Governing Equations for Turbulent Flow

Size: px
Start display at page:

Download "Governing Equations for Turbulent Flow"

Transcription

1 Governing Equations for Turbulent Flow

2 (i) Boundary Layer on a Flat Plate ρu x Re x = = Reynolds Number µ Re Re x =5(10) 5 Re x =10 6 x =0 u/ U = 0.99 層流區域 過渡區域 紊流區域 Thickness of boundary layer

3 The Origin of Turbulence Turbulence is believed to be induced by small disturbance in flow. In laminar flow region, the disturbance is restrained by the flow, thus it does not affect the flow motion. In turbulent flow region, the disturbance is amplified by the flow motion to form eddies. For laminar flow, as the derived continuity, momentum and energy equations are used for predicting flow velocity and temperature distributions. The result appears to match well with experimental data. Nevertheless, for turbulent flow, this match usually appears to be poor. Reynolds number can be used for indicating the occurrence of turbulent flow.

4 Fluctuation of velocity and temperature in turbulent flow region u u at a certain location t 1 period t (time) Define: ' ' ' ' u = u + u (t); v = v + v (t); w = w + w(t); P = P + P (t) ' T = T + T (t) w t t t t t t u u dt, v v dt, dt etc w

5 (ii) Time-Averaged Continuity Equation u v w Continuity: + + = 0 (incompressible flow) x z ' ' ' u = u + u (t); v = v + v (t); w = w + w(t); substituting into the above equation, u u' v v' w w' = x x z z 0 Integrating over period 0 t u u' v v w w' ' = x x z z = 0 = 0 = 0 u v w + + = 0 x z 1 0

6 (iii) Time-Averaged x-direction Momentum Equation x-direction momentum equation (neglecting body force): u u u u 1 P e u u u + u + v + w = + ν ( + + ) t x z ρ x x z Multiplying continuity equation by u: u v w u ( + + ) = 0 adding to the above equation x z u u ( uv) ( uw) 1 P e u u u = + ν ( + + ) t x z ρ x x z

7 averaging over period 0 t 1 u u ( uv) ( uw) 1 P e u u u = + ν ( + + ) t x z ρ x x z = 0 u ( uv) ( uw) 1 P e u u u + + = + ν ( + + ) x z ρ x x z ' ' ' u = u + u (t); v = v + v (t); w = w + w(t); substituting these three expressions into the above equation, ( ) ( ') ( v) ( ' ') ( ) ( ' ') 1 [ u u u uv u w uw Pe u u u + ] + [ + ] + [ + ] = + ν ( + + ) x x z z ρ x x z

8 where ( ) ( v) ( ) u u u v u u w w u = u ; = u + v ; = u + w x x z z z Substituting back, u ( u' ) v u ( uv ' ') w u ( uw ' ') [ u + ] + [ u + v + ] + [ u + w + ] x x z z z 1 P e u u u = + ν ( + + ) (1) ρ x x z Multiplying the time-averaged continuity equation by u, u v w u ( + + ) = 0 x z Substracting equation (1) with this equation, it yields u ( u' ) u ( uv ' ') u ( uw ' ') 1 P e u u u [ u + ] + [v + ] + [ w + ] = + ν ( + + ) x x z z ρ x x z

9 After arrangement, 1 ( ') ( ' ') ( ' ') u u u P u uv uw u + v + w + = ν ( u) x z ρ x x z where u u u x z u + + Additional terms Similarly, y and z-directional momentum equations can be derived as well! In tensor notation, i-direction time-averaged momentum equation is u j ( uv ' ' i j) u 1 i P ui + = ν ( ) x ρ x x x x j j j j

10 For two-dimensional turbulent boundary layer, the x-momentum equation is, u u P u uv ρ 1 ( ' ') u + v + ν x y x y y u u ( u' ) ( uv ' ') where and x x (velocity fluctuation in the y direction is larger than that in the x direction) where u u 1 P 1 u + x y ρ x ρ y u µ = ρuv ε M v + = ( ' ') molecular shear stress ; ' ' e eddy momentum diffusivity = u µ ρuv Negative value u ddy shear stress ρε M ( ) u v u y [Note: velocity fluctuations ( ', ') are assumed to be induced by /.]

11 Hence, u u 1 P 1 u u u + v + = ( µ + ρεm ) x y ρ x ρ 1 u = [ ρν ( + εm ) ] ρ u = [( ν + εm ) ] where u ρν ( + εm ) = apparent shear stress

12 (iv) k ε Model for Turbulent Flow ε M is not a constant. For solving the momentum equation, its value must be determined. k ε Model Involves (i) Turbulence kinetic energy (k) equation (ii) Dissipation energy (ε) equation The above two equations plus the momentum equation can be used to solve the ε M value and velocity distribution.

13 Analog to molecular kinetic theory for gas: ε M = Ck u 1/ L where k = turbulence energy ; L = length scale ; C = empirical coefficient 3/ k Dissipation rate = ε = C D( ) L Sustituting back to eliminate L, it yields ε M = ( ) C u 1 D u where C = drag coefficient = 1 Dk ε M k u k equation: = ( ) + εm ( ) ε Dt σ k Dε εm ε u ε ε ε equation: = ( ) + c1ε M ( ) c ( ) Dt σ k k The following values are suggested for : C = 0.09, c = 1.44, c = 1.9, σ = 1, σ = 1.3 u ε k k ε ε

14 (v) Time-Averaged Energy Equation Energy equation (neglect dissipation term): T T T T T T T ρcp ( + u + v + w ) = k( + + ) t x z x z ' ' ' where u = u + u (t) ; v = v + v (t) ; w = w + w(t) ' ' P = P + P (t) ; T = T + T (t) Multiplying continuity equation by T: u v w T ( + + ) = 0 adding to the above equation x z T ( ut) ( vt) ( wt) T T T = α( + + ) t x z x z

15 Time averaged from 0 t, 1 T ( ut) ( vt) ( wt) T T T = α( + + ) t x z x z ( ut) ( vt) ( wt) T T T After arrangement, + + = α ( + + ) x z x z T u T v T w [ u + T ] + [ v + T ] + [ w + T ] x x z z ' ' ' ' ' ' ( ut ) ( vt ) ( wt ) T T T = α( + + ) x z x z For two-dimensional flow (also using continuity equation), it yields : ' ' T T ( vt ) T u + v + = α x ' ' ' ' ( ) ( ) [Note: In the boundary layer, T T ut vt ; ] x x

16 For two-dimensional flow in the boundary layer: ' ' T T T ( vt ) u + v = α x 1 T ' ' T = [ k ρcpvt ] = [( α + εh) ] ρcp where T k = molecular heat flux (without considering direction) ' ' T ρcvt p = eddy heat flux ρcpεh ε eddy thermal diffusivity ; α = molecular thermal diffusivity H u T T ε M T + v = [( α + ) ] x Pr t where Pr t turbulent Prandtl number eddy momentum diffusivity ε = eddy thermal diffusivity ε M H (empirally determined)

6. Laminar and turbulent boundary layers

6. Laminar and turbulent boundary layers 6. Laminar and turbulent boundary layers John Richard Thome 8 avril 2008 John Richard Thome (LTCM - SGM - EPFL) Heat transfer - Convection 8 avril 2008 1 / 34 6.1 Some introductory ideas Figure 6.1 A boundary

More information

SIMPLE Algorithm for Two-Dimensional Channel Flow. Fluid Flow and Heat Transfer

SIMPLE Algorithm for Two-Dimensional Channel Flow. Fluid Flow and Heat Transfer SIMPLE Algorithm for Two-Dimensional Channel Flow Fluid Flow and Heat Transfer by Professor Jung-Yang San Mechanical Engineering Department National Chung Hsing University Two-dimensional, transient, incompressible

More information

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D. Fundamental Concepts of Convection : Flow and Thermal Considerations Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.3 6.1 Boundary Layers: Physical Features Velocity Boundary Layer

More information

1 Introduction to Governing Equations 2 1a Methodology... 2

1 Introduction to Governing Equations 2 1a Methodology... 2 Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................

More information

Answers to Homework #9

Answers to Homework #9 Answers to Homework #9 Problem 1: 1. We want to express the kinetic energy per unit wavelength E(k), of dimensions L 3 T 2, as a function of the local rate of energy dissipation ɛ, of dimensions L 2 T

More information

A Simple Turbulence Closure Model. Atmospheric Sciences 6150

A Simple Turbulence Closure Model. Atmospheric Sciences 6150 A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: V = V + v V = U i + u i Mean velocity: V = Ui + V j + W k =(U, V, W ) U i =(U

More information

A Simple Turbulence Closure Model

A Simple Turbulence Closure Model A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: Mean velocity: Turbulent velocity: Gradient operator: Advection operator: V =

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

Chapter 5 Principles of Convection heat transfer (Text: J. P. Holman, Heat Transfer, 8 th ed., McGraw Hill, NY)

Chapter 5 Principles of Convection heat transfer (Text: J. P. Holman, Heat Transfer, 8 th ed., McGraw Hill, NY) hapter 5 Principles of onvection heat transfer (Tet: J. P. Holman, Heat Transfer, 8 th ed., McGra Hill, NY) onsider a fluid flo over a flat plate ith different temperatures (Fig 5-1) q A ha( T T ) since

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

DAY 19: Boundary Layer

DAY 19: Boundary Layer DAY 19: Boundary Layer flat plate : let us neglect the shape of the leading edge for now flat plate boundary layer: in blue we highlight the region of the flow where velocity is influenced by the presence

More information

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer Forced Convection Outlines To examine the methods of calculating convection heat transfer (particularly, the ways of predicting the value of convection heat transfer coefficient, h) Convection heat transfer

More information

MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow

MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow TRANSPORT PHENOMENA MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow Introduction to Turbulent Flow 1. Comparisons of laminar and turbulent flows 2. Time-smoothed equations of change for incompressible

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

Turbulence Solutions

Turbulence Solutions School of Mechanical, Aerospace & Civil Engineering 3rd Year/MSc Fluids Turbulence Solutions Question 1. Decomposing into mean and fluctuating parts, we write M = M + m and Ũ i = U i + u i a. The transport

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i

Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i Turbulence Modeling Cuong Nguyen November 05, 2005 1 Incompressible Case 1.1 Reynolds-averaged Navier-Stokes equations The incompressible Navier-Stokes equations in conservation form are u i x i = 0 (1)

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

Introduction to Turbulence and Turbulence Modeling

Introduction to Turbulence and Turbulence Modeling Introduction to Turbulence and Turbulence Modeling Part I Venkat Raman The University of Texas at Austin Lecture notes based on the book Turbulent Flows by S. B. Pope Turbulent Flows Turbulent flows Commonly

More information

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW 4.1 Introduction Boundary layer concept (Prandtl 1904): Eliminate selected terms in the governing equations Two key questions (1) What are the

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

Physical Properties of Fluids

Physical Properties of Fluids Physical Properties of Fluids Viscosity: Resistance to relative motion between adjacent layers of fluid. Dynamic Viscosity:generally represented as µ. A flat plate moved slowly with a velocity V parallel

More information

ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1

ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 ESS5203.03 - Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 Text: J.R.Garratt, The Atmospheric Boundary Layer, 1994. Cambridge Also some material from J.C. Kaimal and

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

More information

RANS Equations in Curvilinear Coordinates

RANS Equations in Curvilinear Coordinates Appendix C RANS Equations in Curvilinear Coordinates To begin with, the Reynolds-averaged Navier-Stokes RANS equations are presented in the familiar vector and Cartesian tensor forms. Each term in the

More information

BOUNDARY LAYER FLOWS HINCHEY

BOUNDARY LAYER FLOWS HINCHEY BOUNDARY LAYER FLOWS HINCHEY BOUNDARY LAYER PHENOMENA When a body moves through a viscous fluid, the fluid at its surface moves with it. It does not slip over the surface. When a body moves at high speed,

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 4 HEAT TRANSFER IN CHANNEL FLOW BASIC CONCEPTS BASIC CONCEPTS Laminar

More information

Chapter 6 Laminar External Flow

Chapter 6 Laminar External Flow Chapter 6 aminar Eternal Flow Contents 1 Thermal Boundary ayer 1 2 Scale analysis 2 2.1 Case 1: δ t > δ (Thermal B.. is larger than the velocity B..) 3 2.2 Case 2: δ t < δ (Thermal B.. is smaller than

More information

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 09, SEPTEMBER 2016 ISSN

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 09, SEPTEMBER 2016 ISSN Numerical Analysis Of Heat Transfer And Fluid Flow Characteristics In Different V-Shaped Roughness Elements On The Absorber Plate Of Solar Air Heater Duct Jitesh Rana, Anshuman Silori, Rohan Ramola Abstract:

More information

Turbulence Laboratory

Turbulence Laboratory Objective: CE 319F Elementary Mechanics of Fluids Department of Civil, Architectural and Environmental Engineering The University of Texas at Austin Turbulence Laboratory The objective of this laboratory

More information

Introduction to Heat and Mass Transfer. Week 12

Introduction to Heat and Mass Transfer. Week 12 Introduction to Heat and Mass Transfer Week 12 Next Topic Convective Heat Transfer» Heat and Mass Transfer Analogy» Evaporative Cooling» Types of Flows Heat and Mass Transfer Analogy Equations governing

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

Introduction of compressible turbulence

Introduction of compressible turbulence Introduction of compressible turbulence 1 Main topics Derive averaged equations for compressible turbulence Introduce a math. technique to perform averaging in presence of density variation Favre average

More information

Turbulence - Theory and Modelling GROUP-STUDIES:

Turbulence - Theory and Modelling GROUP-STUDIES: Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 046-0480 Johan Revstedt, tel 046-43 0 Turbulence - Theory and Modelling GROUP-STUDIES: Turbulence

More information

meters, we can re-arrange this expression to give

meters, we can re-arrange this expression to give Turbulence When the Reynolds number becomes sufficiently large, the non-linear term (u ) u in the momentum equation inevitably becomes comparable to other important terms and the flow becomes more complicated.

More information

Modelling of turbulent flows: RANS and LES

Modelling of turbulent flows: RANS and LES Modelling of turbulent flows: RANS and LES Turbulenzmodelle in der Strömungsmechanik: RANS und LES Markus Uhlmann Institut für Hydromechanik Karlsruher Institut für Technologie www.ifh.kit.edu SS 2012

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

Explicit algebraic Reynolds stress models for boundary layer flows

Explicit algebraic Reynolds stress models for boundary layer flows 1. Explicit algebraic models Two explicit algebraic models are here compared in order to assess their predictive capabilities in the simulation of boundary layer flow cases. The studied models are both

More information

Physics of turbulent flow

Physics of turbulent flow ECL-MOD 3A & MSc. Physics of turbulent flow Christophe Bailly Université de Lyon, Ecole Centrale de Lyon & LMFA - UMR CNRS 5509 http://acoustique.ec-lyon.fr Outline of the course A short introduction to

More information

2.3 The Turbulent Flat Plate Boundary Layer

2.3 The Turbulent Flat Plate Boundary Layer Canonical Turbulent Flows 19 2.3 The Turbulent Flat Plate Boundary Layer The turbulent flat plate boundary layer (BL) is a particular case of the general class of flows known as boundary layer flows. The

More information

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Tobias Knopp D 23. November 28 Reynolds averaged Navier-Stokes equations Consider the RANS equations with

More information

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr): AdOc 4060/5060 Spring 2013 Chris Jenkins Eddy viscosity Turbulence (video 1hr): http://cosee.umaine.edu/programs/webinars/turbulence/?cfid=8452711&cftoken=36780601 Part B Surface wind stress Wind stress

More information

J. Szantyr Lecture No. 4 Principles of the Turbulent Flow Theory The phenomenon of two markedly different types of flow, namely laminar and

J. Szantyr Lecture No. 4 Principles of the Turbulent Flow Theory The phenomenon of two markedly different types of flow, namely laminar and J. Szantyr Lecture No. 4 Principles of the Turbulent Flow Theory The phenomenon of two markedly different types of flow, namely laminar and turbulent, was discovered by Osborne Reynolds (184 191) in 1883

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

Convective Fluxes: Sensible and Latent Heat Convective Fluxes Convective fluxes require Vertical gradient of temperature / water AND Turbulence ( mixing ) Vertical gradient, but no turbulence: only very

More information

BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW

BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW Proceedings of,, BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW Yunho Jang Department of Mechanical and Industrial Engineering University of Massachusetts Amherst, MA 01002 Email:

More information

arxiv: v1 [physics.flu-dyn] 11 Oct 2012

arxiv: v1 [physics.flu-dyn] 11 Oct 2012 Low-Order Modelling of Blade-Induced Turbulence for RANS Actuator Disk Computations of Wind and Tidal Turbines Takafumi Nishino and Richard H. J. Willden ariv:20.373v [physics.flu-dyn] Oct 202 Abstract

More information

n v molecules will pass per unit time through the area from left to

n v molecules will pass per unit time through the area from left to 3 iscosity and Heat Conduction in Gas Dynamics Equations of One-Dimensional Gas Flow The dissipative processes - viscosity (internal friction) and heat conduction - are connected with existence of molecular

More information

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion http://www.nd.edu/~gtryggva/cfd-course/ http://www.nd.edu/~gtryggva/cfd-course/ Computational Fluid Dynamics Lecture 4 January 30, 2017 The Equations Governing Fluid Motion Grétar Tryggvason Outline Derivation

More information

CFD Analysis for Thermal Behavior of Turbulent Channel Flow of Different Geometry of Bottom Plate

CFD Analysis for Thermal Behavior of Turbulent Channel Flow of Different Geometry of Bottom Plate International Journal Of Engineering Research And Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 13, Issue 9 (September 2017), PP.12-19 CFD Analysis for Thermal Behavior of Turbulent

More information

Fluid Mechanics. Chapter 9 Surface Resistance. Dr. Amer Khalil Ababneh

Fluid Mechanics. Chapter 9 Surface Resistance. Dr. Amer Khalil Ababneh Fluid Mechanics Chapter 9 Surface Resistance Dr. Amer Khalil Ababneh Wind tunnel used for testing flow over models. Introduction Resistances exerted by surfaces are a result of viscous stresses which create

More information

4.2 Concepts of the Boundary Layer Theory

4.2 Concepts of the Boundary Layer Theory Advanced Heat by Amir Faghri, Yuwen Zhang, and John R. Howell 4.2 Concepts of the Boundary Layer Theory It is difficult to solve the complete viscous flow fluid around a body unless the geometry is very

More information

ME 144: Heat Transfer Introduction to Convection. J. M. Meyers

ME 144: Heat Transfer Introduction to Convection. J. M. Meyers ME 144: Heat Transfer Introduction to Convection Introductory Remarks Convection heat transfer differs from diffusion heat transfer in that a bulk fluid motion is present which augments the overall heat

More information

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2 This chapter provides an introduction to the transport of particles that are either more dense (e.g. mineral sediment) or less dense (e.g. bubbles) than the fluid. A method of estimating the settling velocity

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER THERMAL SCIENCE: Year 2018, Vol. 22, No. 2, pp. 963-972 963 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER by Jitesh RANA, Anshuman SILORI, Rajesh MAITHANI *, and

More information

Transport processes. 7. Semester Chemical Engineering Civil Engineering

Transport processes. 7. Semester Chemical Engineering Civil Engineering Transport processes 7. Semester Chemical Engineering Civil Engineering 1. Elementary Fluid Dynamics 2. Fluid Kinematics 3. Finite Control Volume Analysis 4. Differential Analysis of Fluid Flow 5. Viscous

More information

2. Conservation Equations for Turbulent Flows

2. Conservation Equations for Turbulent Flows 2. Conservation Equations for Turbulent Flows Coverage of this section: Review of Tensor Notation Review of Navier-Stokes Equations for Incompressible and Compressible Flows Reynolds & Favre Averaging

More information

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In

More information

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components.

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components. Reynolds Averaging Reynolds Averaging We separate the dynamical fields into sloly varying mean fields and rapidly varying turbulent components. Reynolds Averaging We separate the dynamical fields into

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 19 Turbulent Flows Fausto Arpino f.arpino@unicas.it Introduction All the flows encountered in the engineering practice become unstable

More information

External Flow and Boundary Layer Concepts

External Flow and Boundary Layer Concepts 1 2 Lecture (8) on Fayoum University External Flow and Boundary Layer Concepts By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical

More information

Exercise 5: Exact Solutions to the Navier-Stokes Equations I

Exercise 5: Exact Solutions to the Navier-Stokes Equations I Fluid Mechanics, SG4, HT009 September 5, 009 Exercise 5: Exact Solutions to the Navier-Stokes Equations I Example : Plane Couette Flow Consider the flow of a viscous Newtonian fluid between two parallel

More information

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1 HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the

More information

Chapter 6 An introduction of turbulent boundary layer

Chapter 6 An introduction of turbulent boundary layer Chapter 6 An introduction of turbulent boundary layer T-S Leu May. 23, 2018 Chapter 6: An introduction of turbulent boundary layer Reading assignments: 1. White, F. M., Viscous fluid flow. McGraw-Hill,

More information

ENGR Heat Transfer II

ENGR Heat Transfer II ENGR 7901 - Heat Transfer II Convective Heat Transfer 1 Introduction In this portion of the course we will examine convection heat transfer principles. We are now interested in how to predict the value

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 3 LAMINAR BOUNDARY LAYER FLOW LAMINAR BOUNDARY LAYER FLOW Boundary

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

Boundary Layer (Reorganization of the Lecture Notes from Professor Anthony Jacobi and Professor Nenad Miljkoic) Consider a steady flow of a Newtonian, Fourier-Biot fluid oer a flat surface with constant

More information

Process Chemistry Toolbox - Mixing

Process Chemistry Toolbox - Mixing Process Chemistry Toolbox - Mixing Industrial diffusion flames are turbulent Laminar Turbulent 3 T s of combustion Time Temperature Turbulence Visualization of Laminar and Turbulent flow http://www.youtube.com/watch?v=kqqtob30jws

More information

AA210A Fundamentals of Compressible Flow. Chapter 1 - Introduction to fluid flow

AA210A Fundamentals of Compressible Flow. Chapter 1 - Introduction to fluid flow AA210A Fundamentals of Compressible Flow Chapter 1 - Introduction to fluid flow 1 1.2 Conservation of mass Mass flux in the x-direction [ ρu ] = M L 3 L T = M L 2 T Momentum per unit volume Mass per unit

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium Transport in Porous Media (2006) 64: 1 14 Springer 2006 DOI 10.1007/s11242-005-1126-6 Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

More information

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16 Masters in Mechanical Engineering Aerodynamics st Semester 05/6 Exam st season, 8 January 06 Name : Time : 8:30 Number: Duration : 3 hours st Part : No textbooks/notes allowed nd Part : Textbooks allowed

More information

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Johan Hoffman May 14, 2006 Abstract In this paper we use a General Galerkin (G2) method to simulate drag crisis for a sphere,

More information

1 Mean Flow Equations

1 Mean Flow Equations ME 543 Averaged Equations 23 January 2018 These notes are meant as a supplement to the text, and as an aid for the class notes, but not as an independent document. 1 Mean Flow Equations 1.1 Mean flow equations

More information

Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows

Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows Remark 7.1. Turbulent flows. The usually used model for turbulent incompressible flows are the incompressible Navier Stokes equations

More information

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS June - July, 5 Melbourne, Australia 9 7B- NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS Werner M.J. Lazeroms () Linné FLOW Centre, Department of Mechanics SE-44

More information

10. Buoyancy-driven flow

10. Buoyancy-driven flow 10. Buoyancy-driven flow For such flows to occur, need: Gravity field Variation of density (note: not the same as variable density!) Simplest case: Viscous flow, incompressible fluid, density-variation

More information

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly 1. Introduction to Turbulent Flows Coverage of this section: Definition of Turbulence Features of Turbulent Flows Numerical Modelling Challenges History of Turbulence Modelling 1 1.1 Definition of Turbulence

More information

The Navier-Stokes Equations

The Navier-Stokes Equations s University of New Hampshire February 22, 202 and equations describe the non-relativistic time evolution of mass and momentum in fluid substances. mass density field: ρ = ρ(t, x, y, z) velocity field:

More information

PERTURBATION ANALYSIS OF k ω AND k ɛ TURBULENT MODELS. WALL FUNCTIONS

PERTURBATION ANALYSIS OF k ω AND k ɛ TURBULENT MODELS. WALL FUNCTIONS EPJ Web of Conferences 45, 01097 2013 DOI: 10.1051/ epjconf/ 20134501097 C Owned by the authors, published by EDP Sciences, 2013 PERTURBATION ANALYSIS OF k ω AND k ɛ TURBULENT MODELS. WALL FUNCTIONS Karel

More information

Elliptic relaxation for near wall turbulence models

Elliptic relaxation for near wall turbulence models Elliptic relaxation for near wall turbulence models J.C. Uribe University of Manchester School of Mechanical, Aerospace & Civil Engineering Elliptic relaxation for near wall turbulence models p. 1/22 Outline

More information

Unit operations of chemical engineering

Unit operations of chemical engineering 1 Unit operations of chemical engineering Fourth year Chemical Engineering Department College of Engineering AL-Qadesyia University Lecturer: 2 3 Syllabus 1) Boundary layer theory 2) Transfer of heat,

More information

Before we consider two canonical turbulent flows we need a general description of turbulence.

Before we consider two canonical turbulent flows we need a general description of turbulence. Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent

More information

Lecture 30 Review of Fluid Flow and Heat Transfer

Lecture 30 Review of Fluid Flow and Heat Transfer Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in

More information

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request. UNIVERSITY OF EAST ANGLIA School of Mathematics Spring Semester Examination 2004 FLUID DYNAMICS Time allowed: 3 hours Attempt Question 1 and FOUR other questions. Candidates must show on each answer book

More information

Convection Workshop. Academic Resource Center

Convection Workshop. Academic Resource Center Convection Workshop Academic Resource Center Presentation Outline Understanding the concepts Correlations External Convection (Chapter 7) Internal Convection (Chapter 8) Free Convection (Chapter 9) Solving

More information

Logarithmic velocity profile in the atmospheric (rough wall) boundary layer

Logarithmic velocity profile in the atmospheric (rough wall) boundary layer Logarithmic velocity profile in the atmospheric (rough wall) boundary layer P =< u w > U z = u 2 U z ~ ε = u 3 /kz Mean velocity profile in the Atmospheric Boundary layer Experimentally it was found that

More information

ρ t + (ρu j ) = 0 (2.1) x j +U j = 0 (2.3) ρ +ρ U j ρ

ρ t + (ρu j ) = 0 (2.1) x j +U j = 0 (2.3) ρ +ρ U j ρ Chapter 2 Mathematical Models The following sections present the equations which are used in the numerical simulations documented in this thesis. For clarity, equations have been presented in Cartesian

More information

B.1 NAVIER STOKES EQUATION AND REYNOLDS NUMBER. = UL ν. Re = U ρ f L μ

B.1 NAVIER STOKES EQUATION AND REYNOLDS NUMBER. = UL ν. Re = U ρ f L μ APPENDIX B FLUID DYNAMICS This section is a brief introduction to fluid dynamics. Historically, a simplified concept of the boundary layer, the unstirred water layer, has been operationally used in the

More information

Laminar Boundary Layers. Answers to problem sheet 1: Navier-Stokes equations

Laminar Boundary Layers. Answers to problem sheet 1: Navier-Stokes equations Laminar Boundary Layers Answers to problem sheet 1: Navier-Stokes equations The Navier Stokes equations for d, incompressible flow are + v ρ t + u + v v ρ t + u v + v v = 1 = p + µ u + u = p ρg + µ v +

More information

Fluid Dynamics and Balance Equations for Reacting Flows

Fluid Dynamics and Balance Equations for Reacting Flows Fluid Dynamics and Balance Equations for Reacting Flows Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Balance Equations Basics: equations of continuum mechanics balance equations for mass and

More information

Laminar and Turbulent developing flow with/without heat transfer over a flat plate

Laminar and Turbulent developing flow with/without heat transfer over a flat plate Laminar and Turbulent developing flow with/without heat transfer over a flat plate Introduction The purpose of the project was to use the FLOLAB software to model the laminar and turbulent flow over a

More information