Optics, Plasmonics and Excitonics: Connecting Fundamental Theory to Experiments and Applications

Size: px
Start display at page:

Download "Optics, Plasmonics and Excitonics: Connecting Fundamental Theory to Experiments and Applications"

Transcription

1 Emerging Topics in Optics University of Minnesota April 24, 2017 Optics, Plasmonics and Excitonics: Connecting Fundamental Theory to Experiments and Applications George C. Schatz Northwestern University

2 Metal nanoparticle optical property research Electrodynamics: Shengli Zou (Central Florida) Marty Blaber (Seagate) Montacer Dridi (France) Kevin Kohlsted Daniel Park, Mike Ross, Marc Bourgeois Danqing Wang, Weijia Wang Wendu Ding, Liang-Yan Hsu Teri Odom, Rick Van Duyne, Chad Mirkin, Emily Weiss, M. Ratner, Stephen Gray (Argonne)

3 Outline 1. Optical properties of isolated particles 2. Plasmon resonances for 1D and 2D nanoparticle arrays; lattice-plasmons and plasmon lasers 3. Plasmon resonances for 3D superlattice crystals: plasmon-photonic interactions and metamaterials properties. 4. Plasmon-mediated exciton transport

4 Colloidal Gold Michael Faraday, 1856 Spectra of dispersed colloidal gold for selected diameters (data from Turkevich (1954), Doremus (1964)) Extinction (Optical Density) nm 20 nm 5.2 nm 3.5 nm 100 nm 160 nm nm Wavelength (nm) Extinction = absorption + scattering (color of solution=color of light not absorbed or scattered)

5 Extinction Efficiency Mie Extinction for 13 nm Au spheres wavelength(nm) Plasmon excitation: collective excitation of the conduction electrons Nuclear framework of particle E-field Metal sphere Charge cloud of conduction electrons e - cloud Langmuir plasma frequency (1929): Plasmon (Bohm, Pines, 1952): ω = shape / surroundings λ sp = = 2πc chemical properties p 4πne m 1+ χε 4πne m n=electron density e χ = shape factor (2 for sphere, >2 for spheroid) ε o = dielectric constant of surroundings e 2 o 2

6 Spectrum of Colloidal Silver

7 The Plasmonic Periodic Table Blaber, et al. J. Phys: Condens. Matter, ,

8 Real or Imaginary part of dielectric constant Dielectric constants of Au 5.0 imaginary 0.0 real wavelength (nm) Extinction Efficiency Mie Extinction for 13 nm Au spheres wavelength(nm) Mie Theory (1908) (Lorenz-Mie-Debye) Theory G. Mie, Annalen der Physik, 26, , 1908 Extinction Cross Section = (long wavelength limit) 2 3 8π ( radius ) 3ε λ ( ε ) ε Gustav Mie ε = dielectric function of metal = ε 1 + iε 2 Extinction for 20 nm spheres 20 nm ε 2 ε 1

9 Size-Tunable Surface Plasmon Resonances Normalized Extinction width height shape l max Ag/mica Wavelength (nm)

10 Computational Electrodynamics Methods for Nanoparticles t 1 E = H J ε 1 H = E t µ d J t J t E t p p p p 0 dt 2 ( ) + γ ( ) = ωε ( ) Grid or Finite element methods: Discrete Dipole Approximation Finite Difference Time Domain Method Whitney-form Finite Element Method Beyond Conventional Maxwell: Nonlocal dielectric functions Coupled QM + EM

11 Discrete Dipole Approximation P=α Ee A P ik r i i 0 ij j i j Solve using iteration with complex conjugate gradient and FFT A P k r (r P ) 1 ikr r P 3r r P ikr e ij 2 ij 2 ij j = 3 ij ij j + 2 ij j ij ij j rij r ij ( ) k=ω/c, r ij = r i -r j, and r ij = (r i -r j )/r ij

12 Finite-difference Time-Domain Method ε E = H J t µ H = E t ε i+ 1/2, jk, E E n+ 1/2 n 1/2 x i+ 1/2, jk, x i+ 1/2, jk, t = H H H H y z n n n n z i+ 1/2, j+ 1/2, k z i 1/2, j+ 1/2, k y i+ 1/2, j, k+ 1/2 y i+ 1/2, j, k 1/2 µ i, j+ 1/2, k+ 1/2 H H n+ 1 n x i, j+ 1/2, k+ 1/2 x i, j+ 1/2, k+ 1/2 t E E E E = z y n+ 1/2 n+ 1/2 n+ 1/2 n+ 1/2 y i, j+ 1/2, k+ 1 y i, j+ 1/2, k z i, j+ 1, k+ 1/2 z i, j, k+ 1/2

13 Extinction E ficiency nm 15 a 16 nm nm 12 nm 15 b 16 nm Wavelength, nm Mirkin, et al, Figure 5 Silver prisms (15x75 nm) R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. -G. Zheng, Science, 294, (2001) Measured spectrum ~670 nm Extinction (a.u.) 0.05 ~480 nm 335 nm Wavelength, nm Z axis 20 Induced polarization at 670 nm y Y axis nm Calculated Spectrum 76 nm 12 nm Wavelength, nm b

14 Modeling the Spectra of Silver Bipyramids using EM Ag right bipyramid Experiments Simulations b a = 106, 131, 165, 191 nm a a = 2b Extinction Extinction Wavelength (nm) Wavelength (nm) Au rod-sheath Experiments and simulations are in good agreement with each other. Zhang, Li, Wu, Schatz, and Mirkin Angew. Chem. Int. Ed., 48, 7787, (2009)

15 Precision test of electrodynamics for silver cubes 90 nm Ag cube on glass: Plasmon is split into a blue component on the top and a red component on the bottom ~ 1 nm precision required for theory-experiment match!! McMahon, Wang, Sherry, Van Duyne, Marks, Gray, and Schatz, JPCC, 113, (2009)

16 5000 nm LSPR Control by Molecular Adsorbates: Alkanethiols Ag Extinction 0.16 CH (CH ) SH CH 3 CH 3 CH 3 Ag 0.08 Dl Δλ max = +40 nm Wavelength (nm) Van Duyne et al., J. Am. Chem. Soc., 123, (2001).

17 Surface Enhanced Raman Spectroscopy (SERS) Normal Raman Spectrum (NRS) 2.5 M Pyridine Surface - Enhanced Raman Spectrum (SERS): enhancement factor = 10 6 Surface Pyridine ω ex ω ex - ω vib Nanoparticles Nanoparticles D. L. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. 84, 1-20 (1977)

18 Plasmon enhancement factors (electromagnetic mechanism): Absorption =~ E(ω) 2 SERS enhancement =~ E(ω) 2 E(ω ) 2 ~ ( E 4 ) ave ~ When molecule is in direct contact with surface there are also chemical enhancements in SERS

19 Arrays of Au, Ag Nanoparticles: Optical properties strongly determined by structure

20 Extinction Spectra of Nanoparticle Chains 9 Parallel polarization leads to red shifts a Extinction Efficiency 6 3 D/2r= single Coupled multipole results for nm spheres, parallel parallel polarization Wavelength (nm) E 0

21 Perpendicular polarization leads to blue shifts single c perpendicular E 0

22 Narrow lineshapes for one-dimensional arrays of silver particles spaced by the wavelength nm particles Infinite array of 50 nm particles Width=4 mev E 0 Width=0.001meV Shengli Zou, Nicolas Janel, and George C. Schatz, J. Chem. Phys. 120, (2004).

23 Particle arrays made using optical lithography show sharp lattice plasmon resonances W. Zhou and T. Odom, Nature Nano, 6, 423 (2011), A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, T. W. Odom, Nature Comm 6, 6939 (2015)

24 Particle arrays made using lithography show interaction of lattice mode with a gap plasmon Experiment Theory Q-Y Lin et al (M. Ross, GCS, C. A. Mirkin) Nano Lett, 15, 4699 (2015)

25 Al nanoparticle arrays show both dipole and quadrupole lattice plasmons A. Yang, A. J. Hryn, M. R. Bourgeois, W-K Lee, J. Hu, G. C. Schatz, T. W. Odom, PNAS 113, (2016)

26 Plasmonic Lasers Gain medium near plasmonic structure results in enhanced stimulated emission CdSe nanowire near flat silver surface Oulton,R. F. et al. (X Zhang), Nature, 461, (2009) Laser dye around spherical gold particle Noginov, M. A. et al.(shalaev, Stockman), Nature, 460, (2009) Background and Motivations 26

27 Nature Nano 8, (2013)

28 Coupling QM to EM at the rate constant level 1)Quantum treatment of dye molecules 2)Classical electrodynamics for nanoparticle array Nature Nano 8, (2013) Model components: Measured and calculated extinction Measured and calculated dispersion behavior

29 Coupling QM to EM at the rate constant level Nature Nano 8, (2013) 1) Maxwell s equations determine fields (S5) 2)Rate equations (derivable from Bloch equations) determine state populations, including amplified spontaneous and stimulated emission dn3 N3 N3 1 dpa = + E dt τ τ ω dt dn dt N N 1 dpe = + E τ τ ω dt dn1 N2 N1 1 dpe = E dt τ τ ω dt e e a dn0 N1 N3 1 dpa = + E dt τ τ ω dt a 3) Coupling of molecular polarization to field () dpa() t 2 + ωa + ωapa() t = κa NtEt () () dt dt 2 d Pa t 2

30 Coupling QM to EM at the rate constant level Nature Nano 8, (2013) Results: (1) Emission shows threshold behavior (2)Population inversion distribution show plasmon enhancement (3)Population inversion is pinned above the lasing threshold <50 nm from particles

31 New work shows that lasing can be tuned by changing dye/refractive index with liquid gain materials Laser emission: experiment experiment theory Laser emission: theory A. Yang, T. B. Hoang, C. Deeb, M. Dridi, M. Mikkelsen, GCS, T. Odom, Nature Comm., 6, 6939 (2015)

32 DNA-linked Nanoparticle Superlattices S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, GCS, C. A. Mirkin, Nature, 451, 553 (2008).

33 What crystal lattices occur when particles have different sizes and DNA loadings? Geometrical model: lattice is determined by crystal that has the largest DNA hybridization # DNA/nanoparticle 2.55Å/bp 3.40Å/bp Calculate for loading on each particle, then take smaller value Science, 334, (2011)

34 Science, 334, (2011) NaCl Cr 3 Si CsCl FCC BCC AlB 2 Cs 6 C 60 Simple Cubic

35 DNA-linked nanoparticle superlattices: Extension to Nonspherical Particles M. Jones, R. MacFarlane, B. Lee, J. Zhang, K. Young, A. Senesi, C. Mirkin, Nat. Mat 9, 913 (2010). R, H, Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, C. A. Mirkin, Science, 334, (2011).

36 Experimental Studies for Disks show Plasmon Hybridization and Fano Interference effects High energy anti-bonding mode Bonding mode with a net dipole M. O Brien, M. R. Jones, K. L. Kohlstedt, GCS and CAM, Nano Lett, 15, 1012 (2015)

37 For Au 3D superlattice material, effective medium approximation leads to red shifts in extinction spectra with increasing crystal size A. Lazarides and G. C. Schatz, J. Phys. Chem. 104, (2000) M. B. Ross, J. C. Ku, B. Lee, C. A. Mirkin and G. C. Schatz, J. Phys. Chem. C 120, (2016)

38 Silver Superlattices show collective metallic response Re ε Dielectric LSPR Metallic Kaylie L. Young, Michael B. Ross, Martin G. Blaber, Matthew Rycenga, Matthew R. Jones, Chuan Zhang, Andrew J. Senesi, George C. Schatz, and Chad A. Mirkin, Adv. Mat. 26, (2013). BCC: Ag 20 nm diameter 20 nm edge to edge 38

39 Ag superlattice aggregates: theory vs expt Metallic Dielectric red: 17.1% Ag green: 3.7% Ag blue: 1.5% Ag Kaylie L. Young, Michael B. Ross, Martin G. Blaber, Matthew Rycenga, Matthew R. Jones, Chuan Zhang, Andrew J. Senesi, George C. Schatz, and Chad A. Mirkin, Adv. Mater., 26, (2013).

40 DNA-linked nanoparticle superlattice crystals Auyeung, et al., Nature 2014, 505, 73. scale bar: 5 um

41 Plasmonic/Photonic Crystals made by DNA Nanoparticle Assembly Show Strong Coupling of Plasmons and Fabry-Perot Modes S P Volume Fraction ~1% Volume Fraction ~10% 60 0 Surface Plasmon Cavity Modes e ω g (Scale bar 1 μm ) Theory 2D slab (EMT) Theory 2D BCC slab (FDTD) Experiment Fabry-Perot Modes D. J. Park et al. Photonic Crystals Realized through DNA Programmable Assembly Proc. Natl. Aca. Sci., 2014, doi: /pnas

42 Ag/Au Alloy and Bimetallic Superlattice Thin Films M. Ross, J. Ku, B. Lee, C. A. Mirkin and G. C. Schatz, Adv. Mat., 28, 2790(2016) Atomic vs nanoscale alloying leads to different results: reflects charge transfer at the atomic level that doesn t occur for nanoparticles.

43 Ag/Au Alloy and Bimetallic Superlattice Thin Films M. Ross, J. Ku, B. Lee, C. A. Mirkin and G. C. Schatz, Adv. Mat., 28, 2790(2016) Silver on left Gold on left Reflectivity is asymmetric as a result of the combination of gradient with lossy material. Expt Theory

44 Magneto-Plasmonics Provide New Opportunities for Designing Light-Matter Interactions Magnetic thin film Magnetic materials provide asymmetric and magneto-responsive optical properties: Kerr Rotation Kerr Ellipticity Faraday Rotation Au Ag Plasmonic systems provide exquisitely tunable optical properties Combination: plasmonic sensitivity and optical control with magneto-responsive character

45 Model System: TMOKE in Co-Superlattice Thin Films Superlattice modulates intensity and phase of light reaching the magnetic layer Manifests as changes in: Overall reflectance of multilayer structure Enhancement and control of TMOKE response Unusual positive TMOKE parameter for metallic Ag superlattice Transverse Magneto Optical Kerr Effect Michael B. Ross, Marc R. Bourgeois, Chad A. Mirkin and George C. Schatz, J. Phys. Chem. Lett. 7, (2016).

46 Conclusions 1. Solutions of Maxwell s equations for isolated silver and gold nanoparticles accurately match observed extinction spectra. 2. Arrays of nanoparticles which satisfy Bragg scattering conditions lead to lattice plasmon modes with narrow lines that are of interest in subwavelength lasers. 3. 3D arrays with well defined crystal habits lead to interesting plasmonic Fabry-Perot modes. There are also unique metamaterials properties associated with these materials. 4. We have developed a FDTD-based approach to describe plasmonmediated exciton transport.

Nanoscale Modeling and Simulation. George C. Schatz Northwestern University

Nanoscale Modeling and Simulation. George C. Schatz Northwestern University Nanoscale Modeling and Simulation George C. Schatz Northwestern University Where can simulation play a role in nanoscience, both now and in the future? 1. Structures of disordered nanomaterials: peptide

More information

The Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures

The Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures The Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures Michael B. Ross 1, Chad A. Mirkin* 1,2, and George C. Schatz* 1,2 Department of Chemistry 1 and International

More information

Nano Optics Based on Coupled Metal Nanoparticles

Nano Optics Based on Coupled Metal Nanoparticles Nano Optics Based on Coupled Metal Nanoparticles Shangjr Gwo ( 果尚志 ) Department of Physics National Tsing-Hua University, Hsinchu 30013, Taiwan E-mail: gwo@phys.nthu.edu.tw NDHU-Phys (2010/03/01) Background

More information

ECE280: Nano-Plasmonics and Its Applications. Week8

ECE280: Nano-Plasmonics and Its Applications. Week8 ECE280: Nano-Plasmonics and Its Applications Week8 Surface Enhanced Raman Scattering (SERS) and Surface Plasmon Amplification by Stimulated Emission of Radiation (SPASER) Raman Scattering Chandrasekhara

More information

Spring 2009 EE 710: Nanoscience and Engineering

Spring 2009 EE 710: Nanoscience and Engineering Spring 009 EE 710: Nanoscience and Engineering Part 10: Surface Plasmons in Metals Images and figures supplied from Hornyak, Dutta, Tibbals, and Rao, Introduction to Nanoscience, CRC Press Boca Raton,

More information

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Nanoscale optical circuits: controlling light using localized surface plasmon resonances Nanoscale optical circuits: controlling light using localized surface plasmon resonances T. J. Davis, D. E. Gómez and K. C. Vernon CSIRO Materials Science and Engineering Localized surface plasmon (LSP)

More information

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures Zhi-Yuan Li Optical Physics Laboratory, Institute of Physics, CAS Beijing 18, China January 5-9, 7, Fudan University, Shanghai Challenges

More information

Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays

Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays SUPPLEMENTAL INFORMATION Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays Danqing Wang 1, Ankun Yang 2, Alexander J. Hryn 2, George C. Schatz 1,3 and Teri W. Odom 1,2,3 1 Graduate Program in

More information

Magnetoplasmonics: fundamentals and applications

Magnetoplasmonics: fundamentals and applications Antonio García-Martín http://www.imm-cnm.csic.es/magnetoplasmonics Instituto de Microelectrónica de Madrid Consejo Superior de Investigaciones Científicas Magnetoplasmonics: fundamentals and applications

More information

Supporting Information for. Shape Transformation of Gold Nanoplates and their Surface Plasmon. Characterization: Triangular to Hexagonal Nanoplates

Supporting Information for. Shape Transformation of Gold Nanoplates and their Surface Plasmon. Characterization: Triangular to Hexagonal Nanoplates 1 Supporting Information for Shape Transformation of Gold Nanoplates and their Surface Plasmon Characterization: Triangular to Hexagonal Nanoplates Soonchang Hong, Kevin L. Shuford *,, and Sungho Park

More information

Optical cavity modes in gold shell particles

Optical cavity modes in gold shell particles 9 Optical cavity modes in gold shell particles Gold (Au) shell particles with dimensions comparable to the wavelength of light exhibit a special resonance, with a tenfold field enhancement over almost

More information

Chapter 2 Surface Plasmon Resonance

Chapter 2 Surface Plasmon Resonance Chapter 2 Surface Plasmon Resonance 2.1 Introduction Free electrons in metals behave like a gas of free charge carriers (also known as a plasma). The quanta corresponding to plasma oscillations are called

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information DNA-Programmable Nanoparticle Crystallization Sung Yong Park,* 1 Abigail K. R. Lytton-Jean,* 1 Byeongdu Lee 2, Steven Weigand 3, George C. Schatz 1 and Chad A. Mirkin 1 1 Department

More information

Supplemental Information for

Supplemental Information for Supplemental Information for Densely arranged two-dimensional silver nanoparticle assemblies with optical uniformity over vast areas as excellent surface-enhanced Raman scattering substrates Yoshimasa

More information

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays CHAPTER 4 Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays 4.1 Introduction In Chapter 3, the noble bimetallic alloy nanosphere (BANS) of Ag 1-x Cu x at a particular composition

More information

Rekola, Heikki T.; Hakala, Tommi K.; Törmä, Päivi Lasing in small-sized aluminum nanoparticle arrays

Rekola, Heikki T.; Hakala, Tommi K.; Törmä, Päivi Lasing in small-sized aluminum nanoparticle arrays Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Rekola, Heikki T.; Hakala, Tommi

More information

"Surface-Enhanced Raman Scattering

Surface-Enhanced Raman Scattering SMR: 1643/11 WINTER COLLEGE ON OPTICS ON OPTICS AND PHOTONICS IN NANOSCIENCE AND NANOTECHNOLOGY ( 7-18 February 2005) "Surface-Enhanced Raman Scattering presented by: Martin Moskovits University of California,

More information

Supplementary information for. plasmonic nanorods interacting with J-aggregates.

Supplementary information for. plasmonic nanorods interacting with J-aggregates. Supplementary information for Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. by Gülis Zengin, Göran Johansson, Peter Johansson, Tomasz J. Antosiewicz,

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Cascaded plasmon resonances multi-material nanoparticle trimers for extreme field enhancement S. Toroghi a, Chatdanai Lumdee a, and P. G. Kik* a CREOL, The College of Optics and Photonics, University of

More information

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES Tomáš Váry, Juraj Chlpík, Peter Markoš ÚJFI, FEI STU, Bratislava E-mail: tomas.vary@stuba.sk Received xx April 2012; accepted xx May 2012. 1.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nnano.2011.72 Tunable Subradiant Lattice Plasmons by Out-of-plane Dipolar Interactions Wei Zhou and Teri W. Odom Optical measurements. The gold nanoparticle arrays

More information

Energy transport in metal nanoparticle plasmon waveguides

Energy transport in metal nanoparticle plasmon waveguides Energy transport in metal nanoparticle plasmon waveguides Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater California Institute of Technology Thomas J. Watson Laboratory of Applied Physics, Pasadena,

More information

7. Localized surface plasmons (Particle plasmons)

7. Localized surface plasmons (Particle plasmons) 7. Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly)

Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly) Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly) and D3 (Fabry Pérot cavity mode). (a) Schematic (top) showing the reflectance measurement geometry and simulated angle-resolved

More information

Localized surface plasmons (Particle plasmons)

Localized surface plasmons (Particle plasmons) Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

Surface plasmon waveguides

Surface plasmon waveguides Surface plasmon waveguides Introduction Size Mismatch between Scaled CMOS Electronics and Planar Photonics Photonic integrated system with subwavelength scale components CMOS transistor: Medium-sized molecule

More information

Uniform Circular Disks With Synthetically Tailorable Diameters: Two-Dimensional Nanoparticles for Plasmonics

Uniform Circular Disks With Synthetically Tailorable Diameters: Two-Dimensional Nanoparticles for Plasmonics Supporting Information for: Uniform Circular Disks With Synthetically Tailorable Diameters: Two-Dimensional Nanoparticles for Plasmonics Matthew N. O Brien, 1 Matthew R. Jones, 2 Kevin L. Kohlstedt, 1

More information

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308)

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) (invited) TBC Session 3: Metamaterials Theory (16:45 17:00, Huxley LT308) Light trapping states in media with longitudinal electric waves D McArthur,

More information

Large-Area and Uniform Surface-Enhanced Raman. Saturation

Large-Area and Uniform Surface-Enhanced Raman. Saturation Supporting Information Large-Area and Uniform Surface-Enhanced Raman Spectroscopy Substrate Optimized by Enhancement Saturation Daejong Yang 1, Hyunjun Cho 2, Sukmo Koo 1, Sagar R. Vaidyanathan 2, Kelly

More information

Photonic Micro and Nanoresonators

Photonic Micro and Nanoresonators Photonic Micro and Nanoresonators Hauptseminar Nanooptics and Nanophotonics IHFG Stuttgart Overview 2 I. Motivation II. Cavity properties and species III. Physics in coupled systems Cavity QED Strong and

More information

Size-Selective Nanoparticle Assembly on Substrates. by DNA Density Patterning

Size-Selective Nanoparticle Assembly on Substrates. by DNA Density Patterning Supporting Information: Size-Selective Nanoparticle Assembly on Substrates by DNA Density Patterning Benjamin D. Myers 1,2, Qing-Yuan Lin 1, Huanxin Wu 3, Erik Luijten 1,3,4, Chad A. Mirkin 1,5,6 and Vinayak

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston Understanding Nanoplasmonics Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm 1ns 100ps 10ps Photonics 1ps 100fs 10fs 1fs Time Surface Plasmons Surface

More information

Shell-isolated nanoparticleenhanced Raman spectroscopy: Insight from COMSOL simulations

Shell-isolated nanoparticleenhanced Raman spectroscopy: Insight from COMSOL simulations Shell-isolated nanoparticleenhanced Raman spectroscopy: Insight from COMSOL simulations Song-Yuan Ding, Jun Yi, En-Ming You, and Zhong-Qun Tian 2016-11-03, Shanghai Excerpt from the Proceedings of the

More information

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Surface plasmon polaritons and localized surface plasmons Plasmon propagation and absorption at metal-semiconductor interfaces

More information

Surface plasmon toy-model of a rotating black hole.

Surface plasmon toy-model of a rotating black hole. Surface plasmon toy-model of a rotating black hole. Igor I. Smolyaninov Department of Electrical and Computer Engineering University of Maryland, College Park, MD 20742 (February 2, 2008) arxiv:cond-mat/0309356v1

More information

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS www.arpapress.com/volumes/vol19issue1/ijrras_19_1_06.pdf HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS M. Eslamifar Physics Department, BehbahanKhatamAl-Anbia

More information

Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.

Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C. Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2 EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Schedule for the rest of the semester Introduction to light-matter

More information

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials Reading: Saleh and Teich Chapter 7 Novotny and Hecht Chapter 11 and 12 1. Photonic Crystals Periodic photonic structures 1D 2D 3D Period a ~

More information

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm Metals Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals 5 nm Course Info Next Week (Sept. 5 and 7) no classes First H/W is due Sept. 1 The Previous Lecture Origin frequency dependence

More information

Nanoscale Systems for Opto-Electronics

Nanoscale Systems for Opto-Electronics Nanoscale Systems for Opto-Electronics 675 PL intensity [arb. units] 700 Wavelength [nm] 650 625 600 5µm 1.80 1.85 1.90 1.95 Energy [ev] 2.00 2.05 Nanoscale Systems for Opto-Electronics Lecture 1 Dozent:

More information

what happens if we make materials smaller?

what happens if we make materials smaller? what happens if we make materials smaller? IAP VI/10 ummer chool 2007 Couvin Prof. ns outline Introduction making materials smaller? ynthesis how do you make nanomaterials? Properties why would you make

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Plan of the lectures

Plan of the lectures Plan of the lectures 1. Introductory remarks on metallic nanostructures Relevant quantities and typical physical parameters Applications. Linear electron response: Mie theory and generalizations 3. Nonlinear

More information

Multiple Fano Resonances Structure for Terahertz Applications

Multiple Fano Resonances Structure for Terahertz Applications Progress In Electromagnetics Research Letters, Vol. 50, 1 6, 2014 Multiple Fano Resonances Structure for Terahertz Applications Hadi Amarloo *, Daniel M. Hailu, and Safieddin Safavi-Naeini Abstract A new

More information

Photonics Beyond Diffraction Limit:

Photonics Beyond Diffraction Limit: Photonics Beyond Diffraction Limit: Plasmon Cavity, Waveguide and Lasers Xiang Zhang University of California, Berkeley Light-Matter Interaction: Electrons and Photons Photons Visible / IR ~ 1 m Electrons

More information

Study of Surface Plasmon Excitation on Different Structures of Gold and Silver

Study of Surface Plasmon Excitation on Different Structures of Gold and Silver Nanoscience and Nanotechnology 2015, 5(4): 71-81 DOI: 10.5923/j.nn.20150504.01 Study of Surface Plasmon Excitation on Different Structures of Gold and Silver Anchu Ashok 1,*, Arya Arackal 1, George Jacob

More information

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix O.Kiriyenko,1, W.Hergert 1, S.Wackerow 1, M.Beleites 1 and

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for anoscale. This journal is The Royal Society of Chemistry 2014 Supporting information On-demand shape and size purification of nanoparticle based on surface area

More information

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots Towards the Lasing Spaser: Controlling Metamaterial Optical Response with Semiconductor Quantum Dots E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev,, Optoelectronics Research Centre, University

More information

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Time-resolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy

More information

Long-Wavelength Optical Properties of a Plasmonic Crystal

Long-Wavelength Optical Properties of a Plasmonic Crystal Long-Wavelength Optical Properties of a Plasmonic Crystal Cheng-ping Huang 1,2, Xiao-gang Yin 1, Qian-jin Wang 1, Huang Huang 1, and Yong-yuan Zhu 1 1 National Laboratory of Solid State Microstructures,

More information

ECE 484 Semiconductor Lasers

ECE 484 Semiconductor Lasers ECE 484 Semiconductor Lasers Dr. Lukas Chrostowski Department of Electrical and Computer Engineering University of British Columbia January, 2013 Module Learning Objectives: Understand the importance of

More information

1. Reminder: E-Dynamics in homogenous media and at interfaces

1. Reminder: E-Dynamics in homogenous media and at interfaces 0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2. Photonic Crystals 2.1 Introduction 2.2 1D Photonic Crystals 2.3 2D and 3D Photonic Crystals 2.4 Numerical Methods 2.4.1

More information

Light Interaction with Small Structures

Light Interaction with Small Structures Light Interaction with Small Structures Molecules Light scattering due to harmonically driven dipole oscillator Nanoparticles Insulators Rayleigh Scattering (blue sky) Semiconductors...Resonance absorption

More information

Solid State Physics Byungwoo Park Department of Materials Science and Engineering Seoul National University

Solid State Physics Byungwoo Park Department of Materials Science and Engineering Seoul National University Solid State Physics Byungwoo Park Department of Materials Science and Engineering Seoul National University http://bp.snu.ac.kr Types of Crystal Binding Kittel, Solid State Physics (Chap. 3) Solid State

More information

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Information for Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Figure 1. Simulated from pristine graphene gratings at different Fermi energy

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

of Gold Nanoparticles

of Gold Nanoparticles 2 Behaviour of Gold Nanoparticles The behaviour of matter at the nanoscale is often unexpected and can be completely different from that of bulk materials. This has stimulated the study and the development

More information

Dr. Tao Li

Dr. Tao Li Tao Li taoli@nju.edu.cn Nat. Lab. of Solid State Microstructures Department of Materials Science and Engineering Nanjing University Concepts Basic principles Surface Plasmon Metamaterial Summary Light

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Coupling of Plasmonic Nanopore Pairs: Facing Dipoles Attract Each Other Takumi Sannomiya 1, Hikaru Saito 2, Juliane Junesch 3, Naoki Yamamoto 1. 1 Department of Innovative and

More information

Optics of complex micro structures

Optics of complex micro structures Optics of complex micro structures dielectric materials λ L disordered partially ordered ordered random multiple scattering liquid crystals quasi crystals (Fibonacci) photonic crystals Assembly of photonic

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Acoustic metamaterials in nanoscale

Acoustic metamaterials in nanoscale Acoustic metamaterials in nanoscale Dr. Ari Salmi www.helsinki.fi/yliopisto 12.2.2014 1 Revisit to resonances Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto

More information

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013 High-efficiency thin film nano-structured multi-junction solar James S. cells Harris (PI) (Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University GCEP Research Symposium 2013 Stanford, CA October

More information

OPTICAL PROPERTIES of Nanomaterials

OPTICAL PROPERTIES of Nanomaterials OPTICAL PROPERTIES of Nanomaterials Advanced Reading Optical Properties and Spectroscopy of Nanomaterials Jin Zhong Zhang World Scientific, Singapore, 2009. Optical Properties Many of the optical properties

More information

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0. Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.6 H 0.4 colloids. The standard derivation is 4.4 %. Supplementary

More information

Superconductivity Induced Transparency

Superconductivity Induced Transparency Superconductivity Induced Transparency Coskun Kocabas In this paper I will discuss the effect of the superconducting phase transition on the optical properties of the superconductors. Firstly I will give

More information

Strong plasmon coupling between two gold nanospheres on a gold slab

Strong plasmon coupling between two gold nanospheres on a gold slab Strong plasmon coupling between two gold nanospheres on a gold slab H. Liu 1, *, J. Ng 2, S. B. Wang 2, Z. H. Hang 2, C. T. Chan 2 and S. N. Zhu 1 1 National Laboratory of Solid State Microstructures and

More information

PLASMONICS/METAMATERIALS

PLASMONICS/METAMATERIALS PLASMONICS/METAMATERIALS Interconnects Optical processing of data Subwavelength confinement Electrodes are in place Coupling to other on-chip devices Combination of guiding, detection, modulation, sensing

More information

Surface plasmon coupling in periodic metallic nanoparticle structures: a semi-analytical model

Surface plasmon coupling in periodic metallic nanoparticle structures: a semi-analytical model Surface plasmon coupling in periodic metallic nanoparticle structures: a semi-analytical model Tian Yang and Kenneth B. Crozier School of Engineering and Applied Sciences, Harvard University, 33 Oxford

More information

Natallia Strekal. Plasmonic films of noble metals for nanophotonics

Natallia Strekal. Plasmonic films of noble metals for nanophotonics Natallia Strekal Plasmonic films of noble metals for nanophotonics The aim of our investigation is the mechanisms of light interactions with nanostructure and High Tech application in the field of nanophotonics

More information

A tutorial on meta-materials and THz technology

A tutorial on meta-materials and THz technology p.1/49 A tutorial on meta-materials and THz technology Thomas Feurer thomas.feurer@iap.unibe.ch Institute of Applied Physics Sidlerstr. 5, 3012 Bern Switzerland p.2/49 Outline Meta-materials Super-lenses

More information

Modeling of Kerr non-linear photonic components with mode expansion

Modeling of Kerr non-linear photonic components with mode expansion Modeling of Kerr non-linear photonic components with mode expansion Björn Maes (bjorn.maes@intec.ugent.be), Peter Bienstman and Roel Baets Department of Information Technology, Ghent University IMEC, St.-Pietersnieuwstraat

More information

Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b

Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b a CREOL, The College of Optics and Photonics, University of Central Florida,

More information

arxiv:physics/ v1 [physics.optics] 26 May 2005

arxiv:physics/ v1 [physics.optics] 26 May 2005 LETTER TO THE EDITOR arxiv:physics/55186v1 [physics.optics] 26 May 25 Divergence of Dipole Sums and the Nature of Non-Lorentzian Exponentially Narrow Resonances in One-Dimensional Periodic Arrays of Nanospheres

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

Supplementary Figure 1. Optical and magneto-optical responses for 80 nm diameter particles

Supplementary Figure 1. Optical and magneto-optical responses for 80 nm diameter particles Supplementary Figure 1 Optical and magneto-optical responses for 80 nm diameter particles The schematics on the left illustrate the direction of incident polarization and the induced dipole moments that

More information

Electromagnetic Mechanism of SERS

Electromagnetic Mechanism of SERS Electromagnetic Mechanism of SERS George C. Schatz, Matthew A. Young, and Richard P. Van Duyne Department of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA {schatz,vanduyne}@chem.northwestern.edu

More information

Lecture 10: Surface Plasmon Excitation. 5 nm

Lecture 10: Surface Plasmon Excitation. 5 nm Excitation Lecture 10: Surface Plasmon Excitation 5 nm Summary The dispersion relation for surface plasmons Useful for describing plasmon excitation & propagation This lecture: p sp Coupling light to surface

More information

Shell-isolated nanoparticle-enhanced Raman spectroscopy

Shell-isolated nanoparticle-enhanced Raman spectroscopy Shell-isolated nanoparticle-enhanced Raman spectroscopy Jian Feng Li, Yi Fan Huang, Yong Ding, Zhi Lin Yang, Song Bo Li, Xiao Shun Zhou, Feng Ru Fan, Wei Zhang, Zhi You Zhou, De Yin Wu, Bin Ren, Zhong

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information for Biocompatible and Functionalized Silk Opals Sunghwan Kim, Alexander N. Mitropoulos, Joshua D. Spitzberg, Hu Tao, David L. Kaplan, and Fiorenzo G. Omenetto (*) (*) To whom

More information

Evaluating nanogaps in Ag and Au nanoparticle clusters for SERS applications using COMSOL Multiphysics

Evaluating nanogaps in Ag and Au nanoparticle clusters for SERS applications using COMSOL Multiphysics Evaluating nanogaps in Ag and Au nanoparticle clusters for SERS applications using COMSOL Multiphysics Ramesh Asapu 1, Radu-George Ciocarlan 2, Nathalie Claes 3, Natan Blommaerts 1, Sara Bals 3, Pegie

More information

Supporting information for Metal-semiconductor. nanoparticle hybrids formed by self-organization: a platform to address exciton-plasmon coupling

Supporting information for Metal-semiconductor. nanoparticle hybrids formed by self-organization: a platform to address exciton-plasmon coupling Supporting information for Metal-semiconductor nanoparticle hybrids formed by self-organization: a platform to address exciton-plasmon coupling Christian Strelow, T. Sverre Theuerholz, Christian Schmidtke,

More information

Plasmonic and Diffractive Coupling in 2D Arrays of Nanoparticles Produced by Electron Beam Lithography

Plasmonic and Diffractive Coupling in 2D Arrays of Nanoparticles Produced by Electron Beam Lithography Mater. Res. Soc. Symp. Proc. Vol. 951 2007 Materials Research Society 0951-E09-20 Plasmonic and Diffractive Coupling in 2D Arrays of Nanoparticles Produced by Electron Beam Lithography Erin McLellan 1,

More information

Origin of Optical Enhancement by Metal Nanoparticles. Greg Sun University of Massachusetts Boston

Origin of Optical Enhancement by Metal Nanoparticles. Greg Sun University of Massachusetts Boston Origin of Optical Enhancement by Metal Nanoparticles Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm Photonics 1ns 100ps 10ps 1ps 100fs 10fs 1fs Time

More information

Superparamagnetic nanoparticle arrays for magnetically tunable photonics. Josh Kurzman Materials 265

Superparamagnetic nanoparticle arrays for magnetically tunable photonics. Josh Kurzman Materials 265 Superparamagnetic nanoparticle arrays for magnetically tunable photonics Josh Kurzman Materials 265 Superparamagnetism In SPM regime, thermal energy sufficient to overcome spin reversal barrier T B Below

More information

Quantum Optics in Wavelength Scale Structures

Quantum Optics in Wavelength Scale Structures Quantum Optics in Wavelength Scale Structures SFB Summer School Blaubeuren July 2012 J. G. Rarity University of Bristol john.rarity@bristol.ac.uk Confining light: periodic dielectric structures Photonic

More information

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Plasmonics Plasmon: Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam

More information

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Supplemental Material L. Shi, T. K. Hakala, H. T. Rekola, J. -P.

More information

High temperature plasmonics: Narrowband, tunable, nearfield. thermal sources

High temperature plasmonics: Narrowband, tunable, nearfield. thermal sources High temperature plasmonics: Narrowband, tunable, nearfield thermal sources Yu Guo, S. Molesky, C. Cortes and Zubin Jacob * Department of Electrical and Computer Engineering, University of Alberta, Edmonton,

More information

Optical properties of spherical and anisotropic gold shell colloids

Optical properties of spherical and anisotropic gold shell colloids 8 Optical properties of spherical and anisotropic gold shell colloids Core/shell colloids consisting of a metal shell and a dielectric core are known for their special optical properties. The surface plasmon

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 08 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Outline: Photonic crystals 2 1. Photonic crystals vs electronic

More information

Theoretical study of subwavelength imaging by. acoustic metamaterial slabs

Theoretical study of subwavelength imaging by. acoustic metamaterial slabs Theoretical study of subwavelength imaging by acoustic metamaterial slabs Ke Deng,2, Yiqun Ding, Zhaojian He, Heping Zhao 2, Jing Shi, and Zhengyou Liu,a) Key Lab of Acoustic and Photonic materials and

More information

6. Plasmon coupling between a flat gold interface and gold nanoparticles.

6. Plasmon coupling between a flat gold interface and gold nanoparticles. 6. Plasmon coupling between a flat gold interface and gold nanoparticles. 6.1. Introduction In this outlook oriented chapter the applicability of the multilayered system used in chapter 4.1., for the study

More information

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. Plasmonics The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. A possible way out is the conversion of light into plasmons. They have much shorter

More information

Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit Mat. Res. Soc. Symp. Proc. Vol. 722 2002 Materials Research Society Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

More information