The Richardson Number 1 1a Flux Richardson Number...................... 1 1b Gradient Richardson Number.................... 2 1c Bulk Richardson Number...................... 3 2 The Obukhov

More information

Logarithmic velocity profile in the atmospheric (rough wall) boundary layer

Logarithmic velocity profile in the atmospheric (rough wall) boundary layer Logarithmic velocity profile in the atmospheric (rough wall) boundary layer P =< u w > U z = u 2 U z ~ ε = u 3 /kz Mean velocity profile in the Atmospheric Boundary layer Experimentally it was found that

More information

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size L Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size 0.01L or smaller are subject to substantial viscous

More information

ESCI 485 Air/sea Interaction Lesson 2 Turbulence Dr. DeCaria

ESCI 485 Air/sea Interaction Lesson 2 Turbulence Dr. DeCaria ESCI 485 Air/sea Interaction Lesson Turbulence Dr. DeCaria References: Air-sea Interaction: Laws and Mechanisms, Csanady An Introduction to Dynamic Meteorology ( rd edition), J.R. Holton An Introduction

More information

Mellor-Yamada Level 2.5 Turbulence Closure in RAMS. Nick Parazoo AT 730 April 26, 2006

Mellor-Yamada Level 2.5 Turbulence Closure in RAMS. Nick Parazoo AT 730 April 26, 2006 Mellor-Yamada Level 2.5 Turbulence Closure in RAMS Nick Parazoo AT 730 April 26, 2006 Overview Derive level 2.5 model from basic equations Review modifications of model for RAMS Assess sensitivity of vertical

More information

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan 耶鲁 - 南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation

More information

Spring Semester 2011 March 1, 2011

Spring Semester 2011 March 1, 2011 METR 130: Lecture 3 - Atmospheric Surface Layer (SL - Neutral Stratification (Log-law wind profile - Stable/Unstable Stratification (Monin-Obukhov Similarity Theory Spring Semester 011 March 1, 011 Reading

More information

Fluid Physics 8.292J/12.330J

Fluid Physics 8.292J/12.330J Fluid Phsics 8.292J/12.0J Problem Set 4 Solutions 1. Consider the problem of a two-dimensional (infinitel long) airplane wing traeling in the negatie x direction at a speed c through an Euler fluid. In

More information

Chapter 8 cont. Clouds and Storms

Chapter 8 cont. Clouds and Storms Chapter 8 cont. Clouds and Storms Spring 2007 Clouds and Storms Clouds cover ~ 50% of earth at any time. Clouds are linked to a number of condensation processes. Cloud morphology, cloud types, associated

More information

Surface layer parameterization in WRF

Surface layer parameterization in WRF Surface layer parameteriation in WRF Laura Bianco ATOC 7500: Mesoscale Meteorological Modeling Spring 008 Surface Boundary Layer: The atmospheric surface layer is the lowest part of the atmospheric boundary

More information

Convective Fluxes: Sensible and Latent Heat Convective Fluxes Convective fluxes require Vertical gradient of temperature / water AND Turbulence ( mixing ) Vertical gradient, but no turbulence: only very

More information

Lecture 2. Turbulent Flow

Lecture 2. Turbulent Flow Lecture 2. Turbulent Flow Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of this turbulent water jet. If L is the size of the largest eddies, only very small

More information

The atmospheric boundary layer: Where the atmosphere meets the surface. The atmospheric boundary layer:

The atmospheric boundary layer: Where the atmosphere meets the surface. The atmospheric boundary layer: The atmospheric boundary layer: Utrecht Summer School on Physics of the Climate System Carleen Tijm-Reijmer IMAU The atmospheric boundary layer: Where the atmosphere meets the surface Photo: Mark Wolvenne:

More information

TURBULENT KINETIC ENERGY

TURBULENT KINETIC ENERGY TURBULENT KINETIC ENERGY THE CLOSURE PROBLEM Prognostic Moment Equation Number Number of Ea. fg[i Q! Ilial.!.IokoQlI!!ol Ui au. First = at au.'u.' '_J_ ax j 3 6 ui'u/ au.'u.' a u.'u.'u k ' Second ' J =

More information

0 a 3 a 2 a 3 0 a 1 a 2 a 1 0

0 a 3 a 2 a 3 0 a 1 a 2 a 1 0 Chapter Flow kinematics Vector and tensor formulae This introductory section presents a brief account of different definitions of ector and tensor analysis that will be used in the following chapters.

More information

Chapter 8 cont. Clouds and Storms. Spring 2018

Chapter 8 cont. Clouds and Storms. Spring 2018 Chapter 8 cont. Clouds and Storms Spring 2018 Clouds and Storms Clouds cover ~ 50% of earth at any time. Clouds are linked to a number of condensation processes. Cloud morphology, cloud types, associated

More information

Chapter 3 Convective Dynamics

Chapter 3 Convective Dynamics Chapter 3 Convective Dynamics Photographs Todd Lindley 3.2 Ordinary or "air-mass storm 3.2.1. Main Characteristics Consists of a single cell (updraft/downdraft pair) Forms in environment characterized

More information

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water.

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water. Hurricanes: Observations and Dynamics Houze Section 10.1. Holton Section 9.7. Emanuel, K. A., 1988: Toward a general theory of hurricanes. American Scientist, 76, 371-379 (web link). http://ww2010.atmos.uiuc.edu/(gh)/guides/mtr/hurr/home.rxml

More information

The prognostic deep convection parametrization for operational forecast in horizontal resolutions of 8, 4 and 2 km

The prognostic deep convection parametrization for operational forecast in horizontal resolutions of 8, 4 and 2 km The prognostic deep convection parametrization for operational forecast in horizontal resolutions of 8, 4 and 2 km Martina Tudor, Stjepan Ivatek-Šahdan and Antonio Stanešić tudor@cirus.dhz.hr Croatian

More information

Instabilities and Basic Convection

Instabilities and Basic Convection Instabilities and Basic Convection Buoyant Instability (gravity is restoring force) Assume a stationary incompressible fluid (like water), so that ρ = ρ 0 + ρ/ z z and also it is in hydrostatic equilibrium

More information

Turbulent transport of the energy in the entrainment interface layer

Turbulent transport of the energy in the entrainment interface layer Turbulent transport of the energy in the entrainment interface layer Marta K. Kopec 1, S. P. Malinowski1, Z. P. Piotrowski2 1 nstitute 2 nstitute of Geophysics, Faculty of Physics, University of Warsaw,

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

Chapter (3) TURBULENCE KINETIC ENERGY

Chapter (3) TURBULENCE KINETIC ENERGY Chapter (3) TURBULENCE KINETIC ENERGY 3.1 The TKE budget Derivation : The definition of TKE presented is TKE/m= e = 0.5 ( u 2 + v 2 + w 2 ). we recognize immediately that TKE/m is nothing more than the

More information

ERAD THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY

ERAD THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY Multi-beam raindrop size distribution retrieals on the oppler spectra Christine Unal Geoscience and Remote Sensing, TU-elft Climate Institute, Steinweg 1, 68 CN elft, Netherlands, c.m.h.unal@tudelft.nl

More information

Chapter 4 Water Vapor

Chapter 4 Water Vapor Chapter 4 Water Vapor Chapter overview: Phases of water Vapor pressure at saturation Moisture variables o Mixing ratio, specific humidity, relative humidity, dew point temperature o Absolute vs. relative

More information

MOTION OF FALLING OBJECTS WITH RESISTANCE

MOTION OF FALLING OBJECTS WITH RESISTANCE DOING PHYSICS WIH MALAB MECHANICS MOION OF FALLING OBJECS WIH RESISANCE Ian Cooper School of Physics, Uniersity of Sydney ian.cooper@sydney.edu.au DOWNLOAD DIRECORY FOR MALAB SCRIPS mec_fr_mg_b.m Computation

More information

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr): AdOc 4060/5060 Spring 2013 Chris Jenkins Eddy viscosity Turbulence (video 1hr): http://cosee.umaine.edu/programs/webinars/turbulence/?cfid=8452711&cftoken=36780601 Part B Surface wind stress Wind stress

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

Impact of different cumulus parameterizations on the numerical simulation of rain over southern China

Impact of different cumulus parameterizations on the numerical simulation of rain over southern China Impact of different cumulus parameterizations on the numerical simulation of rain over southern China P.W. Chan * Hong Kong Observatory, Hong Kong, China 1. INTRODUCTION Convective rain occurs over southern

More information

Higher-order closures and cloud parameterizations

Higher-order closures and cloud parameterizations Higher-order closures and cloud parameterizations Jean-Christophe Golaz National Research Council, Naval Research Laboratory Monterey, CA Vincent E. Larson Atmospheric Science Group, Dept. of Math Sciences

More information

WaVaCS summerschool Autumn 2009 Cargese, Corsica

WaVaCS summerschool Autumn 2009 Cargese, Corsica Introduction Part I WaVaCS summerschool Autumn 2009 Cargese, Corsica Holger Tost Max Planck Institute for Chemistry, Mainz, Germany Introduction Overview What is a parameterisation and why using it? Fundamentals

More information

Physics of the Convective Boundary Layer based on Radar/Lidar Profiler measurements and simulation

Physics of the Convective Boundary Layer based on Radar/Lidar Profiler measurements and simulation Physics of the Convective Boundary Layer based on Radar/Lidar Profiler measurements and simulation D. Vanhoenacker Janvier (1), A. Graziani (1), D. Kovalev (1), C. Pereira (1), M. Duponcheel (2), R. Wilson

More information

Road to Turbulence in Stratified Flow

Road to Turbulence in Stratified Flow Road to Turbulence in Stratified Flow (Exaple: Boundary flow with f =0) Lainar Flow U H Turbulent Flow I II III IV V u u p u i i i u b t x x x x b g 0 i N 0 0 g z Turbulence occurs when: II UL R e R eyonlds

More information

Model description of AGCM5 of GFD-Dennou-Club edition. SWAMP project, GFD-Dennou-Club

Model description of AGCM5 of GFD-Dennou-Club edition. SWAMP project, GFD-Dennou-Club Model description of AGCM5 of GFD-Dennou-Club edition SWAMP project, GFD-Dennou-Club Mar 01, 2006 AGCM5 of the GFD-DENNOU CLUB edition is a three-dimensional primitive system on a sphere (Swamp Project,

More information

Thermodynamics of Atmospheres and Oceans

Thermodynamics of Atmospheres and Oceans Thermodynamics of Atmospheres and Oceans Judith A. Curry and Peter J. Webster PROGRAM IN ATMOSPHERIC AND OCEANIC SCIENCES DEPARTMENT OF AEROSPACE ENGINEERING UNIVERSITY OF COLORADO BOULDER, COLORADO USA

More information

Non-local Momentum Transport Parameterizations. Joe Tribbia NCAR.ESSL.CGD.AMP

Non-local Momentum Transport Parameterizations. Joe Tribbia NCAR.ESSL.CGD.AMP Non-local Momentum Transport Parameterizations Joe Tribbia NCAR.ESSL.CGD.AMP Outline Historical view: gravity wave drag (GWD) and convective momentum transport (CMT) GWD development -semi-linear theory

More information

Kinetic plasma description

Kinetic plasma description Kinetic plasma description Distribution function Boltzmann and Vlaso equations Soling the Vlaso equation Examples of distribution functions plasma element t 1 r t 2 r Different leels of plasma description

More information

Sungsu Park, Chris Bretherton, and Phil Rasch

Sungsu Park, Chris Bretherton, and Phil Rasch Improvements in CAM5 : Moist Turbulence, Shallow Convection, and Cloud Macrophysics AMWG Meeting Feb. 10. 2010 Sungsu Park, Chris Bretherton, and Phil Rasch CGD.NCAR University of Washington, Seattle,

More information

Governing Equations for Turbulent Flow

Governing Equations for Turbulent Flow Governing Equations for Turbulent Flow (i) Boundary Layer on a Flat Plate ρu x Re x = = Reynolds Number µ Re Re x =5(10) 5 Re x =10 6 x =0 u/ U = 0.99 層流區域 過渡區域 紊流區域 Thickness of boundary layer The Origin

More information

Boundary Layer (Reorganization of the Lecture Notes from Professor Anthony Jacobi and Professor Nenad Miljkoic) Consider a steady flow of a Newtonian, Fourier-Biot fluid oer a flat surface with constant

More information

PALM - Cloud Physics. Contents. PALM group. last update: Monday 21 st September, 2015

PALM - Cloud Physics. Contents. PALM group. last update: Monday 21 st September, 2015 PALM - Cloud Physics PALM group Institute of Meteorology and Climatology, Leibniz Universität Hannover last update: Monday 21 st September, 2015 PALM group PALM Seminar 1 / 16 Contents Motivation Approach

More information

Atm S 547 Boundary Layer Meteorology

Atm S 547 Boundary Layer Meteorology Lecture 8. Parameterization of BL Turbulence I In this lecture Fundamental challenges and grid resolution constraints for BL parameterization Turbulence closure (e. g. first-order closure and TKE) parameterizations

More information

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O Formulas/Constants, Physics/Oceanography 4510/5510 B Atmospheric Physics II N A = 6.02 10 23 molecules/mole (Avogadro s number) 1 mb = 100 Pa 1 Pa = 1 N/m 2 Γ d = 9.8 o C/km (dry adiabatic lapse rate)

More information

WQMAP (Water Quality Mapping and Analysis Program) is a proprietary. modeling system developed by Applied Science Associates, Inc.

WQMAP (Water Quality Mapping and Analysis Program) is a proprietary. modeling system developed by Applied Science Associates, Inc. Appendix A. ASA s WQMAP WQMAP (Water Quality Mapping and Analysis Program) is a proprietary modeling system developed by Applied Science Associates, Inc. and the University of Rhode Island for water quality

More information

Lecture 7: The Monash Simple Climate

Lecture 7: The Monash Simple Climate Climate of the Ocean Lecture 7: The Monash Simple Climate Model Dr. Claudia Frauen Leibniz Institute for Baltic Sea Research Warnemünde (IOW) claudia.frauen@io-warnemuende.de Outline: Motivation The GREB

More information

Parcel Model. Atmospheric Sciences September 30, 2012

Parcel Model. Atmospheric Sciences September 30, 2012 Parcel Model Atmospheric Sciences 6150 September 30, 2012 1 Governing Equations for Precipitating Convection For precipitating convection, we have the following set of equations for potential temperature,

More information

NWP Equations (Adapted from UCAR/COMET Online Modules)

NWP Equations (Adapted from UCAR/COMET Online Modules) NWP Equations (Adapted from UCAR/COMET Online Modules) Certain physical laws of motion and conservation of energy (for example, Newton's Second Law of Motion and the First Law of Thermodynamics) govern

More information

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2)

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2) The Atmospheric Boundary Layer Turbulence (9.1) The Surface Energy Balance (9.2) Vertical Structure (9.3) Evolution (9.4) Special Effects (9.5) The Boundary Layer in Context (9.6) Fair Weather over Land

More information

Atmospheric Processes

Atmospheric Processes Atmospheric Processes Atmospheric prognostic variables Wind Temperature Humidity Cloud Water/Ice Atmospheric processes Mixing Radiation Condensation/ Evaporation Precipitation Surface exchanges Friction

More information

From small-scale turbulence to large-scale convection: a unified scale-adaptive EDMF parameterization

From small-scale turbulence to large-scale convection: a unified scale-adaptive EDMF parameterization From small-scale turbulence to large-scale convection: a unified scale-adaptive EDMF parameterization Kay Sušelj 1, Joao Teixeira 1 and Marcin Kurowski 1,2 1 JET PROPULSION LABORATORY/CALIFORNIA INSTITUTE

More information

A Simple Turbulence Closure Model

A Simple Turbulence Closure Model A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: Mean velocity: Turbulent velocity: Gradient operator: Advection operator: V =

More information

A Simple Turbulence Closure Model. Atmospheric Sciences 6150

A Simple Turbulence Closure Model. Atmospheric Sciences 6150 A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: V = V + v V = U i + u i Mean velocity: V = Ui + V j + W k =(U, V, W ) U i =(U

More information

A B C D PROBLEMS Dilution of power plant plumes. z z z z

A B C D PROBLEMS Dilution of power plant plumes. z z z z 69 PROBLEMS 4. Dilution of power plant plumes Match each power plant plume (-4) to the corresponding atmospheric lapse rate (A-D, solid lines; the dashed line is the adiabatic lapse rate Γ). Briefly comment

More information

Chapter 8 Laminar Flows with Dependence on One Dimension

Chapter 8 Laminar Flows with Dependence on One Dimension Chapter 8 Laminar Flows with Dependence on One Dimension Couette low Planar Couette low Cylindrical Couette low Planer rotational Couette low Hele-Shaw low Poiseuille low Friction actor and Reynolds number

More information

The applicability of Monin Obukhov scaling for sloped cooled flows in the context of Boundary Layer parameterization

The applicability of Monin Obukhov scaling for sloped cooled flows in the context of Boundary Layer parameterization Julia Palamarchuk Odessa State Environmental University, Ukraine The applicability of Monin Obukhov scaling for sloped cooled flows in the context of Boundary Layer parameterization The low-level katabatic

More information

Physics of Aquatic Systems

Physics of Aquatic Systems Physics of Aquatic Systems 4. Turbulent Transport in Surface Waters Contents of Session 4: Transport 4.1 Turbulent (eddy) fusion 4. Measurement of eddy fusivity in lakes Tracer methods (artificial tracer)

More information

ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1

ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 ESS5203.03 - Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 Text: J.R.Garratt, The Atmospheric Boundary Layer, 1994. Cambridge Also some material from J.C. Kaimal and

More information

Quasi-Normal Scale Elimination (QNSE) theory of anisotropic turbulence and waves in flows with stable stratification

Quasi-Normal Scale Elimination (QNSE) theory of anisotropic turbulence and waves in flows with stable stratification Quasi-Normal Scale Elimination QNSE theory of anisotropic turbulence and waves in flows with stable stratification Semion Suoriansy, Boris Galperin Ben-Gurion University of the Negev, Beer-Sheva, Israel

More information

Numerical Simulations of a Stratified Oceanic Bottom Boundary Layer. John R. Taylor - MIT Advisor: Sutanu Sarkar - UCSD

Numerical Simulations of a Stratified Oceanic Bottom Boundary Layer. John R. Taylor - MIT Advisor: Sutanu Sarkar - UCSD Numerical Simulations of a Stratified Oceanic Bottom Boundary Layer John R. Taylor - MIT Advisor: Sutanu Sarkar - UCSD Motivation Objective I: Assess and improve parameterizations of the bottom boundary

More information

Supplementary Information Microfluidic quadrupole and floating concentration gradient Mohammad A. Qasaimeh, Thomas Gervais, and David Juncker

Supplementary Information Microfluidic quadrupole and floating concentration gradient Mohammad A. Qasaimeh, Thomas Gervais, and David Juncker Mohammad A. Qasaimeh, Thomas Gerais, and Daid Juncker Supplementary Figure S1 The microfluidic quadrupole (MQ is modeled as two source (Q inj and two drain (Q asp points arranged in the classical quardupolar

More information

Turbulence and boundary layers

Turbulence and boundary layers Trblence and bondary layers Weather and trblence Big whorls hae little whorls which feed on the elocity; and little whorls hae lesser whorls and so on to iscosity Lewis Fry Richardson Momentm eqations

More information

6A.3 Stably stratified boundary layer simulations with a non-local closure model

6A.3 Stably stratified boundary layer simulations with a non-local closure model 6A.3 Stably stratified boundary layer simulations with a non-local closure model N. M. Colonna, E. Ferrero*, Dipartimento di Scienze e Tecnologie Avanzate, University of Piemonte Orientale, Alessandria,

More information

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity Chapter 1 Governing Equations of GFD The fluid dynamical governing equations consist of an equation for mass continuity, one for the momentum budget, and one or more additional equations to account for

More information

The Stable Boundary layer

The Stable Boundary layer The Stable Boundary layer the statistically stable or stratified regime occurs when surface is cooler than the air The stable BL forms at night over land (Nocturnal Boundary Layer) or when warm air travels

More information

Neva Pristov. LACE area leader for physics

Neva Pristov. LACE area leader for physics ALARO Physics Developments Neva Pristov LACE area leader for physics Main developments TOUCANS turbulence scheme Radiation Convection Ivan Baštak Duran, Jean-Francois Geleyn, Filip Vana Jan Mašek, Radmila

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 19 Turbulent Flows Fausto Arpino f.arpino@unicas.it Introduction All the flows encountered in the engineering practice become unstable

More information

Using Cloud-Resolving Models for Parameterization Development

Using Cloud-Resolving Models for Parameterization Development Using Cloud-Resolving Models for Parameterization Development Steven K. Krueger University of Utah! 16th CMMAP Team Meeting January 7-9, 2014 What is are CRMs and why do we need them? Range of scales diagram

More information

777 GROUNDSCHOOL Temperature, Stability, Fronts, & Thunderstorms

777 GROUNDSCHOOL Temperature, Stability, Fronts, & Thunderstorms 777 GROUNDSCHOOL 2018 Temperature, Stability, Fronts, & Thunderstorms The Atmosphere Heating Transfer of heat occurs thru Radiation Advection Convection Matter changes states due to the amount of heat

More information

Moist convec+on in models (and observa+ons)

Moist convec+on in models (and observa+ons) Moist convec+on in models (and observa+ons) Cathy Hohenegger Moist convec+on in models (and observa+ons) Cathy Hohenegger How do we parameterize convec+on? Precipita)on response to soil moisture Increase

More information

On the validation study devoted to stratified atmospheric flow over an isolated hill

On the validation study devoted to stratified atmospheric flow over an isolated hill On the validation study devoted to stratified atmospheric flow over an isolated hill Sládek I. 2/, Kozel K. 1/, Jaňour Z. 2/ 1/ U1211, Faculty of Mechanical Engineering, Czech Technical University in Prague.

More information

Scale aware deep convection parameterization

Scale aware deep convection parameterization Scale aware deep convection parameterization Luc Gerard Royal Meteorological Institute of Belgium 3 September 26 Convective clouds in a model grid box Quasi-Equilibrium hypothesis: Large subgrid population,

More information

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D. Fundamental Concepts of Convection : Flow and Thermal Considerations Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.3 6.1 Boundary Layers: Physical Features Velocity Boundary Layer

More information

Some remarks on climate modeling

Some remarks on climate modeling Some remarks on climate modeling A. Gettelman & J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Selected overheads by Doug Nychka Outline Hierarchy of atmospheric modeling strategies

More information

Introduction to Turbulence and Turbulence Modeling

Introduction to Turbulence and Turbulence Modeling Introduction to Turbulence and Turbulence Modeling Part I Venkat Raman The University of Texas at Austin Lecture notes based on the book Turbulent Flows by S. B. Pope Turbulent Flows Turbulent flows Commonly

More information

Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics

Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics Reference Peixoto and Oort, Sec. 3.1, 3.2, 3.4, 3.5 (but skip the discussion of oceans until next week); Ch. 10 Thermodynamic

More information

DAY 19: Boundary Layer

DAY 19: Boundary Layer DAY 19: Boundary Layer flat plate : let us neglect the shape of the leading edge for now flat plate boundary layer: in blue we highlight the region of the flow where velocity is influenced by the presence

More information

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model W. O Hirok and P. Ricchiazzi Institute for Computational Earth System Science University of California

More information

Lecture 12. The diurnal cycle and the nocturnal BL

Lecture 12. The diurnal cycle and the nocturnal BL Lecture 12. The diurnal cycle and the nocturnal BL Over flat land, under clear skies and with weak thermal advection, the atmospheric boundary layer undergoes a pronounced diurnal cycle. A schematic and

More information

Overview of COSMO WG3a activities Upper air physical aspects. Federico Grazzini, ARPA Emilia-Romagna Servizio Idro Meteo Clima (SIMC)

Overview of COSMO WG3a activities Upper air physical aspects. Federico Grazzini, ARPA Emilia-Romagna Servizio Idro Meteo Clima (SIMC) Overview of COSMO WG3a activities Upper air physical aspects Federico Grazzini, ARPA Emilia-Romagna Servizio Idro Meteo Clima (SIMC) The former WG3 has been split: wg coordinator Federico Grazzini Scientists

More information

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere Need to introduce a new measure of the buoyancy Potential temperature θ In a compressible fluid, the relevant measure

More information

meso-sas, a modification of the SAS for meso-scale models Hua-Lu pan Qingfu Liu

meso-sas, a modification of the SAS for meso-scale models Hua-Lu pan Qingfu Liu meso-sas, a modification of the SAS for meso-scale models Hua-Lu pan Qingfu Liu Problem with the conventional mass flux schemes Most of the mass-flux schemes are based on the original Arakawa-Schubert

More information

Journal of Fluid Science and Technology

Journal of Fluid Science and Technology Science and Technology Effect of Molecular Diffusivities on Countergradient Scalar Transfer in a Strong Stable Stratified Flow (Study on the Linear and Nonlinear Processes by using RDT) Kouji NAGATA, Takashi

More information

TOPICS: What are Thunderstorms? Ingredients Stages Types Lightning Downburst and Microburst

TOPICS: What are Thunderstorms? Ingredients Stages Types Lightning Downburst and Microburst THUNDERSTORMS TOPICS: What are Thunderstorms? Ingredients Stages Types Lightning Downburst and Microburst What are Thunderstorms? A storm produced by a cumulonimbus cloud that contains lightning and thunder

More information

Parametrizing Cloud Cover in Large-scale Models

Parametrizing Cloud Cover in Large-scale Models Parametrizing Cloud Cover in Large-scale Models Stephen A. Klein Lawrence Livermore National Laboratory Ming Zhao Princeton University Robert Pincus Earth System Research Laboratory November 14, 006 European

More information

( ) = 1005 J kg 1 K 1 ;

( ) = 1005 J kg 1 K 1 ; Problem Set 3 1. A parcel of water is added to the ocean surface that is denser (heavier) than any of the waters in the ocean. Suppose the parcel sinks to the ocean bottom; estimate the change in temperature

More information

The Effect of Sea Spray on Tropical Cyclone Intensity

The Effect of Sea Spray on Tropical Cyclone Intensity The Effect of Sea Spray on Tropical Cyclone Intensity Jeffrey S. Gall, Young Kwon, and William Frank The Pennsylvania State University University Park, Pennsylvania 16802 1. Introduction Under high-wind

More information

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2.

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2. Chapter 3. Since the trip consists of two parts, let the displacements during first and second parts of the motion be x and x, and the corresponding time interals be t and t, respectiely. Now, because

More information

THE LAND SURFACE SCHEME OF THE UNIFIED MODEL AND RELATED CONSIDERATIONS

THE LAND SURFACE SCHEME OF THE UNIFIED MODEL AND RELATED CONSIDERATIONS CHAPTER 7: THE LAND SURFACE SCHEME OF THE UNIFIED MODEL AND RELATED CONSIDERATIONS 7.1: Introduction The atmosphere is sensitive to variations in processes at the land surface. This was shown in the earlier

More information

Improved Atmospheric Stable Boundary Layer Formulations for Navy Seasonal Forecasting

Improved Atmospheric Stable Boundary Layer Formulations for Navy Seasonal Forecasting DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Improved Atmospheric Stable Boundary Layer Formulations for Navy Seasonal Forecasting Michael Tjernström Department of

More information

Thunderstorm. Thunderstorms result from the rapid upward movement of warm, moist air.

Thunderstorm. Thunderstorms result from the rapid upward movement of warm, moist air. Severe Weather Thunderstorm A thunderstorm (aka an electrical storm, a lightning storm, or a thundershower) is a type of storm characterized by the presence of lightning and its acoustic effect, thunder.

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

Arctic Boundary Layer

Arctic Boundary Layer Annual Seminar 2015 Physical processes in present and future large-scale models Arctic Boundary Layer Gunilla Svensson Department of Meteorology and Bolin Centre for Climate Research Stockholm University,

More information

A. Parodi 1, (1) CIMA Research Foundation, Italy. in cooperation with: K. A. Emanuel 2, and E. Foufoula-Georgiou 3 (2) EAPS, MIT, USA

A. Parodi 1, (1) CIMA Research Foundation, Italy. in cooperation with: K. A. Emanuel 2, and E. Foufoula-Georgiou 3 (2) EAPS, MIT, USA Spatial and temporal evolution of deep moist convective processes: the role of microphysics A. Parodi 1, (1) CIMA Research Foundation, Italy in cooperation with: K. A. Emanuel 2, and E. Foufoula-Georgiou

More information

Project 3 Convection and Atmospheric Thermodynamics

Project 3 Convection and Atmospheric Thermodynamics 12.818 Project 3 Convection and Atmospheric Thermodynamics Lodovica Illari 1 Background The Earth is bathed in radiation from the Sun whose intensity peaks in the visible. In order to maintain energy balance

More information

Short Term forecasts along the GCSS Pacific Cross-section: Evaluating new Parameterizations in the Community Atmospheric Model

Short Term forecasts along the GCSS Pacific Cross-section: Evaluating new Parameterizations in the Community Atmospheric Model Short Term forecasts along the GCSS Pacific Cross-section: Evaluating new Parameterizations in the Community Atmospheric Model Cécile Hannay, Dave Williamson, Jerry Olson, Rich Neale, Andrew Gettelman,

More information