of Gold Nanoparticles

Size: px
Start display at page:

Download "of Gold Nanoparticles"

Transcription

1 2 Behaviour of Gold Nanoparticles The behaviour of matter at the nanoscale is often unexpected and can be completely different from that of bulk materials. This has stimulated the study and the development of many applications based on nanostructures in virtually all areas of science and technology. The properties of colloids, such as localised surface plasmon resonance (LSPR) modes and catalytic activity, depend on their size and shape; therefore, great efforts were devoted to the development of methods giving control of size (Chapter 1) and surface tunability (Section 2.2). It is important to remember that tight control of the reactions is necessary to achieve the desired size and shape of the particles, and, thus, to finely tune their physicalchemical properties [1-2]. This chapter starts by introducing in Section 2.1 the photophysical properties of metallic nanostructures, with a special focus on the correlation between geometries and optical features. In the first part of this section a general description of the physics at the basis of metal nanoparticles (NP) is reported, followed by a more mathematical discussion of some specific subjects. Section 2.2 contains an overview on the most used methods to coat and functionalise AuNP and, at the end of the chapter, in Section 2.3, the biocompatibility and organism biodistribution of AuNP will be discussed. 39

2 Update on Gold Nanoparticles 2.1 Optical Features General Description Noble metal colloids are characterised by intense colours, caused by light absorption and scattering in the visible region of the spectrum. An example of an early application of this property is in the rose window of the Notre Dame cathedral in Paris, where silver and AuNP are responsible for the colours of the glass. These effects are caused by one of the most important types of interaction of metal nanoparticles with the electromagnetic field, the LSPR, which will be discussed in this chapter (Figure 2.1). Metals are characterised by the presence of free electrons and when the diameter of metallic nanostructures is in the nm range they interact with the light through [3]: (i) collective excitations of free electrons due to intraband transitions, giving rise to LSPR, (ii) transitions of electrons from occupied to empty bulk bands of a different index, called interband transitions, and (iii) surface dispersion or scattering of the free or unbound electrons, when their mean free path is comparable to the dimensions of the nanostructures. A resonance occurs when the frequency of an incident electromagnetic (EM) field matches the frequency of an intrinsic electronic oscillation; this is a collective and coherent oscillation of the electronic cloud of the metals, called plasmon, which causes a displacement of the electrons from the nuclei, leading to the formation of various possible distributions in the nanostructure surface charges (i.e., dipole, quadrupole and so on, see Figure 2.1). Each type of surface charge distribution is characterised by a specific resonance energy, the LSPR (Figure 2.1). When an incoming radiation of an appropriate frequency interacts with the nanostructure, its energy can be stored in the oscillation mode of the nanoparticle and can result in absorption and/or in light scattering. Noble metals such as copper, silver, and gold have strong visiblelight plasmon resonances (Figure 2.2), whereas most other transition metals show only a broad and poorly resolved extinction band in the ultraviolet (UV) region [4]. 40

3 Behaviour of Gold Nanoparticles Figure 2.1 Scheme of a surface plasmon oscillation for a sphere, showing the displacement of the conduction electron charge cloud relative to the nuclei. Reproduced with permission from K. Kelly, E. Coronado, L. Zhao and G. Schatz, Journal of Physical Chemistry B, 2003, 107, , American Chemical Society [2] Figure 2.2 Normalised UV-Vis spectra for gold nanospheres (AuNS) with different diameters in aqueous solution. Inset, photo showing the colours of gold solutions of nanospheres with different diameters from 30 to 90 nm. Reproduced with permission from P.N. Njoki, I-I.S. Lim, D. Mott, H-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo and C-J. Zhong, Journal of Physical Chemistry C, 2007, , American Chemical Society [5] Since it is possible to assume that the electrons of the conduction band of all metals can move freely and independently from the ionic background, considering that ions act only as scattering centres [6], the presence of the LSPR in the visible region for noble metals is attributed to the strong coupling between the plasmon resonance 41

4 Update on Gold Nanoparticles and interband excitations. Therefore, the electron cloud of noble metals shows higher polarisability [7] than other transition metals: this shifts the plasmon resonance to lower (visible) frequencies with a characteristic sharp bandwidth (Figure 2.2). In a dilute sample of NP, so that each particle behaves independently with respect to the incident radiation, the spectrum is composed of the sum of absorption and scattering modes. The intensity of light transmitted through this type of sample is given by Equation 2.1: σ abs+ σ SC I = I e NL 0 [ ( ) ] (2.1) In Equation 2.1, I 0 is the intensity of the incoming light, N is the number of particles per unit volume, and L is the length of the path travelled by the light in the sample. The quantity σ ex = σ abs + σ sc is also known as the extinction cross section, while σ abs and σ sc are, the absorption and scattering cross section of the NP, respectively. The size and shape of the particles, the dielectric function of the medium, and the presence of other nanostructures in close proximity to each other are the factors that most influence the extinction bands of LSPR in nanostructures [1, 8] (Figure 2.2 and Figure 2.3). In the following sections, the influence of particle size on the position and on the width of the spectral band of plasmon modes will be discussed. For metal nanospheres (NS), interband electronic transitions are not very sensitive to particle size (except in the case of sub-2 nm metal clusters, which are made of a few atoms), and are located at high energy (UV region of the spectra). For NP with diameters between 10 and 30 nm, the dominant effect in the visible region is the excitation of plasmon modes. In this size range, and in the simple case of spherical nanoparticles, a single dominant plasmon mode of a dipolar nature is excited; for gold (Figure 2.2) this mode falls at about nm, and for silver at 400 nm. However, scattering effects are more important for NS with a diameter of more than 30 nm, where electrons are accelerated by the electromagnetic field and radiate energy in all directions. 42

5 Behaviour of Gold Nanoparticles Because of this secondary radiation, electrons lose energy by a damping effect on their motion. It was found (Figure 2.2) that the spectrum is less intense, wider, and red-shifted when the particle size increases [3]. A depolarisation field term provokes the shift to larger wavelengths, while radiation damping causes decreasing intensity and widening of the spectrum [10]. Finally, scattering effects dominate the response of NS with diameters larger than 100 nm and, in addition, higher order modes (i.e., quadrupolar, octupolar) contribute to the interaction between light and matter. In a theoretical/experimental work on spherical AuNP by El- Sayed and co-workers [8], it was shown that the sum of all these effects caused a red shift on the λ max of LSPR of about 0.7 nm for every 1 nm increase in particle radius (for diameter >25 nm). For particle sizes smaller than 25 nm, λ max is almost independent from the particle size. Figure 2.3 Size, shape, and composition of metal nanoparticles can be systematically varied to produce materials with distinct optical properties. The upper panel shows the colour from the dark field signals of the drops of the nanoparticles shown in the bottom panel. Reproduced with permission from N.L. Rosi and C.A. Mirkin, Chemical Reviews, 2005, 105, , American Chemical Society [9] 43

6 Update on Gold Nanoparticles Theoretically, the basis of the correlation between the NS size and the λ max of the LSPR band was described for the first time by Mie [11]. He solved the Maxwell s equations in the quasi-static regime (he assumed that the field perceived by the particle was constant throughout the solid, albeit it can still be time, or frequency dependent) and obtained, in the dipole approximation (nanoparticles are much smaller than the incident wavelength) Equation 2.2: 3/ 2 σ ex 18πε a ωε2( ω, R) = 1000 V λ 2 ( ε ( ω, R) + 2ε ) + ε 2 ( ω, R ) (2.2) 1 where σ ex is the extinction cross section, ω is the angular frequency, V is the volume of each sphere, ε a is the medium dielectric constant, and ε 1 and ε 2 are the real and complex part of the dielectric function of the metal [11]. The resonance condition is roughly fulfilled when ε 1 (ω, R) = 2ε a if ε 2 is small or weakly dependent on ω. Equation 2.2 explains the dependence of LSPR on the dielectric function of the surrounding medium ε a [5]. In this model the dependence of the LSPR band for NS of different sizes is considered to be the result of the dependence of the refractive index of nanoparticles on R [12]. Therefore, an intrinsic dependence of the real and imaginary part of the dielectric function of metals [1] on R is indicated in Equation 2.2. Indeed, this size-dependence is lost if the dielectric constant of the bulk metal is used to solve Maxwell s equations. It is important to note (Figure 2.4) that there is a direct dependence of the NS extinction cross section on the sphere volume and that the σ ex of the gold nanospheres are typically 4-5 orders of magnitude higher compared to those of organic dyes [13]. At the same time, the relative contribution of scattering to the total extinction cross section (C ext ) increases with the square of particle volume as seen in Figure 2.5. The trend in the ratio of scattering to absorption with the nanoparticle volume has been related to an increase in radiative damping in larger particles [13]. Thus, the extinction features of AuNS with diameters >20 nm were exploited for the selective scattering imaging of cells by using dark field microscopy [14] (DF) and confocal microscopy [15] (Chapter 3). On the other hand AuNS with diameters in the size range of 3-10 nm can serve as excellent photoabsorbers for laser photothermal therapy (PTT) and absorption contrast imaging [16] (Chapter 3). a 2 44

7 Behaviour of Gold Nanoparticles Figure 2.4 Variation of extinction cross section (C ext ) with nanosphere diameter. Reproduced with permission from P.K. Jain, K.S. Lee, I.H. El-Sayed and M.A. El-Sayed, Journal of Physical Chemistry B, 2006, 110, , American Chemical Society [13] Figure 2.5 a) Variation of the ratio between scattering and absorption cross sections (C sca /C abs ) with nanosphere diameter D. b, c) Calculated spectra of the efficiency of absorption Q abs (- - -), scattering Q sca (.), and extinction Q ext (-) for gold nanospheres of diameter (b) D = 40 nm, (c) D = 80 nm. Reproduced with permission from P.K. Jain, K.S. Lee, I.H. El-Sayed and M.A. El- Sayed, Journal of Physical Chemistry B, 2006, 110, , American Chemical Society [13] 45

8 Update on Gold Nanoparticles The shape of metal nanoparticles has a striking influence on optical properties (Figure 2.3). The surface plasmon absorption maximum (λ max ) of AuNP strongly depends on their aspect ratio r [17], i.e., the length of the particle divided by the width of it, as shown in Equation 2.3: λ max = r (2.3) For a given nanoparticle size, for example 20 nm, if AuNP have a spherical shape (thus r = 1) the surface plasmon absorption band is centred at 520 nm. When NS become elongated, the surface plasmon absorption band red-shifts with r (Figure 2.6). Figure 2.6 Extinction spectrum of a sample consisting of a colloids of nanorods having an aspect ratio r = 3.3 and a transversal dimension of 22 nm (solid line), compared to one of 22 nm nanospheres (dotted line). The inset shows how the maxima of the transverse (squares) and longitudinal (circles) surface plasmon modes vary with the aspect ratio. Reproduced with permission from X. Huang, S. Neretina and M.A. El-Sayed, Advanced Materials, 2009, 21, , Wiley-VCH [17] 46

9 Behaviour of Gold Nanoparticles The r-value increases until the NP become rod- or ellipsoidal-shaped, the plasmon then appears to split into two modes corresponding to the oscillation along and perpendicular to the long axis of the particle [3, 18] (Figure 2.6). In general all the other geometrical shapes of AuNP (triangle [19], cube [20], shell [21]) exhibit a red-shifted LSPR band compared to their spherical analogs, since the shape affects the electron charge density on the particle surface [17]. Such structural and compositional tuning (see Chapter 1) is desirable for in vivo applications, where tissue absorption in the near-infrared window ( nm) is minimal [22], and thus, favourable to improve light penetration (Chapter 3). The plasmon resonance wavelength of a metal nanoparticle is also affected by the presence of other NP in its close environment. When two or more NP are brought into proximity, their dipoles couple, and a shift in the LSPR mode takes place (Figure 2.7 and Figure 2.8). For example, a colloid of AuNS of about 10 nm shows a typical plasmon extinction maximum at 520 nm; if particles agglomerate (from the addition of an analyte or from a change in ph or in salt concentration of the solution) a red-shift and widening in the extinction band is observed [23]. This effect was investigated both theoretically [25] and experimentally for fixed [26] (Figure 2.8) and non-fixed distances [14] (Figure 2.7). The magnitude of the assembly-induced plasmon shift depends on the strength of the interparticle coupling, which, in turn, depends on the distance between the individual NP. Therefore, the plasmon shift can give a measure of the distance between pairs of NP [14]. El-Sayed and co-workers [23] derived an empirical equation (Equation 2.4) that can be used to estimate the interparticle separation from experimentally observed plasmon shifts in vitro or in biological systems [27]. λ A e λ 0 ( s/ D) B (2.4) 47

10 Update on Gold Nanoparticles Figure 2.7 Effect of coupling of DNA-functionalised gold and silver nanoparticles on their color when observed in darkfield microscopy. (a) Two gold or silver nanoparticles can be linked together through a biotin-streptavidin bond. Inset: principle of transmission darkfield microscopy. (b) Single silver particles appear blue (left) and particle pair blue-green (right). The orange dot in the bottom comes from an aggregate of more than two particles. (c) Single gold particles appear green (left), gold particle pairs orange (right). Inset: representative transmission electron microscopy (TEM) image of a particle pair to show that each coloured dot comes from light scatted from two closely lying particles, which cannot be separated optically. (d) Representative normalised scattering spectra of single particles and particle pairs for silver (top) and gold (bottom). Silver particles show a larger spectral shift (102 nm) than gold particles (23 nm), stronger light scattering and a smaller plasmon line width. However, gold is chemically more stable and is more easily conjugated to biomolecules via SH, NH 2 or CN functional groups. Reproduced with permission from C. Sonnichsen, B.M. Reinhard, J. Liphardt and A.P. Alivisatos, Nature Biotechnology, 2005, 23, , Nature [14] 48

11 Behaviour of Gold Nanoparticles Figure 2.8 Microextinction spectra of Au nanodisc pairs for varying interparticle separation gap for incident light polarisation direction (a) parallel and (b) perpendicular to the interparticle axis. OD: optical density, OD = -log 10 (T), with T local light transmittivity. c) SEM image of an array of nanodisk pairs used to determine the plasmon ruler equation ; in this image each nanodisk has a diameter of 88 nm, a thickness of 25 nm, and an interparticle edge-to-edge separation gap of 12 nm. EHT = electrical high tension, ns = no significant difference, WD = working distance. Reproduced with permission from P.K. Jain, W.Y. Huang and M.A. El-Sayed, Nano Letters, 2007, 7, , American Chemical Society [24] In Equation 2.4, Δλ/λ 0 is the fractional plasmon shift, s is the interparticle edge-to-edge separation, D is the particle diameter, and A and B are two adimensional parameters typical of the experimental setup. This equation was deduced for coupled pairs of gold nanoparticles (in nm diameter-range) in protein medium at fixed distance in DF experiments, by illumination with unpolarised white light. For these functionalised particle dimers randomly oriented in space [23, 27], the A and B parameters were estimated [23]: A = 0.18 and B = In particular, through Equation 2.4 (the plasmon ruler equation) nanoparticle dimers have the potential to become an alternative to the Förster resonance energy transfer (FRET) for in vitro single-molecule experiments, especially for applications demanding long observation times (seconds to hours) or large distances (usually up to 2.5 times the diameter of the spheres). Indeed, this effect has several key advantages over rulers based on FRET and should allow a wide range of new singlemolecule experiments. In FRET, the observation of fluorescence of a 49

12 Update on Gold Nanoparticles single-organic dye is often hindered by blinking and/or rapid photobleaching phenomena, limiting the continuous observation time to a few tens of seconds. Furthermore, it is sometimes difficult to distinguish changes in relative dye orientation from changes in distance [28]. In experiments that do not use polarised light, the plasmon resonance signal neither blinks nor bleaches and does not depend on the relative probe orientation [27]. In experiments with polarised white light the collected shifts depend on the orientation of the EM field, see Figure 2.8. In general, gold and silver particles are more stable under physiological conditions and under laser illumination than organic dyes. The range of distances accessible with plasmon coupling in a pair of nanoparticles depends on the size and coating of the particles. In general, the accessible distance range ( nm) is larger than with FRET [28] (2 8 nm). Usually, for in vitro experiments, particle separations of up to 70 nm should be accessible with better than 1 nm resolution [25] (with 40 nm particles and a 0.1 nm spectral resolution for determining the plasmon resonance position). Therefore, AuNP of at least nm diameter are needed to ensure the collection of scattering signals [13-14], which affect the structural conformation and the activity of many targets. Furthermore, it could be very difficult to collect scattering data in living cells, because of the high scattering background. A recently investigated feature of AuNP is the photoluminescence effect (PL). In addition to the phenomena mentioned previously, excitation of LSPR can cause a PL emission of nanomaterials showing sharply angled surfaces (lightning rod effect). In bulk noble metals, the quantum efficiency (the number of photons emitted over the number of absorbed photons) of the PL is very low, typically of the order of [29]. The luminescence efficiency (namely, a rate linked to the dissipation of the photon energy in heat) of gold nanorods increases by six orders of magnitude from bulk, thanks to the lightning rod effect [30] and in gold nanocubes reaches 10 2, about 200 times higher than that of gold nanorods [31]. Luminescence was found to be absent in 15 nm spherical nanoparticles, while it was found, and it is easily tunable, for very small gold clusters (<5 nm) [32-34]. The origin of the PL was attributed to recombination of the 50

Localized surface plasmons (Particle plasmons)

Localized surface plasmons (Particle plasmons) Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

7. Localized surface plasmons (Particle plasmons)

7. Localized surface plasmons (Particle plasmons) 7. Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays CHAPTER 4 Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays 4.1 Introduction In Chapter 3, the noble bimetallic alloy nanosphere (BANS) of Ag 1-x Cu x at a particular composition

More information

Supplementary information for. plasmonic nanorods interacting with J-aggregates.

Supplementary information for. plasmonic nanorods interacting with J-aggregates. Supplementary information for Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. by Gülis Zengin, Göran Johansson, Peter Johansson, Tomasz J. Antosiewicz,

More information

Optical cavity modes in gold shell particles

Optical cavity modes in gold shell particles 9 Optical cavity modes in gold shell particles Gold (Au) shell particles with dimensions comparable to the wavelength of light exhibit a special resonance, with a tenfold field enhancement over almost

More information

Supporting Online Material. Highly Sensitive Plasmonic Silver Nanorods

Supporting Online Material. Highly Sensitive Plasmonic Silver Nanorods Supporting Online Material Highly Sensitive Plasmonic Silver Nanorods Arpad Jakab, Christina Rosman, Yuriy Khalavka, Jan Becker, Andreas Trügler+, Ulrich Hohenester+, and Carsten Sönnichsen * MAINZ graduate

More information

Optical properties of spherical and anisotropic gold shell colloids

Optical properties of spherical and anisotropic gold shell colloids 8 Optical properties of spherical and anisotropic gold shell colloids Core/shell colloids consisting of a metal shell and a dielectric core are known for their special optical properties. The surface plasmon

More information

Spring 2009 EE 710: Nanoscience and Engineering

Spring 2009 EE 710: Nanoscience and Engineering Spring 009 EE 710: Nanoscience and Engineering Part 10: Surface Plasmons in Metals Images and figures supplied from Hornyak, Dutta, Tibbals, and Rao, Introduction to Nanoscience, CRC Press Boca Raton,

More information

arxiv: v1 [physics.bio-ph] 11 Sep 2015

arxiv: v1 [physics.bio-ph] 11 Sep 2015 arxiv:1509.04625v1 [physics.bio-ph] 11 Sep 2015 IR-Laser Welding and Ablation of Biotissue Stained with Metal Nanoparticles A. A. Lalayan, S. S. Israelyan Centre of Strong Fields Physics, Yerevan State

More information

Energy transport in metal nanoparticle plasmon waveguides

Energy transport in metal nanoparticle plasmon waveguides Energy transport in metal nanoparticle plasmon waveguides Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater California Institute of Technology Thomas J. Watson Laboratory of Applied Physics, Pasadena,

More information

often display a deep green color due to where the SPR occurs (i.e., the wavelength of light that interacts with this specific morphology).

often display a deep green color due to where the SPR occurs (i.e., the wavelength of light that interacts with this specific morphology). Synthesis-Dependent Catalytic Properties of Gold Nanoparticles Nanoscience is the study of materials that have dimensions, intuitively, on the nanoscale, typically between 1 100 nm. This field has received

More information

OPTICAL PROPERTIES of Nanomaterials

OPTICAL PROPERTIES of Nanomaterials OPTICAL PROPERTIES of Nanomaterials Advanced Reading Optical Properties and Spectroscopy of Nanomaterials Jin Zhong Zhang World Scientific, Singapore, 2009. Optical Properties Many of the optical properties

More information

quantum dots, metallic nanoparticles, and lanthanide ions doped upconversion

quantum dots, metallic nanoparticles, and lanthanide ions doped upconversion Chapter 1 Introduction 1.1 Background Nanostructured materials have significantly different characteristics from their bulk counterparts. 1 Inorganic nanoparticles such as semiconductor quantum dots, metallic

More information

ECE280: Nano-Plasmonics and Its Applications. Week8

ECE280: Nano-Plasmonics and Its Applications. Week8 ECE280: Nano-Plasmonics and Its Applications Week8 Surface Enhanced Raman Scattering (SERS) and Surface Plasmon Amplification by Stimulated Emission of Radiation (SPASER) Raman Scattering Chandrasekhara

More information

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Nanoscale optical circuits: controlling light using localized surface plasmon resonances Nanoscale optical circuits: controlling light using localized surface plasmon resonances T. J. Davis, D. E. Gómez and K. C. Vernon CSIRO Materials Science and Engineering Localized surface plasmon (LSP)

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Cascaded plasmon resonances multi-material nanoparticle trimers for extreme field enhancement S. Toroghi a, Chatdanai Lumdee a, and P. G. Kik* a CREOL, The College of Optics and Photonics, University of

More information

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures Zhi-Yuan Li Optical Physics Laboratory, Institute of Physics, CAS Beijing 18, China January 5-9, 7, Fudan University, Shanghai Challenges

More information

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida Optical and Photonic Glasses : Non-Linear Optical Glasses III Metal Doped Nano-Glasses Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Metal-doped

More information

Light Interaction with Small Structures

Light Interaction with Small Structures Light Interaction with Small Structures Molecules Light scattering due to harmonically driven dipole oscillator Nanoparticles Insulators Rayleigh Scattering (blue sky) Semiconductors...Resonance absorption

More information

Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle

Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle Journal of Physics: Conference Series PAPER OPEN ACCESS Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle To cite this article: Norsyahidah Md Saleh and A. Abdul Aziz

More information

Nano Optics Based on Coupled Metal Nanoparticles

Nano Optics Based on Coupled Metal Nanoparticles Nano Optics Based on Coupled Metal Nanoparticles Shangjr Gwo ( 果尚志 ) Department of Physics National Tsing-Hua University, Hsinchu 30013, Taiwan E-mail: gwo@phys.nthu.edu.tw NDHU-Phys (2010/03/01) Background

More information

Absorption spectrometry summary

Absorption spectrometry summary Absorption spectrometry summary Rehearsal: Properties of light (electromagnetic radiation), dual nature light matter interactions (reflection, transmission, absorption, scattering) Absorption phenomena,

More information

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston Understanding Nanoplasmonics Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm 1ns 100ps 10ps Photonics 1ps 100fs 10fs 1fs Time Surface Plasmons Surface

More information

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. Plasmonics The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. A possible way out is the conversion of light into plasmons. They have much shorter

More information

The Dielectric Function of a Metal ( Jellium )

The Dielectric Function of a Metal ( Jellium ) The Dielectric Function of a Metal ( Jellium ) Total reflection Plasma frequency p (10 15 Hz range) Why are Metals Shiny? An electric field cannot exist inside a metal, because metal electrons follow the

More information

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0. Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.6 H 0.4 colloids. The standard derivation is 4.4 %. Supplementary

More information

Fluorescent silver nanoparticles via exploding wire technique

Fluorescent silver nanoparticles via exploding wire technique PRAMANA c Indian Academy of Sciences Vol. 65, No. 5 journal of November 2005 physics pp. 815 819 Fluorescent silver nanoparticles via exploding wire technique ALQUDAMI ABDULLAH and S ANNAPOORNI Department

More information

Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using

Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using 633 nm laser excitation at different powers and b) the

More information

Preparation of Silver Nanoparticles and Their Characterization

Preparation of Silver Nanoparticles and Their Characterization Preparation of Silver Nanoparticles and Their Characterization Abstract The preparation of stable, uniform silver nanoparticles by reduction of silver ions by ethanol is reported in the present paper.

More information

Lecture ) Electrical, Magnetic 2) Optical Properties of Nanomaterials (C4)

Lecture ) Electrical, Magnetic 2) Optical Properties of Nanomaterials (C4) Nanostructures and Nanomaterials: Characterization and Properties Prof.Anandh Subramaniam Prof. Kantesh Balani Department of Materials Science and Engineering Indian Institute of Technology, Kanpur Lecture

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

Methods. Single nanoparticle spectroscopy

Methods. Single nanoparticle spectroscopy Methods Supplementary Figure 1. Substrate used to localize and characterize individual plasmonic structures. (a) A photo showing the quartz substrate, which is divided into periods of 5 5 units as depicted

More information

Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit Mat. Res. Soc. Symp. Proc. Vol. 722 2002 Materials Research Society Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Photomodification of single Ag nanoparticles embedded in soda-lime glass

Photomodification of single Ag nanoparticles embedded in soda-lime glass Chapter 3. Photomodification of single Ag nanoparticles embedded in In the last two decades growth of the interest to research on synthesis of composite materials containing metal nanoparticles is motivated

More information

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Supplemental Material L. Shi, T. K. Hakala, H. T. Rekola, J. -P.

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 04 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 4: outline 2 Characterization of nanomaterials SEM,

More information

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES Tomáš Váry, Juraj Chlpík, Peter Markoš ÚJFI, FEI STU, Bratislava E-mail: tomas.vary@stuba.sk Received xx April 2012; accepted xx May 2012. 1.

More information

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators Chapter 6 Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators 6.1 Introduction Researchers have devoted considerable effort to enhancing light emission from semiconductors

More information

3 Metal nanoparticles for microscopy and spectroscopy

3 Metal nanoparticles for microscopy and spectroscopy 3 Metal nanoparticles for microscopy and spectroscopy P. Zijlstra, M. Orrit and A. F. Koenderink Faculty of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

More information

Nanoscale confinement of photon and electron

Nanoscale confinement of photon and electron Nanoscale confinement of photon and electron Photons can be confined via: Planar waveguides or microcavities (2 d) Optical fibers (1 d) Micro/nano spheres (0 d) Electrons can be confined via: Quantum well

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308)

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) (invited) TBC Session 3: Metamaterials Theory (16:45 17:00, Huxley LT308) Light trapping states in media with longitudinal electric waves D McArthur,

More information

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Plasmonics Plasmon: Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam

More information

Nanophotonics: principle and application. Khai Q. Le Lecture 4 Light scattering by small particles

Nanophotonics: principle and application. Khai Q. Le Lecture 4 Light scattering by small particles Nanophotonics: principle and application Khai Q. Le Lecture 4 Light scattering by small particles Previous lecture Drude model, Drude-Sommerfeld model and Drude-Lorentz model for conducting media (metal):

More information

Nanoscale antennas. Said R. K. Rodriguez 24/04/2018

Nanoscale antennas. Said R. K. Rodriguez 24/04/2018 Nanoscale antennas Said R. K. Rodriguez 24/04/2018 The problem with nanoscale optics How to interface light emitters & receivers with plane waves? Ε ii(kkkk ωωωω) ~1-10 nm ~400-800 nm What is an antenna?

More information

PHYSICS nd TERM Outline Notes (continued)

PHYSICS nd TERM Outline Notes (continued) PHYSICS 2800 2 nd TERM Outline Notes (continued) Section 6. Optical Properties (see also textbook, chapter 15) This section will be concerned with how electromagnetic radiation (visible light, in particular)

More information

Introduction. Chapter Optics at the Nanoscale

Introduction. Chapter Optics at the Nanoscale Chapter 1 Introduction 1.1 Optics at the Nanoscale The interaction of light with matter is one of the most significant processes on the planet, forming the basis of some of the most famous scientific discoveries

More information

CHEM Atomic and Molecular Spectroscopy

CHEM Atomic and Molecular Spectroscopy CHEM 21112 Atomic and Molecular Spectroscopy References: 1. Fundamentals of Molecular Spectroscopy by C.N. Banwell 2. Physical Chemistry by P.W. Atkins Dr. Sujeewa De Silva Sub topics Light and matter

More information

arxiv: v1 [physics.optics] 8 Jan 2015

arxiv: v1 [physics.optics] 8 Jan 2015 Version 1.0 January 9, 2015 A Theoretical Investigation of Decay and Energy Transfer Rates and Efficiencies Near Gold Nanospheres Cristian A. Marocico, Xia Zhang, and A. Louise Bradley Semiconductor Photonics

More information

Supplementary Figure 1. Extinction spectra of rhodium nanocubes. UV-vis spectra of the Rh nanocubes in ethanol solution (black) and on a porous Al2O3

Supplementary Figure 1. Extinction spectra of rhodium nanocubes. UV-vis spectra of the Rh nanocubes in ethanol solution (black) and on a porous Al2O3 Supplementary Figure 1. Extinction spectra of rhodium nanocubes. UV-vis spectra of the Rh nanocubes in ethanol solution (black) and on a porous Al2O3 support (blue). The Rh nanocubes in ethanol solution

More information

Intraparticle Surface Plasmon Coupling in Quasi-One-Dimensional Nanostructures

Intraparticle Surface Plasmon Coupling in Quasi-One-Dimensional Nanostructures Intraparticle Surface Plasmon Coupling in Quasi-One-Dimensional Nanostructures Sungwan Kim, Kevin L. Shuford, Hye-Mi Bok, Seong Kyu Kim,*, and Sungho Park*,, Department of Chemistry, BK21 School of Chemical

More information

Doctor of Philosophy

Doctor of Philosophy FEMTOSECOND TIME-DOMAIN SPECTROSCOPY AND NONLINEAR OPTICAL PROPERTIES OF IRON-PNICTIDE SUPERCONDUCTORS AND NANOSYSTEMS A Thesis Submitted for the degree of Doctor of Philosophy IN THE FACULTY OF SCIENCE

More information

Supporting Information

Supporting Information Supporting Information Remarkable Photothermal Effect of Interband Excitation on Nanosecond Laser-induced Reshaping and Size Reduction of Pseudo-spherical Gold Nanoparticles in Aqueous Solution Daniel

More information

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases Radiation in the Earth's Atmosphere Part 1: Absorption and Emission by Atmospheric Gases Electromagnetic Waves Electromagnetic waves are transversal. Electric and magnetic fields are perpendicular. In

More information

Laser assisted structural modifications of strongly aggregated Ag nanoparticles in soda-lime glass

Laser assisted structural modifications of strongly aggregated Ag nanoparticles in soda-lime glass Chapter 4. Laser assisted structural modifications of strongly aggregated Ag nanoparticles in soda-lime glass In the previous chapter, we discussed anisotropic shape transformation of single spherical

More information

Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b

Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b a CREOL, The College of Optics and Photonics, University of Central Florida,

More information

what happens if we make materials smaller?

what happens if we make materials smaller? what happens if we make materials smaller? IAP VI/10 ummer chool 2007 Couvin Prof. ns outline Introduction making materials smaller? ynthesis how do you make nanomaterials? Properties why would you make

More information

One-step Solution Processing of Ag, Au and Hybrids for SERS

One-step Solution Processing of Ag, Au and Hybrids for SERS 1 2 3 Supplementary Information One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS 4 5 6 Elumalai Satheeshkumar 1, Taron Makaryan 2, Armen Melikyan 3, Hayk Minassian 4, Yury Gogotsi 2*

More information

Biosensing based on slow plasmon nanocavities

Biosensing based on slow plasmon nanocavities iosensing based on slow plasmon nanocavities. Sepulveda, 1, Y. Alaverdyan,. rian, M. Käll 1 Nanobiosensors and Molecular Nanobiophysics Group Research Center on Nanoscience and Nanotechnolog (CIN)CSIC-ICN

More information

Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays.

Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays. Mat. Res. Soc. Symp. Proc. Vol. 797 2004 Materials Research Society W4.6.1 Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays. L. A. Sweatlock 1, J. J. Penninkhof 2, S. A.

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Third-harmonic generation

Third-harmonic generation 2 Third-harmonic generation 2.1 Introduction Optical signals from single nano-objects open new windows for studies at nanometer scales in fields as diverse as material science and cell biology. Cleared

More information

Supporting Information

Supporting Information Supporting Information Improved Working Model for Interpreting the Excitation Wavelength- and Fluence-Dependent Response in Pulsed aser-induced Size Reduction of Aqueous Gold Nanoparticles Daniel Werner

More information

Novel Nanoparticles for Ultrasensitive Detection and Spectroscopy

Novel Nanoparticles for Ultrasensitive Detection and Spectroscopy Final Technical Report (DOE-FG02-98ER14873) Project Officer: Dr. Richard Gordon / Dr. John Miller Novel Nanoparticles for Ultrasensitive Detection and Spectroscopy Shuming Nie Indiana University P. 0.

More information

Geometries and materials for subwavelength surface plasmon modes

Geometries and materials for subwavelength surface plasmon modes Geometries and materials for subwavelength surface plasmon modes Plasmon slot waveguides : Metal-Insulator-Metal (MIM) Metal nanorods and nanotips Metal nanoparticles Metal Dielectric Dielectric Metal

More information

Supporting Information. Optical Scattering Spectral Thermometry and Refractometry of a Single Gold Nanoparticle under CW laser excitation

Supporting Information. Optical Scattering Spectral Thermometry and Refractometry of a Single Gold Nanoparticle under CW laser excitation Supporting Information Optical Scattering Spectral Thermometry and Refractometry of a Single Gold Nanoparticle under CW laser excitation Kenji Setoura, Daniel Werner, and Shuichi Hashimoto* Department

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

[Electronic Supplementary Information]

[Electronic Supplementary Information] [Electronic Supplementary Information] Tuning the Interparticle Distance in Nanoparticle Assemblies in Suspension via DNA-Triplex Formation: Correlation Between Plasmonic and Surface-enhanced Raman Scattering

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

Origin of Optical Enhancement by Metal Nanoparticles. Greg Sun University of Massachusetts Boston

Origin of Optical Enhancement by Metal Nanoparticles. Greg Sun University of Massachusetts Boston Origin of Optical Enhancement by Metal Nanoparticles Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm Photonics 1ns 100ps 10ps 1ps 100fs 10fs 1fs Time

More information

Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells

Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells Solid State Communications 146 (008) 7 11 www.elsevier.com/locate/ssc Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells DaJian Wu a,b, XiaoDong Xu a,

More information

Supporting Information: Resonant non-plasmonic nanoparticles for. efficient temperature-feedback optical heating

Supporting Information: Resonant non-plasmonic nanoparticles for. efficient temperature-feedback optical heating Supporting Information: Resonant non-plasmonic nanoparticles for efficient temperature-feedback optical heating George P. Zograf, Mihail I. Petrov,,, Dmitry A. Zuev, Pavel A. Dmitriev, Valentin A. Milichko,

More information

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS www.arpapress.com/volumes/vol19issue1/ijrras_19_1_06.pdf HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS M. Eslamifar Physics Department, BehbahanKhatamAl-Anbia

More information

Determination of size and concentration of gold and silica nanoparticles from absorption and turbidity spectra. Nikolai Khlebtsov

Determination of size and concentration of gold and silica nanoparticles from absorption and turbidity spectra. Nikolai Khlebtsov Determination of size and concentration of gold and silica nanoparticles from absorption and turbidity spectra Nikolai Khlebtsov Institute of Biochemistry and Physiology of Plants and Microorganisms (IBPPM),

More information

Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles.

Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles. Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles. D E Whitehead, M Bardosova and M E Pemble Tyndall National Institute, University College Cork Ireland Introduction:

More information

UV-vis Analysis of the Effect of Sodium Citrate on the Size and the Surface Plasmon Resonance of Au NPs. Eman Mousa Alhajji

UV-vis Analysis of the Effect of Sodium Citrate on the Size and the Surface Plasmon Resonance of Au NPs. Eman Mousa Alhajji UV-vis Analysis of the Effect of Sodium Citrate on the Size and the Surface Plasmon Resonance of Au NPs Eman Mousa Alhajji North Carolina State University Department of Materials Science and Engineering

More information

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Surface plasmon polaritons and localized surface plasmons Plasmon propagation and absorption at metal-semiconductor interfaces

More information

Vibrational Spectroscopies. C-874 University of Delaware

Vibrational Spectroscopies. C-874 University of Delaware Vibrational Spectroscopies C-874 University of Delaware Vibrational Spectroscopies..everything that living things do can be understood in terms of the jigglings and wigglings of atoms.. R. P. Feymann Vibrational

More information

Lecture 20 Optical Characterization 2

Lecture 20 Optical Characterization 2 Lecture 20 Optical Characterization 2 Schroder: Chapters 2, 7, 10 1/68 Announcements Homework 5/6: Is online now. Due Wednesday May 30th at 10:00am. I will return it the following Wednesday (6 th June).

More information

Characterisation of vibrational modes of adsorbed species

Characterisation of vibrational modes of adsorbed species 17.7.5 Characterisation of vibrational modes of adsorbed species Infrared spectroscopy (IR) See Ch.10. Infrared vibrational spectra originate in transitions between discrete vibrational energy levels of

More information

Research Article Investigation of the Validity of the Universal Scaling Law on Linear Chains of Silver Nanoparticles

Research Article Investigation of the Validity of the Universal Scaling Law on Linear Chains of Silver Nanoparticles Nanomaterials Volume 5, Article ID 933, pages http://dx.doi.org/.55/5/933 Research Article Investigation of the Validity of the Universal Scaling Law on Linear Chains of Silver Nanoparticles Mohammed Alsawafta,

More information

Optics and Spectroscopy

Optics and Spectroscopy Introduction to Optics and Spectroscopy beyond the diffraction limit Chi Chen 陳祺 Research Center for Applied Science, Academia Sinica 2015Apr09 1 Light and Optics 2 Light as Wave Application 3 Electromagnetic

More information

Absorption and scattering

Absorption and scattering Absorption and scattering When a beam of radiation goes through the atmosphere, it encounters gas molecules, aerosols, cloud droplets, and ice crystals. These objects perturb the radiation field. Part

More information

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7 Lecture 7 Chapter 3 Electromagnetic Theory, Photons. and Light Sources of light Emission of light by atoms The electromagnetic spectrum see supplementary material posted on the course website Electric

More information

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Plasmonics Plasmon: Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

II Theory Of Surface Plasmon Resonance (SPR)

II Theory Of Surface Plasmon Resonance (SPR) II Theory Of Surface Plasmon Resonance (SPR) II.1 Maxwell equations and dielectric constant of metals Surface Plasmons Polaritons (SPP) exist at the interface of a dielectric and a metal whose electrons

More information

Fluorescence and Nuclear Magnetic Resonance (NMR) Spectroscopy

Fluorescence and Nuclear Magnetic Resonance (NMR) Spectroscopy Fluorescence and Nuclear Magnetic Resonance (NMR) Spectroscopy Murphy, B. (2017). Fluorescence and Nuclear Magnetic Resonance Spectroscopy: Lecture 3. Lecture presented at PHAR 423 Lecture in UIC College

More information

PHOTOLUMINESCENCE SPECTRA AND QUANTUM YIELDS OF GOLD NANOSPHERE MONOMERS AND DIMERS IN AQUEOUS SUSPENSION

PHOTOLUMINESCENCE SPECTRA AND QUANTUM YIELDS OF GOLD NANOSPHERE MONOMERS AND DIMERS IN AQUEOUS SUSPENSION Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 ELECTRONIC SUPPLEMENTARY INFORMATION FOR PHOTOLUMINESCENCE SPECTRA AND QUANTUM

More information

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Plasmonics Plasmon: Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

Photochemical principles

Photochemical principles Chapter 1 Photochemical principles Dr. Suzan A. Khayyat 1 Photochemistry Photochemistry is concerned with the absorption, excitation and emission of photons by atoms, atomic ions, molecules, molecular

More information

Interaction of Gold Nanoparticle with Proteins

Interaction of Gold Nanoparticle with Proteins Chapter 7 Interaction of Gold Nanoparticle with Proteins 7.1. Introduction The interfacing of nanoparticle with biomolecules such as protein is useful for applications ranging from nano-biotechnology (molecular

More information

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p Introduction to Spectroscopy (Chapter 6) Electromagnetic radiation (wave) description: Wavelength λ Velocity v Electric Field Strength 0 Amplitude A Time t or Distance x Period p Frequency ν time for 1

More information

6. Plasmon coupling between a flat gold interface and gold nanoparticles.

6. Plasmon coupling between a flat gold interface and gold nanoparticles. 6. Plasmon coupling between a flat gold interface and gold nanoparticles. 6.1. Introduction In this outlook oriented chapter the applicability of the multilayered system used in chapter 4.1., for the study

More information

Chapter - 9 CORE-SHELL NANOPARTICLES

Chapter - 9 CORE-SHELL NANOPARTICLES Chapter - 9 CORE-SHELL NANOPARTICLES Fig. 9.1: Transmission electron micrographs of silica coated gold nanoparticles. The shell thicknesses are (a) 10 nm, (b) 23 nm, (c) 58 nm, and (d) 83 nm. Reprinted

More information

Quantum Dot Technology for Low-Cost Space Power Generation for Smallsats

Quantum Dot Technology for Low-Cost Space Power Generation for Smallsats SSC06-VI- Quantum Dot Technology for Low-Cost Space Power Generation for Smallsats Theodore G. DR Technologies, Inc. 7740 Kenamar Court, San Diego, CA 92020 (858)677-230 tstern@drtechnologies.com The provision

More information

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS Jin Zhong Zhang University of California, Santa Cruz, USA TECHNISCHE INFORMATIONSBIBLIOTHEK Y World Scientific NEW JERSEY. t'on.don SINGAPORE «'BEIJING

More information