Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.

Size: px
Start display at page:

Download "Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0."

Transcription

1 Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.6 H 0.4 colloids. The standard derivation is 4.4 %.

2 Supplementary Figure S2 The optical properties of individual Si 0.75 H 0.25 silicon colloid before and after annealing. a, Transmission spectra of different colloids before (black line) and after (red line) annealing at the indicated temperature. The optical images of the corresponding colloid before (black framed image) and after (red framed image) the annealing process are shown in the upper framed inset of figure. The SEM image of the corresponding annealed colloid is also shown in the lower inset of figure. b and c, The same as a for different colloids. In all cases the scale bar of SEM images is 200 nm.

3 Supplementary Figure S3 The optical properties of individual Si 0.6 H 0.4 silicon colloid before and after annealing. a, Transmission spectra of different colloids before (black line) and after (red line) annealing at the indicated temperature. Optical images of the corresponding colloid before (black framed image) and after (red framed image) annealing are shown in the upper framed inset of figure. SEM images of the corresponding annealed colloid are also shown in the lower insets of the figures. b and c, The same as a for different colloids. In all cases the scale bar of SEM images is 200 nm.

4 Supplementary Figure S4 The influence of the annealing process on the particle size and refractive index of silicon colloids. a, The diameter (black line) and the refractive index (pink line) of the fabricated silicon colloids as a function of annealing temperature for the Si 0.75 H 0.25 colloids case. b, The same as a, for the Si 0.6 H 0.4 colloids case. The diameters of colloids are obtained from the SEM images of the Supplementary Fig. S2 and S3. The refractive index is obtained by fitting the Mie theory calculation to the experimental data, as shown in the Supplementary Fig. S5.

5 Supplementary Figure S5 The Mie theory fitting to the experiments. a, Transmission spectra of three different Si 0.75 H 0.25 colloids (yellow, green and red) after annealing at the temperature shown in the inset. The calculated extinction (black line) and scattering (orange line) efficiencies of single annealed Si 0.75 H 0.25 colloids are shown. The size and refractive index values of colloids are shown in the supplementary Fig. S4. The contribution of the electric (blue dash line) and the magnetic (blue solid line) resonances are also shown. The Mie resonances are highlighted with orange (magnetic dipole), grey (electric dipole) and blue (magnetic quadrupole) arrows. b, The same as a, but for Si 0.6 H 0.4 colloids.

6 Supplementary Figure S6 The optical properties of Si 0.75 H 0.25 colloids suspension without annealing process. a, Transmission spectrum of a suspension with a concentration of 0.005% v/v. For comparison, the calculated extinction (black) and scattering (orange) efficiency of single Si 0.75 H 0.25 colloid immersed in toluene are also shown. A particle size of 430 nm with a refractive index value 70% of that of bulk silicon has been assumed (see the Supplementary Fig. S4). The contribution of electric like (blue dash line) and magnetic like (blue solid line) Mie resonances are also shown. b, The transmission spectrum of the suspension with a concentration value of 0.01% v/v. c, The transmission spectrum of the suspension with a concentration value of 0.02% v/v. The photos in the right panels show the corresponding samples that were measured. Because of the low refractive index values of original Si 0.75 H 0.25 colloids, the magnetic like Mie resonance dramatically weakens when dispersed in toluene

7 Supplementary Figure S7 The physical origin of the magnetic response of silicon colloids in the optical range. a, Schematic view of the light impinging a metallic split ring metamaterial building block (upper panel), corresponding extinction (black line) and scattering (red line) efficiency spectra with the magnetic resonance peak highlighted by an orange arrow (middle panel), and current intensity & magnetic field map plots at the magnetic resonance wavelength (lower panel). The field plot map corresponds to the xy plane inside the split ring structure. b, the same as a but for the silicon nanocavity. The cut plane of the displacement current density and the magnetic field distribution correspond to the cross section of the structure in the xz plane. The inset figure in the middle panel of b shows the extinction and scattering efficiency of a single polystyrene (PS) colloid with the same size of the silicon colloid.

8 Supplementary Figure S8 The magnetic and electric polarizabilities, as well as the scattering pattern obtained from Mie theory. a, The magnetic (red) and electric (blue) polarizabilities as a function of the light wavelength. The solid and dash lines correspond to the real and the imaginary parts of the polarizabilities. The upper panel corresponds to the silicon colloids case and the lower panel corresponds to the PS colloids case. The size of the silicon and PS colloids is the same as that of the Supplementary Fig. S7. b, Scattering angular patterns of silicon (upper panel) and PS (lower panel) colloids under magnetic dipole resonances (the corresponding wavelength is indicated by a dashed line in a. The incident light polarization is shown in the Supplementary Fig. S7b.

9 Supplementary Note 1 The optical properties of individual fabricated silicon colloids before and after annealing. The results presented in the Supplementary Fig. S2 and Fig. S3 are obtained from 24 silicon colloids. The results presented in the Supplementary Fig. S2 are obtained from the optical spectra of 12 different Si 0.75 H 0.25 silicon colloids. All colloids show similar optical features that are equally red-shifted upon the annealing process. From the comparison to the Mie theory we can estimate the refractive index of the annealed samples. Since all different optical resonances appear at the same wavelength values, we can conclude silicon colloids are monodisperse and the 600 ºC annealed colloids have a refractive index value of 90% of that of bulk silicon (see the Supplementary Figs. S4, S5 and Note 2 below). The Supplementary Fig. S3 shows optical experiments for the case of 12 different Si 0.6 H 0.4 colloids. In this case, the annealed colloids achieve a refractive index value of 75% of that of bulk silicon. Supplementary Note 2 The influence of annealing on the size and refractive index of silicon colloids. From SEM images of colloids (Figure 1, the Supplementary Fig. S2 and S3) we can obtain their diameter and from the fit of optical experiments to the Mie theory we achieved their refractive index values. In the calculation of Mie theory, the refractive index of pure silicon, n Si is taken from Ref. [42]. We assumed the refractive index of hydrogenated silicon colloids, n a Si: H p. nsi, where p is the ratio between the refractive index values of hydrogenated and the bulk silicon colloids. The fitting results for both Si 0.75 H 0.25 and Si 0.6 H 0.4 samples after different annealing temperature are shown in the Supplementary Fig. S4. As expected, by increasing the annealing temperature, the refractive index increases. For the 300 o C annealing case, the refractive index of Si 0.75 H 0.25 samples is 70% of that of bulk silicon. However, after submitting the samples to 600 o C annealing process the refractive index of colloids outstandingly increase to 90% of that of bulk silicon. With this high refractive index, a-si:h colloids are not only able to have good optical performance in air but also in a liquid environment case such as water [26] or toluene. For Si 0.6 H 0.4 particles, because of the high hydrogen content, the refractive index is much lower than that of Si 0.75 H 0.25 samples at any annealing temperature. Even after annealing at 600 o C, the refractive index is 74% of that of bulk silicon, equivalent to a refractive index value of 2.6, which is not enough for sustaining a huge magnetic response in a liquid media. The Supplementary Fig. S5 shows the Mie theory calculation results.

10 Supplementary Discussion The physical origin of the magnetic response of silicon colloids in the optical range. Silicon is not a magnetic material. However, due to both, the huge refractive index value, and the small particle size, silicon nanocavities show strong magnetic resonances at optical frequencies. The underlying physics is similar to that of noble metal based metamaterials. In the Supplementary Fig. S7, we compare the properties of silicon colloids with a typical metamaterial building block reported in the literature [5-7, 44-46]. The upper panel of the Supplementary Fig. S7a, shows a schematic view of the well known split ring resonator made of gold. This structure has extensively been reported because of its strong magnetic response in the optical frequency region. The LC oscillator has widely been used to mimic the behavior of the split ring structure [5-7, 44-46]. It is well known that the LC oscillator circuit has a well-defined resonance frequency, which scales inversely with the size of the nanostructure. When the frequency of the incident light equals to the oscillator resonance frequency and the electric component of the incident light is parallel to the direction of the capacitor (corresponding to the metallic gap region of the split ring structure), an oscillating current is induced. Then, the induced current produces an oscillating magnetic dipole perpendicular to the split ring plane, along the z direction. The middle panel of the Supplementary Fig. S7a shows both the scattering and extinction efficiency of a single gold split ring. Although a detailed discussion can be found in Ref. [45], we will summarize the optical properties of the split ring resonator. Two strong scattering and extinction peaks appear in the wavelength region of interest. The longer wavelength peak corresponds to the magnetic dipole resonance and the shorter wavelength one corresponds to the electric dipole resonance. The origin of the electric dipole resonance is the same as that appearing for metallic nanoparticles [45]. For the magnetic dipole resonance, the lower panel of the Supplementary Fig. S7a shows the induced oscillating current, J (left), and the magnetic field (right) distribution at the resonant wavelength (1339 nm). Just as what we should expect, a strong oscillating current loop is observed at the split ring, this inducing an oscillating magnetic dipole along the z direction and a local magnetic field enhancement observed in the center part of the split ring structure. It is important pointing out the extinction coefficient is much larger than the scattering coefficient this being a test of the high optical absorption of the gold nanostructures in the spectral zone of interest. After understanding the split ring case we can discuss the magnetic response of the silicon colloids. Similarly to the induced current appearing for conductive materials, displacement currents appear for the case of dielectric systems. Based on the classical electromagnetic field theory, the displacement current, J D, can be written as, J D = D t = iωd = ( iωε)e, which is proportional to the dielectric permittivity, ε, of silicon. If the permittivity (or refractive index) is big enough, the displacement

11 current increases, this producing a strong magnetic dipole inside the dielectric colloid (see lower panel of the Supplementary Fig. S7b) [15, 16, 22, 23, 26, 27, 30-32, 47-49]. The loop shape of the displacement current is crucial for the magnetic response of dielectric materials and is analogous to the loop current in the split ring resonator. The size of the dielectric structure limits the resonance frequency of the magnetic response [22, 23, 26, 27, 30-32]. Actually, this strong magnetic response already was predicted by the Mie scattering theory. The magnetic dipole resonance above explained corresponds to the lowest order Mie resonance of a high refractive index spherical nanocavity [15, 22, 23, 26, 27, 30-32, 49]. It means that the scattered light near this magnetic dipole resonance follows the magnetic dipole radiation pattern (details discussed in the Supplementary Fig. S8b). We have used the Mie scattering theory to show the magnetic response and also to explain the optical features of silicon colloids. More detailed discussions of the magnetic response of high refractive index structures, and its connection to the Mie scattering, have extensively been reported [15, 16, 22, 23, 26, 27, 30-32, 47-49]. In the Supplementary Fig. S7b we show the calculated scattering and the extinction spectra of a single silicon colloid, similar to those used in the experiments (see Figure 1e of the main body of the paper). In the Inset of the Supplementary Fig. S7b, we also show the scattering and extinction spectra of a polystyrene (PS) colloid with the same size as that of the silicon colloid. The PS particle does not show Mie resonances in the wavelength region of interest due to the small refractive index of the particle. Therefore we can conclude that high refractive index nanocavities show strong magnetic resonances similar to the resonant modes of gold metamaterial building blocks. However, there are some differences between gold and silicon nanostructures we describe next. Firstly, at variance to metallic nanostructures, we are dealing with dielectric nanoparticles with no free electrons and therefore no plasmons, in which the magnetic response comes from the optical resonance of the spherical nanocavity. Also, the silicon colloid shows several scattering peaks corresponding to higher order Mie resonances (see the Supplementary Fig. S7b), for example electric dipole, magnetic quadropole resonances etc. Secondly, the optical losses of silicon in the wavelength region of interest (see the Supplementary Fig. S7) are much smaller than those appearing for metallic nanostructures. The absorption coefficient of bulk gold is four to five orders of magnitude larger than that for bulk silicon in the spectral region of interest. This is pointed out in the difference between the extinction and the scattering coefficients. By subtracting the scattering spectrum from the extinction one we can derive the absorption spectrum. In the case of the silicon colloid, there are no obvious differences between both spectra near the magnetic resonance (see middle panel of the Supplementary Fig. S7b), and therefore the absorption of silicon colloids, as expected, is very small. However this is not the case for the metallic nanostructure as it can be seen from the middle panel of the Supplementary Fig. S7a. Finally, to better describe the magnetic response of silicon colloids, the magnetic and electric dipole polarizabilities α m and α e of a single fabricated silicon colloid are calculated by using the Mie theory [22, 25, 27]. The magnetic and electric dipole polarizabilities can be written as = and =, where P is the electric

12 dipole moment and M is the magnetic dipole moment. In the Supplementary Fig. S8a, the red and blue lines correspond to the magnetic and electric dipole polarizabilities respectively. Also, the solid and the dash lines represent the real and imaginary part of the polarizabilities respectively. For low refractive index materials like PS colloids (lower panel), the magnetic dipole polarizability, α m, shows pretty low values, these being smaller than those of α e, as it can be expected for standard dielectric materials. However for the Si colloid case (upper panel), α m shows large values, and for certain wavelength values corresponding to the magnetic resonance around 1256 nm, α m is larger than α e (see vertical dashed line in the Supplementary Fig. S8a). The Supplementary Fig. S8b compares the scattering pattern in the x-y plane of the silicon colloid here reported (upper panel) and a PS colloid of the same size (lower panel) at 1256 nm (black dash vertical line in the Supplementary Fig. S8a). The electric and the magnetic field components of the incident light are along x and y directions respectively (as shown in the Supplementary Fig. S7b). A huge difference between the scattering pattern of Si and PS colloids can be seen. The scattered light along the y direction is minimum for the Si colloid but maximum for the PS colloid. As radiating dipoles emits in the perpendicular direction to the dipole direction [50], we can see that the scattering pattern of the PS particle corresponds to an electric dipole, but it turns out to be a magnetic one for the case of the silicon colloid (see the Supplementary Fig. S8b). All the above results demonstrate that the silicon colloid has a magnetic response in the optical region of interest, and it can be a building block for metamaterials. Supplementary References [44] Yen T. J., Padilla W. J., Fang N., Vier D. C., Smith D. R., Pendry J. B., Basov D. N. and Zhang X. Terahertz magnetic response from artificial materials, Science 303, 1494 (2004). [45] Enkrich C., Wegener M., Linden S., Burger S., Zschiedrich L., Schimidt F., Zhou J. F., Koschny Th. and Soukoulis C. M. Magnetic metamaterials at telecommunication and visible frequencies, Phy. Rev. Lett. 95, (2005). [46] Boudarham G., Feth N., Myroshnychenko V., Linden S., de Abajo J. G., Wegener M. and Kociak M. Spectral imaging of individual split-ring resonators, Phys. Rev. Lett. 105, (2010). [47] Schuller J. A., Zia R., Taubner T. and Brongersma M. L. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys. Rev. Lett. 99, (2007). [48] Popa B. I. and Cummer S. A. Compact dielectric particles as a building block for low loss magnetic metamaterials, Phys. Rev. Lett. 100, (2008). [49] Ginn J. C., Brener I., Peters D. W., Wendt J. R., Stevens J. O., Hines P. F., Basilio L. I., Warne L. K., Ihlefeld J. F., Clem P. G. and Sinclair M. B. Realizing optical magnetism from dielectric metamaterials, Phys. Rev. Lett. 108, (2012). [50] Jackson J. D. Classical Electrodynamics (John Wiley & Sons, Inc, 1962).

Negative refractive index response of weakly and strongly coupled optical metamaterials.

Negative refractive index response of weakly and strongly coupled optical metamaterials. Negative refractive index response of weakly and strongly coupled optical metamaterials. Jiangfeng Zhou, 1 Thomas Koschny, 1, Maria Kafesaki, and Costas M. Soukoulis 1, 1 Ames Laboratory and Department

More information

An efficient way to reduce losses of left-handed metamaterials

An efficient way to reduce losses of left-handed metamaterials An efficient way to reduce losses of left-handed metamaterials Jiangfeng Zhou 1,2,, Thomas Koschny 1,3 and Costas M. Soukoulis 1,3 1 Ames Laboratory and Department of Physics and Astronomy,Iowa State University,

More information

Tuning the far-field superlens: from UV to visible

Tuning the far-field superlens: from UV to visible Tuning the far-field superlens: from UV to visible Yi Xiong, Zhaowei Liu, Stéphane Durant, Hyesog Lee, Cheng Sun, and Xiang Zhang* 510 Etcheverry Hall, NSF Nanoscale Science and Engineering Center (NSEC),

More information

FDTD simulations of far infrared effective magnetic activity in microstructured TiO2

FDTD simulations of far infrared effective magnetic activity in microstructured TiO2 FDTD simulations of far infrared effective magnetic activity in microstructured TiO2 Cristian Kusko and Mihai Kusko IMT-Bucharest, Romania E-mail: cristian.kusko@imt.ro Motivation and Outline Metamaterials

More information

Suppression of radiation loss by hybridization effect in two coupled split-ring resonators

Suppression of radiation loss by hybridization effect in two coupled split-ring resonators Suppression of radiation loss by hybridization effect in two coupled split-ring resonators T. Q. Li, 1 H. Liu, 1, * T. Li, 1 S. M. Wang, 1 J. X. Cao, 1 Z. H. Zhu, 1 Z. G. Dong, 1 S. N. Zhu, 1 and X. Zhang

More information

Supplementary Figure 1. Schematics of light transmission and reflection from a slab confined between

Supplementary Figure 1. Schematics of light transmission and reflection from a slab confined between Supplementary Figures: Supplementary Figure. Schematics of light transmission and reflection from a slab confined between two infinite media. Supplementary Figure. Reflectivity of a magneto-electric slab

More information

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES Tomáš Váry, Juraj Chlpík, Peter Markoš ÚJFI, FEI STU, Bratislava E-mail: tomas.vary@stuba.sk Received xx April 2012; accepted xx May 2012. 1.

More information

Negative index short-slab pair and continuous wires metamaterials in the far infrared regime

Negative index short-slab pair and continuous wires metamaterials in the far infrared regime Negative index short-slab pair and continuous wires metamaterials in the far infrared regime T. F. Gundogdu 1,2*, N. Katsarakis 1,3, M. Kafesaki 1,2, R. S. Penciu 1, G. Konstantinidis 1, A. Kostopoulos

More information

A negative permeability material at red light

A negative permeability material at red light A negative permeability material at red light Hsiao-Kuan Yuan, Uday K. Chettiar, Wenshan Cai, Alexander V. Kildishev, Alexandra Boltasseva*, Vladimir P. Drachev, and Vladimir M. Shalaev Birck Nanotechnology

More information

Supplementary information for. plasmonic nanorods interacting with J-aggregates.

Supplementary information for. plasmonic nanorods interacting with J-aggregates. Supplementary information for Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. by Gülis Zengin, Göran Johansson, Peter Johansson, Tomasz J. Antosiewicz,

More information

Supporting Information: Resonant non-plasmonic nanoparticles for. efficient temperature-feedback optical heating

Supporting Information: Resonant non-plasmonic nanoparticles for. efficient temperature-feedback optical heating Supporting Information: Resonant non-plasmonic nanoparticles for efficient temperature-feedback optical heating George P. Zograf, Mihail I. Petrov,,, Dmitry A. Zuev, Pavel A. Dmitriev, Valentin A. Milichko,

More information

Optical Magnetism: from Red to Blue

Optical Magnetism: from Red to Blue Optical Magnetism: from Red to Blue Wenshan Cai, Uday K. Chettiar, Hsiao-Kuan Yuan, Vashista de Silva, Alexander V. Kildishev, Vladimir P. Drachev, and Vladimir M. Shalaev Birck Nanotechnology Center,

More information

Author(s) Tamayama, Y; Nakanishi, T; Sugiyama. Citation PHYSICAL REVIEW B (2006), 73(19)

Author(s) Tamayama, Y; Nakanishi, T; Sugiyama. Citation PHYSICAL REVIEW B (2006), 73(19) Observation of Brewster's effect fo Titleelectromagnetic waves in metamateri theory Author(s) Tamayama, Y; Nakanishi, T; Sugiyama Citation PHYSICAL REVIEW B (2006), 73(19) Issue Date 2006-05 URL http://hdl.handle.net/2433/39884

More information

Extinction properties of a sphere with negative permittivity and permeability

Extinction properties of a sphere with negative permittivity and permeability PERGAMON Solid State Communications 116 (2000) 411 415 www.elsevier.com/locate/ssc Extinction properties of a sphere with negative permittivity and permeability R. Ruppin* Department of Physics and Applied

More information

Observation of a New Magnetic Response in 3-Dimensional Split Ring Resonators under Normal Incidence

Observation of a New Magnetic Response in 3-Dimensional Split Ring Resonators under Normal Incidence Observation of a New Magnetic Response in 3-Dimensional Split Ring Resonators under Normal Incidence Sher-Yi Chiam 1,, Andrew A. Bettiol 1, Mohammed Bahou 2, JiaGuang Han 1, Herbert O. Moser 2 and Frank

More information

Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial

Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial Zheng-Gao Dong, 1,* Shuang-Ying Lei, 2 Qi Li, 1 Ming-Xiang Xu, 1 Hui Liu, 3 Tao Li, 3 Fu-Ming Wang, 3 and Shi-Ning

More information

Optical properties of spherical and anisotropic gold shell colloids

Optical properties of spherical and anisotropic gold shell colloids 8 Optical properties of spherical and anisotropic gold shell colloids Core/shell colloids consisting of a metal shell and a dielectric core are known for their special optical properties. The surface plasmon

More information

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Nanoscale optical circuits: controlling light using localized surface plasmon resonances Nanoscale optical circuits: controlling light using localized surface plasmon resonances T. J. Davis, D. E. Gómez and K. C. Vernon CSIRO Materials Science and Engineering Localized surface plasmon (LSP)

More information

Asymmetric planar terahertz metamaterials

Asymmetric planar terahertz metamaterials Asymmetric planar terahertz metamaterials Ranjan Singh, 1,2,* Ibraheem A. I. Al-Naib, 3 Martin Koch, 3 and Weili Zhang 1 1 School of Electrical and Computer Engineering, Oklahoma State University, Stillwater,

More information

90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity

90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity 90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity Yuqian Ye 1 and Sailing He 1,2,* 1 Centre for Optical and Electromagnetic Research, State Key Laboratory

More information

Negative Index of Refraction in Optical Metamaterials

Negative Index of Refraction in Optical Metamaterials 1 Negative Index of Refraction in Optical Metamaterials V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev School of Electrical and Computer Engineering,

More information

Magnetic response of split-ring resonator metamaterials: From effective medium dispersion to photonic band gaps

Magnetic response of split-ring resonator metamaterials: From effective medium dispersion to photonic band gaps PRAMANA c Indian Academy of Sciences Vol. 78, No. 3 journal of March 2012 physics pp. 483 492 Magnetic response of split-ring resonator metamaterials: From effective medium dispersion to photonic band

More information

Johnson, N.P. and Khokhar, A.Z. and Chong, H.M.H. and De La Rue, R.M. and McMeekin, S. (2006) Characterisation at infrared wavelengths of metamaterials formed by thin-film metallic split-ring resonator

More information

Steering polarization of infrared light through hybridization effect in a tri-rod structure

Steering polarization of infrared light through hybridization effect in a tri-rod structure B96 J. Opt. Soc. Am. B/ Vol. 26, No. 12/ December 2009 Cao et al. Steering polarization of infrared light through hybridization effect in a tri-rod structure Jingxiao Cao, 1 Hui Liu, 1,3 Tao Li, 1 Shuming

More information

Left-handed materials: Transfer matrix method studies

Left-handed materials: Transfer matrix method studies Left-handed materials: Transfer matrix method studies Peter Markos and C. M. Soukoulis Outline of Talk What are Metamaterials? An Example: Left-handed Materials Results of the transfer matrix method Negative

More information

Nanophotonics: principle and application. Khai Q. Le Lecture 4 Light scattering by small particles

Nanophotonics: principle and application. Khai Q. Le Lecture 4 Light scattering by small particles Nanophotonics: principle and application Khai Q. Le Lecture 4 Light scattering by small particles Previous lecture Drude model, Drude-Sommerfeld model and Drude-Lorentz model for conducting media (metal):

More information

arxiv: v1 [physics.optics] 17 Jan 2013

arxiv: v1 [physics.optics] 17 Jan 2013 Three Dimensional Broadband Tunable Terahertz Metamaterials Kebin Fan,1 Andrew C. Strikwerda,2 Xin Zhang,1, and Richard D. Averitt2, arxiv:1301.3977v1 [physics.optics] 17 Jan 2013 1 Department of Mechanical

More information

7. Localized surface plasmons (Particle plasmons)

7. Localized surface plasmons (Particle plasmons) 7. Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

Localized surface plasmons (Particle plasmons)

Localized surface plasmons (Particle plasmons) Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

Flute-Model Acoustic Metamaterials with Simultaneously. Negative Bulk Modulus and Mass Density

Flute-Model Acoustic Metamaterials with Simultaneously. Negative Bulk Modulus and Mass Density Flute-Model Acoustic Metamaterials with Simultaneously Negative Bulk Modulus and Mass Density H. C. Zeng, C. R. Luo, H. J. Chen, S. L. Zhai and X. P. Zhao * Smart Materials Laboratory, Department of Applied

More information

A Broadband Flexible Metamaterial Absorber Based on Double Resonance

A Broadband Flexible Metamaterial Absorber Based on Double Resonance Progress In Electromagnetics Research Letters, Vol. 46, 73 78, 2014 A Broadband Flexible Metamaterial Absorber Based on Double Resonance ong-min Lee* Abstract We present a broadband microwave metamaterial

More information

Enhancing and suppressing radiation with some permeability-near-zero structures

Enhancing and suppressing radiation with some permeability-near-zero structures Enhancing and suppressing radiation with some permeability-near-zero structures Yi Jin 1,2 and Sailing He 1,2,3,* 1 Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical

More information

Dual-band planar electric metamaterial in the terahertz regime

Dual-band planar electric metamaterial in the terahertz regime Dual-band planar electric metamaterial in the terahertz regime Yu Yuan 1, Christopher Bingham 2, Talmage Tyler 1, Sabarni Palit 1, Thomas H. Hand 1, Willie J. Padilla 2, David R. Smith 1, Nan Marie Jokerst

More information

Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain

Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain C. Zhu 1, H. Liu 1,*, S. M. Wang 1, T. Li 1, J. X. Cao 1, Y. J. Zheng 1, L. Li 1, Y. Wang 1, S. N. Zhu

More information

Theoretical study of left-handed behavior of composite metamaterials

Theoretical study of left-handed behavior of composite metamaterials Photonics and Nanostructures Fundamentals and Applications 4 (2006) 12 16 www.elsevier.com/locate/photonics Theoretical study of left-handed behavior of composite metamaterials R.S. Penciu a,b, *, M. Kafesaki

More information

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang Department of Electronic Science and Engineering Nanjing University Nanjing , China

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang Department of Electronic Science and Engineering Nanjing University Nanjing , China Progress In Electromagnetics Research, PIER 101, 231 239, 2010 POLARIZATION INSENSITIVE METAMATERIAL ABSORBER WITH WIDE INCIDENT ANGLE B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang Department

More information

The Dielectric Function of a Metal ( Jellium )

The Dielectric Function of a Metal ( Jellium ) The Dielectric Function of a Metal ( Jellium ) Total reflection Plasma frequency p (10 15 Hz range) Why are Metals Shiny? An electric field cannot exist inside a metal, because metal electrons follow the

More information

Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film

Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film B. J. Lee, L. P. Wang, and Z. M. Zhang George W. Woodruff School of Mechanical Engineering Georgia

More information

A SYMMETRICAL DUAL-BAND TERAHERTZ META- MATERIAL WITH CRUCIFORM AND SQUARE LOOPS. Microsystem and Information Technology, Shanghai , China

A SYMMETRICAL DUAL-BAND TERAHERTZ META- MATERIAL WITH CRUCIFORM AND SQUARE LOOPS. Microsystem and Information Technology, Shanghai , China Progress In Electromagnetics Research C, Vol. 33, 259 267, 2012 A SYMMETRICAL DUAL-BAND TERAHERTZ META- MATERIAL WITH CRUCIFORM AND SQUARE LOOPS B. Li 1, *, L. X. He 2, Y. Z. Yin 1, W. Y. Guo 2, 3, and

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances Y. Cheng, 1,2 C. Zhou, 1 B.G. Yuan, 1 D.J. Wu, 3 Q. Wei, 1 X.J. Liu 1,2* 1 Key Laboratory of Modern

More information

Magnetic response of split ring resonators at terahertz frequencies

Magnetic response of split ring resonators at terahertz frequencies Original Paper phys. stat. sol. (b) 244, No. 4, 1181 1187 (2007) / DOI 10.1002/pssb.200674503 Magnetic response of split ring resonators at terahertz frequencies Costas M. Soukoulis *, 1, 2, Thomas Koschny

More information

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. Plasmonics The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. A possible way out is the conversion of light into plasmons. They have much shorter

More information

Reply to Comment on Negative refractive index in artificial. metamaterials (preprint arxiv.org:physics/ )

Reply to Comment on Negative refractive index in artificial. metamaterials (preprint arxiv.org:physics/ ) Reply to Comment on Negative refractive index in artificial metamaterials (preprint arxiv.org:physics/0609234) A. N. Grigorenko, Department of Physics and Astronomy, University of Manchester, Manchester,

More information

Symmetry Breaking and Optical Negative Index of Closed Nanorings

Symmetry Breaking and Optical Negative Index of Closed Nanorings Supplementary Information Symmetry Breaking and Optical Negative Index of Closed Nanorings Boubacar Kanté 1, Yong-Shik Park 1, Kevin O Brien 1, Daniel Shuldman 1, Norberto D. Lanzillotti Kimura 1, Zi Jing

More information

Nonlinear responses in optical metamaterials: theory and experiment

Nonlinear responses in optical metamaterials: theory and experiment Nonlinear responses in optical metamaterials: theory and experiment Shiwei Tang, 1 David J. Cho, Hao Xu, 1 Wei Wu, 3 Y. Ron Shen, and Lei Zhou 1,* 1 State Key Laboratory of Surface Physics and Key Laboratory

More information

Biosensing based on slow plasmon nanocavities

Biosensing based on slow plasmon nanocavities iosensing based on slow plasmon nanocavities. Sepulveda, 1, Y. Alaverdyan,. rian, M. Käll 1 Nanobiosensors and Molecular Nanobiophysics Group Research Center on Nanoscience and Nanotechnolog (CIN)CSIC-ICN

More information

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Supplemental Material L. Shi, T. K. Hakala, H. T. Rekola, J. -P.

More information

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium with thickness L. Supplementary Figure Measurement of

More information

Spring 2009 EE 710: Nanoscience and Engineering

Spring 2009 EE 710: Nanoscience and Engineering Spring 009 EE 710: Nanoscience and Engineering Part 10: Surface Plasmons in Metals Images and figures supplied from Hornyak, Dutta, Tibbals, and Rao, Introduction to Nanoscience, CRC Press Boca Raton,

More information

On the signs of the imaginary parts of the effective permittivity and permeability in metamaterials

On the signs of the imaginary parts of the effective permittivity and permeability in metamaterials 1016 J. Opt. Soc. Am. B/ Vol. 27, No. 5/ May 2010 J. Woodley and M. Mojahedi On the signs of the imaginary parts of the effective permittivity and permeability in metamaterials J. Woodley 1, * and M. Mojahedi

More information

GHz magnetic response of split ring resonators

GHz magnetic response of split ring resonators Photonics and Nanostructures Fundamentals and Applications 2 (2004) 155 159 www.elsevier.com/locate/photonics GHz magnetic response of split ring resonators Lei Zhang a, G. Tuttle a, C.M. Soukoulis b,

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary Information Large-scale lithography-free metasurface with spectrally tunable super

More information

Symmetry breaking and strong coupling in planar optical metamaterials

Symmetry breaking and strong coupling in planar optical metamaterials Symmetry breaking and strong coupling in planar optical metamaterials Koray Aydin 1*, Imogen M. Pryce 1, and Harry A. Atwater 1,2 1 Thomas J. Watson Laboratories of Applied Physics California Institute

More information

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix O.Kiriyenko,1, W.Hergert 1, S.Wackerow 1, M.Beleites 1 and

More information

Dielectric Optical Cloak

Dielectric Optical Cloak Dielectric Optical Cloak Jason Valentine 1 *, Jensen Li 1 *, Thomas Zentgraf 1 *, Guy Bartal 1 and Xiang Zhang 1,2 1 NSF Nano-scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University

More information

Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b

Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b a CREOL, The College of Optics and Photonics, University of Central Florida,

More information

Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit Mat. Res. Soc. Symp. Proc. Vol. 722 2002 Materials Research Society Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

More information

l* = 109 nm Glycerol Clean Water Glycerol l = 108 nm Wavelength (nm)

l* = 109 nm Glycerol Clean Water Glycerol l = 108 nm Wavelength (nm) 1/ (rad -1 ) Normalized extinction a Clean 0.8 Water l* = 109 nm 0.6 Glycerol b 2.0 1.5 500 600 700 800 900 Clean Water 0.5 Glycerol l = 108 nm 630 660 690 720 750 Supplementary Figure 1. Refractive index

More information

PERTURBATION THEORY IN THE DESIGN OF DEGEN- ERATE RECTANGULAR DIELECTRIC RESONATORS

PERTURBATION THEORY IN THE DESIGN OF DEGEN- ERATE RECTANGULAR DIELECTRIC RESONATORS Progress In Electromagnetics Research B, Vol. 44, 1 29, 2012 PERTURBATION THEORY IN THE DESIGN OF DEGEN- ERATE RECTANGULAR DIELECTRIC RESONATORS L. K. Warne, L. I. Basilio *, W. L. Langston, W. A. Johnson,

More information

PHYSICAL REVIEW B 71,

PHYSICAL REVIEW B 71, Coupling of electromagnetic waves and superlattice vibrations in a piezomagnetic superlattice: Creation of a polariton through the piezomagnetic effect H. Liu, S. N. Zhu, Z. G. Dong, Y. Y. Zhu, Y. F. Chen,

More information

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays CHAPTER 4 Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays 4.1 Introduction In Chapter 3, the noble bimetallic alloy nanosphere (BANS) of Ag 1-x Cu x at a particular composition

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Demonstration of Near-Infrared Negative-Index Materials

Demonstration of Near-Infrared Negative-Index Materials Demonstration of Near-Infrared Negative-Index Materials Shuang Zhang 1, Wenjun Fan 1, N. C. Panoiu 2, K. J. Malloy 1, R. M. Osgood 2 and S. R. J. Brueck 2 1. Center for High Technology Materials and Department

More information

Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays.

Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays. Mat. Res. Soc. Symp. Proc. Vol. 797 2004 Materials Research Society W4.6.1 Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays. L. A. Sweatlock 1, J. J. Penninkhof 2, S. A.

More information

Progress In Electromagnetics Research, PIER 97, , 2009

Progress In Electromagnetics Research, PIER 97, , 2009 Progress In Electromagnetics Research, PIER 97, 407 416, 2009 PRACTICAL LIMITATIONS OF AN INVISIBILITY CLOAK B. L. Zhang Research Laboratory of Electronics Massachusetts Institute of Technology MA 02139,

More information

Asymmetric Chiral Metamaterial Multi-Band Circular Polarizer Based on Combined Twisted Double-Gap Split-Ring Resonators

Asymmetric Chiral Metamaterial Multi-Band Circular Polarizer Based on Combined Twisted Double-Gap Split-Ring Resonators Progress In Electromagnetics Research C, Vol. 49, 141 147, 2014 Asymmetric Chiral Metamaterial Multi-Band Circular Polarizer Based on Combined Twisted Double-Gap Split-Ring Resonators Wenshan Yuan 1, Honglei

More information

Terahertz electric response of fractal metamaterial structures

Terahertz electric response of fractal metamaterial structures Terahertz electric response of fractal metamaterial structures F. Miyamaru, 1 Y. Saito, 1 M. W. Takeda, 1 B. Hou, 2 L. Liu, 2 W. Wen, 2 and P. Sheng 2 1 Department of Physics, Faculty of Science, Shinshu

More information

Characterization of Individual Magnetic Nanoparticles in Solution by Double Nanohole Optical Tweezers

Characterization of Individual Magnetic Nanoparticles in Solution by Double Nanohole Optical Tweezers Supporting information for Characterization of Individual Magnetic Nanoparticles in Solution by Double Nanohole Optical Tweezers Haitian Xu, Steven Jones, Byoung-Chul Choi and Reuven Gordon,* Department

More information

Progress In Electromagnetics Research, Vol. 134, , 2013 A WIDEBAND AND DUAL-RESONANT TERAHERTZ METAMATERIAL USING A MODIFIED SRR STRUC- TURE

Progress In Electromagnetics Research, Vol. 134, , 2013 A WIDEBAND AND DUAL-RESONANT TERAHERTZ METAMATERIAL USING A MODIFIED SRR STRUC- TURE Progress In Electromagnetics Research, Vol. 134, 289 299, 2013 A WIDEBAND AND DUAL-RESONANT TERAHERTZ METAMATERIAL USING A MODIFIED SRR STRUC- TURE Wanyi Guo 1, 2, *, Lianxing He 1, Biao Li 3, Teng Teng

More information

Fabrication of Large-Area Patterned Nanostructures for Optical Applications by Nanoskiving

Fabrication of Large-Area Patterned Nanostructures for Optical Applications by Nanoskiving Fabrication of Large-Area Patterned Nanostructures for Optical Applications by Nanoskiving NANO LETTERS 2007 Vol. 7, No. 9 2800-2805 Qiaobing Xu, Jiming Bao, Robert M. Rioux, Raquel Perez-Castillejos,

More information

H. S. Chen, L. Huang, and X. X. Cheng The Electromagnetics Academy at Zhejiang University Zhejiang University, Hangzhou , China

H. S. Chen, L. Huang, and X. X. Cheng The Electromagnetics Academy at Zhejiang University Zhejiang University, Hangzhou , China Progress In Electromagnetics Research, Vol. 5, 37 326, 2 MAGNETIC PROPERTIES OF METAMATERIAL COMPOSED OF CLOSED RINGS H. S. Chen, L. Huang, and X. X. Cheng The Electromagnetics Academy at Zhejiang University

More information

TUNABLE METAMATERIAL DESIGN COMPOSED OF TRIANGULAR SPLIT RING RESONATOR AND WIRE STRIP FOR S- AND C- MICROWAVE BANDS

TUNABLE METAMATERIAL DESIGN COMPOSED OF TRIANGULAR SPLIT RING RESONATOR AND WIRE STRIP FOR S- AND C- MICROWAVE BANDS Progress In Electromagnetics Research B, Vol. 22, 341 357, 2010 TUNABLE METAMATERIAL DESIGN COMPOSED OF TRIANGULAR SPLIT RING RESONATOR AND WIRE STRIP FOR S- AND C- MICROWAVE BANDS C. Sabah Johann Wolfgang

More information

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots Towards the Lasing Spaser: Controlling Metamaterial Optical Response with Semiconductor Quantum Dots E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev,, Optoelectronics Research Centre, University

More information

Cloaking The Road to Realization

Cloaking The Road to Realization Cloaking The Road to Realization by Reuven Shavit Electrical and Computer Engineering Department Ben-Gurion University of the Negev 1 Outline Introduction Transformation Optics Laplace s Equation- Transformation

More information

Scattering cross-section (µm 2 )

Scattering cross-section (µm 2 ) Supplementary Figures Scattering cross-section (µm 2 ).16.14.12.1.8.6.4.2 Total scattering Electric dipole, a E (1,1) Magnetic dipole, a M (1,1) Magnetic quardupole, a M (2,1). 44 48 52 56 Wavelength (nm)

More information

Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial

Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial Durdu Ö. Güney, 1,* Thomas Koschny, 1,2 and Costas M. Soukoulis 1,2 1 Ames National Laboratory, USDOE and Department

More information

Tuning of superconducting niobium nitride terahertz metamaterials

Tuning of superconducting niobium nitride terahertz metamaterials Tuning of superconducting niobium nitride terahertz metamaterials Jingbo Wu, Biaobing Jin,* Yuhua Xue, Caihong Zhang, Hao Dai, Labao Zhang, Chunhai Cao, Lin Kang, Weiwei Xu, Jian Chen and Peiheng Wu Research

More information

Electromagnetic Metamaterials

Electromagnetic Metamaterials Electromagnetic Metamaterials Dr. Alkim Akyurtlu Center for Electromagnetic Materials and Optical Systems University of Massachusetts Lowell September 19, 2006 Objective Outline Background on Metamaterials

More information

Experiments on second- and third-harmonic generation from magnetic metamaterials

Experiments on second- and third-harmonic generation from magnetic metamaterials First published in: Experiments on second- and third-harmonic generation from magnetic metamaterials Matthias W. Klein and Martin Wegener Institut für Angewandte Physik and DFG-Center for Functional Nanostructures

More information

Super-reflection and Cloaking Based on Zero Index Metamaterial

Super-reflection and Cloaking Based on Zero Index Metamaterial Super-reflection and Cloaking Based on Zero Index Metamaterial Jiaming Hao, Wei Yan, and Min Qiu Photonics and Microwave ngineering, Royal Institute of Technology (KTH), lectrum 9, 164 4, Kista, Sweden

More information

Split Cylinder Resonators with a New Magnetic Resonance in the Midinfrared under Normal Incidence

Split Cylinder Resonators with a New Magnetic Resonance in the Midinfrared under Normal Incidence Split Cylinder Resonators with a New Magnetic Resonance in the Midinfrared under Normal Incidence Sher-Yi Chiam, Andrew A. Bettiol, JiaGuang Han, and Frank Watt Department of Physics, Science Drive 3,

More information

Stand-up magnetic metamaterials at terahertz frequencies

Stand-up magnetic metamaterials at terahertz frequencies Stand-up magnetic metamaterials at terahertz frequencies Kebin Fan, Andrew C. Strikwerda, Hu Tao, Xin Zhang,,3 and Richard D. Averitt,4 Boston University, Department of Mechanical Engineering, Cummington

More information

SCATTERING CROSS SECTION OF A META-SPHERE

SCATTERING CROSS SECTION OF A META-SPHERE Progress In Electromagnetics Research Letters, Vol. 9, 85 91, 009 SCATTERING CROSS SECTION OF A META-SPHERE A. Alexopoulos Electronic Warfare and Radar Division Defence Science and Technology Organisation

More information

Plasmonic properties and sizing of core-shell Cu-Cu 2 O nanoparticles fabricated by femtosecond laser ablation in liquids ABSTRACT

Plasmonic properties and sizing of core-shell Cu-Cu 2 O nanoparticles fabricated by femtosecond laser ablation in liquids ABSTRACT Plasmonic properties and sizing of core-shell Cu-Cu O nanoparticles fabricated by femtosecond laser ablation in liquids J. M. J. Santillán 1, F. A. Videla 1,, D. C. Schinca 1, and L. B. Scaffardi 1, 1

More information

PHYSICAL REVIEW B 77,

PHYSICAL REVIEW B 77, Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity D. Y. Lu, 1 H. Liu, 1, * T. Li, 1 S. M. Wang,

More information

Optical Properties of Left-Handed Materials by Nathaniel Ferraro 01

Optical Properties of Left-Handed Materials by Nathaniel Ferraro 01 Optical Properties of Left-Handed Materials by Nathaniel Ferraro 1 Abstract Recently materials with the unusual property of having a simultaneously negative permeability and permittivity have been tested

More information

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL. Title Polarization characteristics of photonic crystal fib Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori CitationOptics Express, 19(4): 3799-3808 Issue Date 2011-02-14 Doc URL http://hdl.handle.net/2115/45257

More information

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures Zhi-Yuan Li Optical Physics Laboratory, Institute of Physics, CAS Beijing 18, China January 5-9, 7, Fudan University, Shanghai Challenges

More information

Supporting Information

Supporting Information Supporting Information Improved Working Model for Interpreting the Excitation Wavelength- and Fluence-Dependent Response in Pulsed aser-induced Size Reduction of Aqueous Gold Nanoparticles Daniel Werner

More information

Mechanism of the metallic metamaterials coupled to the gain material

Mechanism of the metallic metamaterials coupled to the gain material Mechanism of the metallic metamaterials coupled to the gain material Zhixiang Huang, 1,2 Sotiris Droulias, 3* Thomas Koschny, 1 and Costas M. Soukoulis 1,3 1 Department of Physics and Astronomy and Ames

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information for Biocompatible and Functionalized Silk Opals Sunghwan Kim, Alexander N. Mitropoulos, Joshua D. Spitzberg, Hu Tao, David L. Kaplan, and Fiorenzo G. Omenetto (*) (*) To whom

More information

Frequency Dependence Effective Refractive Index of Meta Materials by Effective Medium Theory

Frequency Dependence Effective Refractive Index of Meta Materials by Effective Medium Theory Advance in Electronic and Electric Engineering. ISSN 31-197, Volume 3, Number (13), pp. 179-184 Research India Publications http://www.ripublication.com/aeee.htm Frequency Dependence Effective Refractive

More information

Supplementary Figure 1 SEM images and corresponding Fourier Transformation of nanoparticle arrays before pattern transfer (left), after pattern

Supplementary Figure 1 SEM images and corresponding Fourier Transformation of nanoparticle arrays before pattern transfer (left), after pattern Supplementary Figure 1 SEM images and corresponding Fourier Transformation of nanoparticle arrays before pattern transfer (left), after pattern transfer but before pattern shrinkage (middle), and after

More information

Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements

Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements T. Driscoll and D. N. Basov Physics Department, University of California-San Diego, La Jolla, California

More information

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators Chapter 6 Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators 6.1 Introduction Researchers have devoted considerable effort to enhancing light emission from semiconductors

More information

[Electronic Supplementary Information]

[Electronic Supplementary Information] [Electronic Supplementary Information] Tuning the Interparticle Distance in Nanoparticle Assemblies in Suspension via DNA-Triplex Formation: Correlation Between Plasmonic and Surface-enhanced Raman Scattering

More information

FDTD Analysis on Optical Confinement Structure with Electromagnetic Metamaterial

FDTD Analysis on Optical Confinement Structure with Electromagnetic Metamaterial Memoirs of the Faculty of Engineering, Okayama University, Vol. 44, pp. 1-6, January 21 FDTD Analysis on Optical Confinement Structure with Electromagnetic Metamaterial Shinji NAGAI, Ryosuke UMEDA, Kenji

More information

of Gold Nanoparticles

of Gold Nanoparticles 2 Behaviour of Gold Nanoparticles The behaviour of matter at the nanoscale is often unexpected and can be completely different from that of bulk materials. This has stimulated the study and the development

More information

Modulation of Negative Index Metamaterials in the Near-IR Range

Modulation of Negative Index Metamaterials in the Near-IR Range Modulation of Negative Index Metamaterials in the Near-IR Range Evgenia Kim (1), Wei Wu ( 2) (2, Ekaterina Ponizovskaya ), Zhaoning Yu ( 2) ( 2, Alexander M. Bratkovsky ) (2), Shih-Yuang Wang, R. Stanley

More information

Determining the effective electromagnetic properties of negative-refractive-index metamaterials from internal fields

Determining the effective electromagnetic properties of negative-refractive-index metamaterials from internal fields Determining the effective electromagnetic properties of negative-refractive-index metamaterials from internal fields Bogdan-Ioan Popa* and Steven A. Cummer Department of Electrical and Computer Engineering,

More information