Nanophotonics: principle and application. Khai Q. Le Lecture 4 Light scattering by small particles

Size: px
Start display at page:

Download "Nanophotonics: principle and application. Khai Q. Le Lecture 4 Light scattering by small particles"

Transcription

1 Nanophotonics: principle and application Khai Q. Le Lecture 4 Light scattering by small particles

2 Previous lecture Drude model, Drude-Sommerfeld model and Drude-Lorentz model for conducting media (metal): frequency dependence of ε in real metals How do optical properties of materials change at the nanoscale? Bulk gold looks yellow 12 nanometer gold particles look red

3 Light-particle interaction processes

4 Light scattering The light-particle interaction can be described using various theories. However choosing which theory to best description of the interaction depends on the ration of the wavelength to the size of the particle λ 0 d << λ 0 Rayleigh scattering d ~ λ 0 Mie scattering d > λ 0 Ray optics

5 What facts impact on the light-particle interaction? Wavelength of incident wavelength Size of particle Refractive index (n) of particle and surrounding environment λ 0 d << λ 0 Rayleigh scattering d ~ λ 0 Mie scattering d > λ 0 Ray optics

6 Rayleigh scattering: Why is the sky blue? + The Sun@zenith, sunlight travels a short distance before it reaches the eye. Only blue light is scattered towards the eyes and the sky appears blue. + At sunset (or sunrise), sunlight travels a much bigger distance before it reaches the observer's eyes. Most of the blue light has been scattered away before it can have a chance to reach the eye. Only red-green light reaches the observer's position which explain why the sky looks red-orange when the sun is at the horizon.

7 Rayleigh scattering: Why is the sky blue? N 2, O 2

8 Rayleigh scattering: Why is the sky blue?

9 Rayleigh scattering: Why is the sky blue? Oscillating charges emit EM waves

10 Rayleigh scattering: Why is the sky blue? Radiation emitted by a Lorentz osccilator

11 Rayleigh scattering: Why is the sky blue?

12 Characterize Rayleigh scattering E ic λ 0 d << λ 0 Rayleigh scattering Light interact with ultrasmall particle The scattering cross-section (units of Area): used to characterize the scattering The quasi-static approximation theory: determine the scattering cross-section

13 Characterize Rayleigh scattering E ic λ 0 I ic d << λ 0 Rayleigh scattering E scattered A particle illuminated by a beam with irradiance I ic Total power scattered by the particle is W sca W sca =C sca I ic (C sca = σ sca is scattering cross-section: dimension of area) W abs =C abs I ic (C abs = σ abs is absorption cross-section: dimension of area) C ext (σ ext ) = C abs (σ abs ) + C sca (σ sca ): extinction cross-section

14 Characterize Rayleigh scattering E ic λ 0 I ic d << λ 0 Rayleigh scattering E scattered Q sca =C sca /G (scattering efficiency, G is particle s area) Q abs =C abs /G (absorption efficiency) Q ext = C ext /G (extinction efficiency)

15 Quasi-static approximation Assumption: E-field is constant across nanoparticle Charge in particle shifts fast enough to consider electrostatic solution for any incident E-field E λ 0 Rayleigh scattering d << λ 0 x E inc k y E inc i k r t r, t E 0e E inc k E inc i t r t E e, 0 y x

16 Characterize Rayleigh scattering E λ 0 d << λ 0 Rayleigh scattering The scattering efficiency for a subwavelength dielectric particle in vacuum Q sca = 8 3 x4 ε p ε m ε p + 2ε m x = πd λ If permittivity (dielectric constant) is complex (metallic nanoparticles) Q sca = 8 3 x4 Re ε p ε m 2 ε p + 2ε m 2 x = πd λ

17 Larger particle: Mie scattering E λ 0 d ~ λ 0 What happens when we consider larger particles? Quasi-static approximation is no longer applicable We have to use Mie scattering theory

18 Mie scattering off a sphere E λ 0 d ~ λ 0 Q sca =σ sca /G (scattering efficiency, G=πR 2 )

19 Mie scattering off a sphere SiO 2 d ~ λ 0 d ~ λ 0

20 Applications: plasmonics for improved photovoltaic devices Metal particles Solar cell structure

21 Useful Mie scattering software

22 Lab section: Light scattering by spherical particles using Mieplot

23 Light scattering off particles with arbitrary shape E λ 0 What happens when we consider particles with arbitrary shape? Mie formulism are no longer applicable Numerical techniques such as FDTD, FEM, BEM, should be used.

24 MNPBEM: Matlab toolbox

25 Lab section: light scattering by arbitrary particles using MNPBEM

Spring 2009 EE 710: Nanoscience and Engineering

Spring 2009 EE 710: Nanoscience and Engineering Spring 009 EE 710: Nanoscience and Engineering Part 10: Surface Plasmons in Metals Images and figures supplied from Hornyak, Dutta, Tibbals, and Rao, Introduction to Nanoscience, CRC Press Boca Raton,

More information

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility.

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Objectives: 1. Attenuation of atmospheric radiation by particulates. 2. Haze and Visibility. Readings:

More information

Localized surface plasmons (Particle plasmons)

Localized surface plasmons (Particle plasmons) Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

7. Localized surface plasmons (Particle plasmons)

7. Localized surface plasmons (Particle plasmons) 7. Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

ME equations. Cylindrical symmetry. Bessel functions 1 kind Bessel functions 2 kind Modifies Bessel functions 1 kind Modifies Bessel functions 2 kind

ME equations. Cylindrical symmetry. Bessel functions 1 kind Bessel functions 2 kind Modifies Bessel functions 1 kind Modifies Bessel functions 2 kind Δϕ=0 ME equations ( 2 ) Δ + k E = 0 Quasi static approximation Dynamic approximation Cylindrical symmetry Metallic nano wires Nano holes in metals Bessel functions 1 kind Bessel functions 2 kind Modifies

More information

Light Interaction with Small Structures

Light Interaction with Small Structures Light Interaction with Small Structures Molecules Light scattering due to harmonically driven dipole oscillator Nanoparticles Insulators Rayleigh Scattering (blue sky) Semiconductors...Resonance absorption

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Scattering of EM waves by spherical particles: Overview of Mie Scattering

Scattering of EM waves by spherical particles: Overview of Mie Scattering ATMO 551a Fall 2010 Scattering of EM waves by spherical particles: Overview of Mie Scattering Mie scattering refers to scattering of electromagnetic radiation by spherical particles. Under these conditions

More information

Supporting Information: Resonant non-plasmonic nanoparticles for. efficient temperature-feedback optical heating

Supporting Information: Resonant non-plasmonic nanoparticles for. efficient temperature-feedback optical heating Supporting Information: Resonant non-plasmonic nanoparticles for efficient temperature-feedback optical heating George P. Zograf, Mihail I. Petrov,,, Dmitry A. Zuev, Pavel A. Dmitriev, Valentin A. Milichko,

More information

VISIBLE LIGHT. L 32 Light and Optics [2] Seeing through the window. Windows behaving as mirrors. Seeing through a window

VISIBLE LIGHT. L 32 Light and Optics [2] Seeing through the window. Windows behaving as mirrors. Seeing through a window L 32 Light and Optics [2] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky and red sunsets Mirrors

More information

Electromagnetic spectra

Electromagnetic spectra Properties of Light Waves, particles and EM spectrum Interaction with matter Absorption Reflection, refraction and scattering Polarization and diffraction Reading foci: pp 175-185, 191-199 not responsible

More information

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p =

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p = Laser Beam Interactions with Solids In absorbing materials photons deposit energy E = hv = hc λ where h = Plank's constant = 6.63 x 10-34 J s c = speed of light Also photons also transfer momentum p p

More information

What makes the color pink? Black and white TV summary. Different color phosphors. Color TV. Different color pixels

What makes the color pink? Black and white TV summary. Different color phosphors. Color TV. Different color pixels Energy What makes the color pink? Black and white TV summary Picture made from a grid of dots (pixels) Dots illuminated when electron beam hits phosphor Beam scanned across entire screen ~ 50 times a second

More information

Electromagnetic Waves

Electromagnetic Waves ELECTROMAGNETIC RADIATION AND THE ELECTROMAGNETIC SPECTRUM Electromagnetic Radiation (EMR) THE ELECTROMAGNETIC SPECTRUM Electromagnetic Waves A wave is characterized by: Wavelength (λ - lambda) is the

More information

- 1 - θ 1. n 1. θ 2. mirror. object. image

- 1 - θ 1. n 1. θ 2. mirror. object. image TEST 5 (PHY 50) 1. a) How will the ray indicated in the figure on the following page be reflected by the mirror? (Be accurate!) b) Explain the symbols in the thin lens equation. c) Recall the laws governing

More information

2. The spectrum of visible light bounds the region of intensity of light emitted by the Sun. a. maximum b. minimum

2. The spectrum of visible light bounds the region of intensity of light emitted by the Sun. a. maximum b. minimum CHAPTER 14 LIGHT AND SOUND IN THE ATMOSPHERE MULTIPLE CHOICE QUESTIONS 1. As the Sun s rays travel through the atmosphere, they are by cloud droplets or ice crystals, or by raindrops. a. scattered b. reflected

More information

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0. Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.6 H 0.4 colloids. The standard derivation is 4.4 %. Supplementary

More information

PERIODIC STRUCTURES OF METALLIC NANOPARTICLES DIPLOMARBEIT. Andreas Kleinbichler KARL-FRANZENS-UNIVERSITÄT GRAZ

PERIODIC STRUCTURES OF METALLIC NANOPARTICLES DIPLOMARBEIT. Andreas Kleinbichler KARL-FRANZENS-UNIVERSITÄT GRAZ Andreas Kleinbichler PERIODIC STRUCTURES OF METALLIC NANOPARTICLES DIPLOMARBEIT ZUR ERLANGUNG DES AKADEMISCHEN GRADES EINES MAGISTERS AN DER NATURWISSENSCHAFTLICHEN FAKULTÄT DER KARL-FRANZENS-UNIVERSITÄT

More information

PHSC 3033: Meteorology Atmospheric Optics

PHSC 3033: Meteorology Atmospheric Optics PHSC 3033: Meteorology Atmospheric Optics Hot Radiating Objects Imagine a piece of metal placed in a hot furnace. At first, the metal becomes warm, although its visual appearance doesn't change. As it

More information

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Plasmonics Plasmon: Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam

More information

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Kinds of energy Energy transfer mechanisms Radiation: electromagnetic spectrum, properties & principles Solar constant Atmospheric influence

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 04 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 4: outline 2 Characterization of nanomaterials SEM,

More information

Supporting Information

Supporting Information Supporting Information Improved Working Model for Interpreting the Excitation Wavelength- and Fluence-Dependent Response in Pulsed aser-induced Size Reduction of Aqueous Gold Nanoparticles Daniel Werner

More information

2018/10/09 02:58 1/2 Optical force calculation. Table of Contents. Optical force calculation GSvit documentation -

2018/10/09 02:58 1/2 Optical force calculation. Table of Contents. Optical force calculation GSvit documentation - 2018/10/09 02:58 1/2 Optical force calculation Table of Contents Optical force calculation... 1 Last update: 2018/01/30 16:41 app:optical_force http://www.gsvit.net/wiki/doku.php/app:optical_force http://www.gsvit.net/wiki/

More information

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a SPECTRUM Dispersion The phenomenon due to which a polychromatic light, like sunlight, splits into its component colours, when passed through a transparent medium like a glass prism, is called dispersion

More information

Nanoscale antennas. Said R. K. Rodriguez 24/04/2018

Nanoscale antennas. Said R. K. Rodriguez 24/04/2018 Nanoscale antennas Said R. K. Rodriguez 24/04/2018 The problem with nanoscale optics How to interface light emitters & receivers with plane waves? Ε ii(kkkk ωωωω) ~1-10 nm ~400-800 nm What is an antenna?

More information

Optical Properties, Surface and Geometry

Optical Properties, Surface and Geometry Solar Facilities for the European Research Area Optical Properties, Surface and Geometry Cavity and Volume Effect SFERA II 2014-2017, Sfera Summer School, 26 June 2014, Odeillo (France) Introduction Content

More information

Lecture 6: Radiation Transfer. Global Energy Balance. Reflection and Scattering. Atmospheric Influences on Insolation

Lecture 6: Radiation Transfer. Global Energy Balance. Reflection and Scattering. Atmospheric Influences on Insolation Lecture 6: Radiation Transfer Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature atmosphere Vertical and latitudinal energy distributions Absorption, Reflection,

More information

Lecture 6: Radiation Transfer

Lecture 6: Radiation Transfer Lecture 6: Radiation Transfer Vertical and latitudinal energy distributions Absorption, Reflection, and Transmission Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature

More information

GRIMM Aerosol Spectrometer and Dust Monitors. Measuring principle

GRIMM Aerosol Spectrometer and Dust Monitors. Measuring principle Grimm Aerosol-Technik GRIMM Aerosol Spectrometer and Dust Monitors Measuring principle Eng. Wolfgang Brunnhuber 1 Agenda Part A physical background general principles of optical particle detection Part

More information

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Chemistry Instrumental Analysis Lecture 2. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 2 Electromagnetic Radiation Can be described by means of a classical sinusoidal wave model. Oscillating electric and magnetic field. (Wave model) wavelength,

More information

ElectroMagnetic Radiation (EMR) Lecture 2-3 August 29 and 31, 2005

ElectroMagnetic Radiation (EMR) Lecture 2-3 August 29 and 31, 2005 ElectroMagnetic Radiation (EMR) Lecture 2-3 August 29 and 31, 2005 Jensen, Jensen, Ways of of Energy Transfer Energy is is the the ability to to do do work. In In the the process of of doing work, energy

More information

Supporting Online Material. Highly Sensitive Plasmonic Silver Nanorods

Supporting Online Material. Highly Sensitive Plasmonic Silver Nanorods Supporting Online Material Highly Sensitive Plasmonic Silver Nanorods Arpad Jakab, Christina Rosman, Yuriy Khalavka, Jan Becker, Andreas Trügler+, Ulrich Hohenester+, and Carsten Sönnichsen * MAINZ graduate

More information

Absorption and scattering

Absorption and scattering Absorption and scattering When a beam of radiation goes through the atmosphere, it encounters gas molecules, aerosols, cloud droplets, and ice crystals. These objects perturb the radiation field. Part

More information

NanoLab (Phys4970) Mie Theory & Extinction Spectra [ver 1.1.0]

NanoLab (Phys4970) Mie Theory & Extinction Spectra [ver 1.1.0] Part B) Model your results in MiePlot. Step 0) Download Mieplot from the NanoLab www site. Install this on your computer. It is a small program and should not present any difficulty. Step 1) Start MiePlot

More information

Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle

Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle Journal of Physics: Conference Series PAPER OPEN ACCESS Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle To cite this article: Norsyahidah Md Saleh and A. Abdul Aziz

More information

Coherent vs. Incoherent light scattering

Coherent vs. Incoherent light scattering 11. Light Scattering Coherent vs. incoherent scattering Radiation from an accelerated charge Larmor formula Rayleigh scattering Why the sky is blue Reflected and refracted beams from water droplets Rainbows

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum Physics 25 Chapter 24 Dr. Alward Electromagnetic Waves Electromagnetic (EM) waves consist of traveling electric and magnetic disturbances. One source of electromagnetic waves are electric charges oscillating

More information

Lecture 20 Optical Characterization 2

Lecture 20 Optical Characterization 2 Lecture 20 Optical Characterization 2 Schroder: Chapters 2, 7, 10 1/68 Announcements Homework 5/6: Is online now. Due Wednesday May 30th at 10:00am. I will return it the following Wednesday (6 th June).

More information

Energy transport in metal nanoparticle plasmon waveguides

Energy transport in metal nanoparticle plasmon waveguides Energy transport in metal nanoparticle plasmon waveguides Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater California Institute of Technology Thomas J. Watson Laboratory of Applied Physics, Pasadena,

More information

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction Among the renewable energy sources that are called to satisfy the continuously increased

More information

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Plasmonics Plasmon: Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam

More information

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES Tomáš Váry, Juraj Chlpík, Peter Markoš ÚJFI, FEI STU, Bratislava E-mail: tomas.vary@stuba.sk Received xx April 2012; accepted xx May 2012. 1.

More information

ATM 10. Severe and Unusual Weather. Prof. Richard Grotjahn.

ATM 10. Severe and Unusual Weather. Prof. Richard Grotjahn. ATM 10 Severe and Unusual Weather Prof. Richard Grotjahn http://atm.ucdavis.edu/~grotjahn/course/atm10/index.html Lecture topics: Optics: Scattering Sky Colors and Rays Optics: refraction Mirages and Refraction

More information

Take away concepts. What is Energy? Solar Radiation Emission and Absorption. Energy: The ability to do work

Take away concepts. What is Energy? Solar Radiation Emission and Absorption. Energy: The ability to do work Solar Radiation Emission and Absorption Take away concepts 1. 2. 3. 4. 5. 6. Conservation of energy. Black body radiation principle Emission wavelength and temperature (Wien s Law). Radiation vs. distance

More information

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm Metals Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals 5 nm Course Info Next Week (Sept. 5 and 7) no classes First H/W is due Sept. 1 The Previous Lecture Origin frequency dependence

More information

Coherent vs. Incoherent light scattering

Coherent vs. Incoherent light scattering 11. Light Scattering Coherent vs. incoherent scattering Radiation from an accelerated charge Larmor formula Why the sky is blue Rayleigh scattering Reflected and refracted beams from water droplets Rainbows

More information

Size Determination of Gold Nanoparticles using Mie Theory and Extinction Spectra

Size Determination of Gold Nanoparticles using Mie Theory and Extinction Spectra Size Determination of Gold Nanoparticles using Mie Theory and Extinction Spectra OUTLINE OF THE PROCEDURE A) Measure the extinction spectra of each of your samples. B) Model the extinction spectrum of

More information

Waves. Electromagnetic. No medium required. Can travel in a vacuum (empty space).

Waves. Electromagnetic. No medium required. Can travel in a vacuum (empty space). Electromagnetic Waves Made up of vibrating electric and magnetic fields. Carry energy. Move in the form of both a wave and a particle. No medium required. Can travel in a vacuum (empty space). Demonstrate

More information

Lecturer: Ivan Kassamakov, Docent Assistants: Risto Montonen and Anton Nolvi, Doctoral

Lecturer: Ivan Kassamakov, Docent Assistants: Risto Montonen and Anton Nolvi, Doctoral Lecturer: Ivan Kassamakov, Docent Assistants: Risto Montonen and Anton Nolvi, Doctoral students Course webpage: Course webpage: http://electronics.physics.helsinki.fi/teaching/optics-2016-2/ Personal information

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

Sunlight. Sunlight 2. Sunlight 4. Sunlight 3. Sunlight 5. Sunlight 6

Sunlight. Sunlight 2. Sunlight 4. Sunlight 3. Sunlight 5. Sunlight 6 Sunlight 1 Sunlight 2 Introductory Question Sunlight When you look up at the sky during the day, is the light from distant stars reaching your eyes? A. Yes B. No Sunlight 3 Observations about Sunlight

More information

Light-matter Interactions Of Plasmonic Nanostructures

Light-matter Interactions Of Plasmonic Nanostructures University of Central Florida Electronic Theses and Dissertations Doctoral Dissertation (Open Access) Light-matter Interactions Of Plasmonic Nanostructures 2013 Jennifer Reed University of Central Florida

More information

Modeling Focused Beam Propagation in scattering media. Janaka Ranasinghesagara, Ph.D.

Modeling Focused Beam Propagation in scattering media. Janaka Ranasinghesagara, Ph.D. Modeling Focused Beam Propagation in scattering media Janaka Ranasinghesagara, Ph.D. Teaching Objectives The need for computational models of focused beam propagation in scattering media Introduction to

More information

Lecture Notes Prepared by Mike Foster Spring 2007

Lecture Notes Prepared by Mike Foster Spring 2007 Lecture Notes Prepared by Mike Foster Spring 2007 Solar Radiation Sources: K. N. Liou (2002) An Introduction to Atmospheric Radiation, Chapter 1, 2 S. Q. Kidder & T. H. Vander Haar (1995) Satellite Meteorology:

More information

p(θ,φ,θ,φ) = we have: Thus:

p(θ,φ,θ,φ) = we have: Thus: 1. Scattering RT Calculations We come spinning out of nothingness, scattering stars like dust. - Jalal ad-din Rumi (Persian Poet, 1207-1273) We ve considered solutions to the radiative transfer equation

More information

Lecture 4: Heat, and Radiation

Lecture 4: Heat, and Radiation Lecture 4: Heat, and Radiation Heat Heat is a transfer of energy from one object to another. Heat makes things warmer. Heat is measured in units called calories. A calorie is the heat (energy) required

More information

Atmospheric Optics - II

Atmospheric Optics - II Atmospheric Optics - II First midterm exam is this Friday! The exam will be in-class, during our regular lecture this Friday September 28 at 9:30 am The exam will be CLOSED BOOK No textbooks No calculators

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

More information

The Scattering of Light by Small Particles. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706

The Scattering of Light by Small Particles. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 (4/28/09) The Scattering of Light by Small Particles Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract In this experiment we study the scattering of light from

More information

Why is the sky blue?

Why is the sky blue? Why is the sky blue? Volcanic: June 12, 1991: Mt Pinatubo ejected 20 million tons of sulfur dioxide. Aerosols spread globally Haze lowered a drop of global temperature by 1F Size parameter: Rayleigh

More information

Blackbody Radiation. A substance that absorbs all incident wavelengths completely is called a blackbody.

Blackbody Radiation. A substance that absorbs all incident wavelengths completely is called a blackbody. Blackbody Radiation A substance that absorbs all incident wavelengths completely is called a blackbody. What's the absorption spectrum of a blackbody? Absorption (%) 100 50 0 UV Visible IR Wavelength Blackbody

More information

LIGHT WAVES AND PARTICLES

LIGHT WAVES AND PARTICLES LIGHT WAVES AND PARTICLES THE ELECTROMAGNETIC SPECTRUM The light we see is only a tiny part of a much larger set of transverse waves. Like all waves, these carry energy without moving matter Although they

More information

OPTICAL PROPERTIES of Nanomaterials

OPTICAL PROPERTIES of Nanomaterials OPTICAL PROPERTIES of Nanomaterials Advanced Reading Optical Properties and Spectroscopy of Nanomaterials Jin Zhong Zhang World Scientific, Singapore, 2009. Optical Properties Many of the optical properties

More information

Aerosol Optical Properties

Aerosol Optical Properties ATM 507 Lecture 25 Text reading Chapter 15 Paper Due Dec. 9 Review Session Dec. 9 Final Dec. 12 (10:30 AM-12:30 PM) Today s topic Aerosol Optical Properties 1 Aerosol Optical Properties There are a number

More information

Scattering of EM waves by spherical particles: Mie Scattering

Scattering of EM waves by spherical particles: Mie Scattering ATMO/OPTI 656b Spring 2010 Scattering of EM waves by spherical particles: Mie Scattering Mie scattering refers to scattering of electromagnetic radiation by spherical particles. Under these conditions

More information

Fundamentals on light scattering, absorption and thermal radiation, and its relation to the vector radiative transfer equation

Fundamentals on light scattering, absorption and thermal radiation, and its relation to the vector radiative transfer equation Fundamentals on light scattering, absorption and thermal radiation, and its relation to the vector radiative transfer equation Klaus Jockers November 11, 2014 Max-Planck-Institut für Sonnensystemforschung

More information

Optics in a Fish Tank Demonstrations for the Classroom

Optics in a Fish Tank Demonstrations for the Classroom Optics in a Fish Tank Demonstrations for the Classroom Introduction: This series of demonstrations will illustrate a number of optical phenomena. Using different light sources and a tank of water, you

More information

Hands-on Mie lab. Emmanuel Boss, U. of Maine, Radiation transfer in the environment, 2008.

Hands-on Mie lab. Emmanuel Boss, U. of Maine, Radiation transfer in the environment, 2008. Hands-on Mie lab. Emmanuel Boss, U. of Maine, Radiation transfer in the environment, 2008. Introduction: Mie theory provides the solution for a plane-parallel EM energy interacting with a homogeneous sphere.

More information

Radiative Transfer Multiple scattering: two stream approach 2

Radiative Transfer Multiple scattering: two stream approach 2 Radiative Transfer Multiple scattering: two stream approach 2 N. Kämpfer non Institute of Applied Physics University of Bern 28. Oct. 24 Outline non non Interpretation of some specific cases Semi-infinite

More information

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD 2141418 Numerical Method in Electromagnetics Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD ISE, Chulalongkorn University, 2 nd /2018 Email: charusluk.v@chula.ac.th Website: Light

More information

Physics 214 Course Overview

Physics 214 Course Overview Physics 214 Course Overview Lecturer: Mike Kagan Course topics Electromagnetic waves Optics Thin lenses Interference Diffraction Relativity Photons Matter waves Black Holes EM waves Intensity Polarization

More information

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Scattering Introduction - Consider a localized object that contains charges

More information

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. Plasmonics The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. A possible way out is the conversion of light into plasmons. They have much shorter

More information

Solution Set 2 Phys 4510 Optics Fall 2014

Solution Set 2 Phys 4510 Optics Fall 2014 Solution Set Phys 4510 Optics Fall 014 Due date: Tu, September 16, in class Scoring rubric 4 points/sub-problem, total: 40 points 3: Small mistake in calculation or formula : Correct formula but calculation

More information

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix O.Kiriyenko,1, W.Hergert 1, S.Wackerow 1, M.Beleites 1 and

More information

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Radiation Intensity and Wavelength frequency Planck s constant Solar and infrared radiation selective absorption and emission Selective absorption

More information

ATMO/OPTI 656b Spring Scattering of EM waves by spherical particles: Mie Scattering

ATMO/OPTI 656b Spring Scattering of EM waves by spherical particles: Mie Scattering Scattering of EM waves by spherical particles: Mie Scattering Why do we care about particle scattering? Examples of scattering aerosols (note: ugly looking air when the relative humidity > 80%) clouds,

More information

Classical and Quantum Effects in Plasmonic Metals

Classical and Quantum Effects in Plasmonic Metals Classical and Quantum Effects in Plasmonic Metals Thesis by Ana Maii Brown In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena,

More information

, analogous to an absorption coefficient k a

, analogous to an absorption coefficient k a Light Scattering When light passes through a medium some of it is directed away from its direction of travel. Any photons that are diverted from their direction of propagation are scattered. In the atmosphere

More information

Lecture 3: Atmospheric Radiative Transfer and Climate

Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Solar and infrared radiation selective absorption and emission Selective absorption and emission Cloud and radiation Radiative-convective equilibrium

More information

Modification of Solar Energy Harvesting in Photovoltaic Materials by Plasmonic Nanospheres: New Absorption Bands in Perovskite Composite Film

Modification of Solar Energy Harvesting in Photovoltaic Materials by Plasmonic Nanospheres: New Absorption Bands in Perovskite Composite Film Article Subscriber access provided by INSTYTUT FIZYKI PAN Modification of Solar Energy Harvesting in Photovoltaic Materials by Plasmonic Nanospheres: New Absorption Bands in Perovskite Composite Film Krystyna

More information

Atmospheric Refraction. And Related Phenomena

Atmospheric Refraction. And Related Phenomena Atmospheric Refraction And Related Phenomena Overview 1. Refractive invariant 2. The atmosphere and its index of refraction 3. Ray tracing through atmosphere 4. Sunset distortions 5. Green flash Spherical

More information

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays CHAPTER 4 Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays 4.1 Introduction In Chapter 3, the noble bimetallic alloy nanosphere (BANS) of Ag 1-x Cu x at a particular composition

More information

Discover why the sky is blue and the sunset is red.

Discover why the sky is blue and the sunset is red. Blue Sky Discover why the sky is blue and the sunset is red. When sunlight travels through the atmosphere, blue light scatters more than the other colors, leaving a dominant yellow-orange hue to the transmitted

More information

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Plasmonics Plasmon: Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam

More information

INTRODUCTION. Definition:-

INTRODUCTION. Definition:- INTRODUCTION Definition:- Light scatteringis a form ofscatteringin whichlightis the form of propagating energy which is scattered. Light scattering can be thought of as the deflection of arayfrom a straight

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nnano.2011.72 Tunable Subradiant Lattice Plasmons by Out-of-plane Dipolar Interactions Wei Zhou and Teri W. Odom Optical measurements. The gold nanoparticle arrays

More information

Optical and Photonic Glasses. Lecture 18. Rayleigh and Mie Scattering, Colloidal Metals and Photo-elastic Properties. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 18. Rayleigh and Mie Scattering, Colloidal Metals and Photo-elastic Properties. Professor Rui Almeida Optical and Photonic Glasses : Rayleigh and Mie Scattering, Colloidal Metals and Photo-elastic Properties Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University

More information

Atmospheric Optics. Lecture 17!! Nature s Light Show. Scattering. Atmospheric Optics. Atmospheric Optics. Scattering Reflection Ahrens Chapter 15

Atmospheric Optics. Lecture 17!! Nature s Light Show. Scattering. Atmospheric Optics. Atmospheric Optics. Scattering Reflection Ahrens Chapter 15 Lecture 17!! Nature s Light Show Atmospheric Optics Nature s Light Show Atmospheric Optics Scattering Reflection Ahrens Chapter 15 1 2 Scattering Reflection Refraction Diffraction Atmospheric Optics The

More information

Geometries and materials for subwavelength surface plasmon modes

Geometries and materials for subwavelength surface plasmon modes Geometries and materials for subwavelength surface plasmon modes Plasmon slot waveguides : Metal-Insulator-Metal (MIM) Metal nanorods and nanotips Metal nanoparticles Metal Dielectric Dielectric Metal

More information

Sunlight and its Properties II. EE 446/646 Y. Baghzouz

Sunlight and its Properties II. EE 446/646 Y. Baghzouz Sunlight and its Properties II EE 446/646 Y. Baghzouz Solar Time (ST) and Civil (clock) Time (CT) There are two adjustments that need to be made in order to convert ST to CT: The first is the Longitude

More information

PRINCIPLES OF REMOTE SENSING. Electromagnetic Energy and Spectral Signatures

PRINCIPLES OF REMOTE SENSING. Electromagnetic Energy and Spectral Signatures PRINCIPLES OF REMOTE SENSING Electromagnetic Energy and Spectral Signatures Remote sensing is the science and art of acquiring and analyzing information about objects or phenomena from a distance. As humans,

More information

Supporting Information. Observation of Nanoscale Cooling Effects by Substrates and the Surrounding

Supporting Information. Observation of Nanoscale Cooling Effects by Substrates and the Surrounding Supporting Information Observation of Nanoscale Cooling Effects by Substrates and the Surrounding Media for Single Gold Nanoparticles under CW-laser Illumination Kenji Setoura, Yudai Okada, Daniel Werner,

More information

Modern Physics, Waves, Electricity

Modern Physics, Waves, Electricity Name: Date: 1. Metal sphere has a charge of +12 elementary charges and identical sphere has a charge of +16 elementary charges. fter the two spheres are brought into contact, the charge on sphere is 4.

More information

Polarization. If the original light is initially unpolarized, the transmitted intensity I is half the original intensity I 0 :

Polarization. If the original light is initially unpolarized, the transmitted intensity I is half the original intensity I 0 : 33-4 33-4 Polarization Polarization Electromagnetic waves are polarized if their electric field vectors are all in a single plane, called the plane of oscillation. Light waves from common sources are not

More information

Introduction to Photovoltaics

Introduction to Photovoltaics INTRODUCTION Objectives Understand the photovoltaic effect. Understand the properties of light. Describe frequency and wavelength. Understand the factors that determine available light energy. Use software

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information