Symmetry Breaking and Optical Negative Index of Closed Nanorings

Size: px
Start display at page:

Download "Symmetry Breaking and Optical Negative Index of Closed Nanorings"

Transcription

1 Supplementary Information Symmetry Breaking and Optical Negative Index of Closed Nanorings Boubacar Kanté 1, Yong-Shik Park 1, Kevin O Brien 1, Daniel Shuldman 1, Norberto D. Lanzillotti Kimura 1, Zi Jing Wong 1, Xiaobo Yin 1, and Xiang Zhang 1,2 1 NSF Nanoscale Science and Engineering Centre, 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA 2 Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA

2 Supplementary Figure S1 Near fields, remittances, effective indices, and impedance of the coupled nanorings. Simulation results for two layers of coupled nanorings (interlayer 50nm) as well as corresponding mode pattern (E z component of the total electric field at the bottom surface of the top and bottom rings) around telecommunication wavelength. The structures being polarization independent due to symmetry considerations (see Figure S2 to S5), calculations presented here are performed for an electric field parallel to one side of the rings. ω - s=50, aligned, and ω + s=50, aligned correspond to the anti-symmetric and symmetric modes respectively when the rings are aligned, and, ω 3 is a multipole. ω - s=50, shifted, and ω + s=50, shifted correspond to the symmetric and anti-symmetric modes respectively when the rings are fully shifted. (a) and (b): Remittances (Transmission, red, Reflection, black and Absorption blue) of aligned and shifted nanorings. The dotted lines are phases (transmission, red and, reflection, black) in degree. (c) and (d): Near field pattern at transmission dips indicated on the top and

3 bottom rings. The white arrows indicate the effective electric dipole on each ring, and reveal the symmetric (electric dipole moment) and antisymmetric (magnetic dipole moment) nature of the modes. (e) Effective index when the nanorings are aligned: the index is always positive. (f) Effective index when the nanorings are fully shifted: a negative index appears around the antisymmetric mode. (g) Real (continuous line) and imaginary (dashed lines) parts of the permittivity (blue) and the permeability (black). The inset on the graph (bottom right and corner) shows that the permittivity and permeability are simultaneously negative around 1.5μm. (h) Real and imaginary parts of the normalized impedance. The energy density in the structure can be estimated for a dispersive medium from the relation U = 1 4 d( ωεε ) E dω d( ωµµ 0 + dω 0 2 ) H 2 (see ref. 2 of the paper). Supplementary Figure S2 Polarization resolved measurements for 2 rings layer chess metamaterial. The last layer of rings is covered by SU-8. Angles in degree with respect to one side of the rings.

4 Supplementary Figure S3 Polarization resolved measurements for 3 rings layer chess metamaterial. The last layer of rings is covered by SU-8. Angles in degree with respect to one side of the rings. Supplementary Figure S4 Polarization resolved measurements for 4 rings layer chess metamaterial. The last layer of rings is covered by SU-8. Angles in degree with respect to one side of the rings.

5 Supplementary Figure S5 Polarization resolved measurements for 5 rings layer chess metamaterial. The last layer of rings is covered by SU-8. Angles in degree with respect to one side of the rings. Supplementary Figure S6 Side view of the two layer sample. Schematic (plane perpendicular to the rings plane) of the two layer sample measured in Fig. 2.

6 Supplementary Figure S7 Polarization resolved measurements for 2rings layer without SU-8 on top of the last layer of rings. This corresponds to the data of the sample measured on Fig. 2 of the paper. The antisymmetric mode occurs around 1.9μm. Angles are in degree with respect to one side of the rings.

7 Supplementary Figure S8 Broadband phase measurement of the multilayer (4 rings layer) with a white light Mach Zehnder interferometer coupled to a spectrometer. The cut-off of the spectrometer is at 1.7μm. Experimental normal incidence transmission (a), transmission phase (c) and index (e). Simulated normal incidence transmission (b), transmission phase (d) and effective index (f). The arrows indicate the zero crossing wavelengths for the phase (index). Repeated measurements gave an error in phase smaller than 0.1 radians, corresponding to an index variation smaller than ± Error bars are added to Fig. S10 (e). The transmission phase crosses zero at the dip of the transmission where the index transition from positive to negative values. The effective index around the transition point is simply defined as n eff =-Φ/k 0 d. Good qualitative agreement is found between experiment and theory and in particular, the phase (index) crosses zero at the dip of the transmission. Negative index has thus been directly observed from experiment in a multilayer metamaterial. To lift phase ambiguities, the interferogram can be measured around a wavelength where the index is known to be close to zero (from numerical simulations) with in phase interferograms and the wavelength is varied so as to observe the continuous variation of the delays. Comparison of the trends from the anchor point (zero phase) with simulations allows us to determine whether we have a phase lead or lag.

8 Supplementary Figure S9 Transmission spectra for 10, 20, 30, and 40 layers of the rings. The broadband negative index band for rings 5 layers in the paper is already in coincidence with higher number of layers. A Drude model is used in simulations with the following parameters: ω p =1.37e16s -1 (plasma frequency) and ω c =8.143e13s -1 (collision frequency). Increasing the number of layer leads to the formation of the band as shown on Figure S11.

9 Supplementary Figure S10 Transmission spectrum of 20 layers of rings resonators in the aligned configuration (red curve) and with the broken symmetry introduced in the paper (black curve). In the first case, a bandgap is formed in the three dimensional system. In the second case, an ultra-broad Fano induced passband is observed between 1.3μm and 2.3μm with negative index (see paper). This figure demonstrates the fundamental role of symmetry breaking in inducing the negative index band. Supplementary Figure S11 Band formation when the number of layer is increased. The fully symmetric mode is always the lower energy mode, and, the fully antisymmetric mode is the higher energy mode (for the shifted rings). Partially symmetric and antisymmetric modes have intermediate energy levels. Energy increases from bottom to top.

10 Supplementary Figure S12 Dispersion and figure of merit. Effective parameters (real and imaginary parts) for 10 layers of rings (a) as well as corresponding figure of merit (b) demonstrating the low loss and broadband behavior of our structure. In thin metamaterials, the localized modes reradiate in free space and the radiation loss is high. In thicker samples, the loss is decreased because the radiation from different rings cancelled inside the structure when they are out of phase and leads to decreased radiation loss of the bulk metamaterial. For a fair comparison with the fishnet structure in term of negative index band, we calculated the effective index for 10 metallic layers as reported in ref. 14 of the paper (Valentine et al.). While the index was negative over a band of about 300nm in ref. 14, the negative index of the chess metamaterial spans over about an octave on a band of about 1000nm around 1.5μm resulting in an ultra-broad negative index band with low loss. The low overall transmission is due to the impedance mismatch between the incident medium (air) and the metamaterial.

11 Supplementary Figure S13 Impedance and remittances of the bulk chess metamaterial. a, Normalized impedance for 20 layers of rings presented in Fig. 5c as well as, b, the corresponding transmission and reflection coefficients. The high reflection coefficient (small transmission coefficient) is due to impedance mismatch. Supplementary Figure S14 Dispersion of shifted and aligned rings. a, Calculated dispersion curves of an infinite array of chess metamaterials around the frequency of interest. The negative index band can be observed. b, Dispersion curves of an infinite array of aligned closed rings, no negative index band is observed. In the two cases, the metallic structures are embedded in a SU-8 background. On both graphs, the horizontal axis is the phase advance per unit cell or kd, where k is the wavevector, and, d is the thickness of the unit cell.

Demonstration of Near-Infrared Negative-Index Materials

Demonstration of Near-Infrared Negative-Index Materials Demonstration of Near-Infrared Negative-Index Materials Shuang Zhang 1, Wenjun Fan 1, N. C. Panoiu 2, K. J. Malloy 1, R. M. Osgood 2 and S. R. J. Brueck 2 1. Center for High Technology Materials and Department

More information

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0. Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.6 H 0.4 colloids. The standard derivation is 4.4 %. Supplementary

More information

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Nanoscale optical circuits: controlling light using localized surface plasmon resonances Nanoscale optical circuits: controlling light using localized surface plasmon resonances T. J. Davis, D. E. Gómez and K. C. Vernon CSIRO Materials Science and Engineering Localized surface plasmon (LSP)

More information

Supplementary Information for Negative refraction in semiconductor metamaterials

Supplementary Information for Negative refraction in semiconductor metamaterials Supplementary Information for Negative refraction in semiconductor metamaterials A.J. Hoffman *, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Poldolskiy, E.E. Narimanov, D.L. Sivco, and C.

More information

A Dielectric Invisibility Carpet

A Dielectric Invisibility Carpet A Dielectric Invisibility Carpet Jensen Li Prof. Xiang Zhang s Research Group Nanoscale Science and Engineering Center (NSEC) University of California at Berkeley, USA CLK08-09/22/2008 Presented at Center

More information

Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients

Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients PHYSICAL REVIEW B, VOLUME 65, 195104 Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients D. R. Smith* and S. Schultz Department of Physics,

More information

Negative Index of Refraction in Optical Metamaterials

Negative Index of Refraction in Optical Metamaterials 1 Negative Index of Refraction in Optical Metamaterials V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev School of Electrical and Computer Engineering,

More information

Negative refractive index response of weakly and strongly coupled optical metamaterials.

Negative refractive index response of weakly and strongly coupled optical metamaterials. Negative refractive index response of weakly and strongly coupled optical metamaterials. Jiangfeng Zhou, 1 Thomas Koschny, 1, Maria Kafesaki, and Costas M. Soukoulis 1, 1 Ames Laboratory and Department

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION On-chip zero-index metamaterials Yang Li 1, Shota Kita 1, Philip Muñoz 1, Orad Reshef 1, Daryl I. Vulis 1, Mei Yin 1,, Marko Lončar 1 *, and Eric Mazur 1,3 * Supplementary Information: Materials and Methods

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature09776 Supplementary Information for Unnaturally high refractive index terahertz metamaterial Muhan Choi, Seung Hoon Lee, Yushin Kim, Seung Beom Kang, Jonghwa Shin, Min Hwan Kwak, Kwang-Young

More information

An efficient way to reduce losses of left-handed metamaterials

An efficient way to reduce losses of left-handed metamaterials An efficient way to reduce losses of left-handed metamaterials Jiangfeng Zhou 1,2,, Thomas Koschny 1,3 and Costas M. Soukoulis 1,3 1 Ames Laboratory and Department of Physics and Astronomy,Iowa State University,

More information

Modulation of Negative Index Metamaterials in the Near-IR Range

Modulation of Negative Index Metamaterials in the Near-IR Range Modulation of Negative Index Metamaterials in the Near-IR Range Evgenia Kim (1), Wei Wu ( 2) (2, Ekaterina Ponizovskaya ), Zhaoning Yu ( 2) ( 2, Alexander M. Bratkovsky ) (2), Shih-Yuang Wang, R. Stanley

More information

Photonics Beyond Diffraction Limit:

Photonics Beyond Diffraction Limit: Photonics Beyond Diffraction Limit: Plasmon Cavity, Waveguide and Lasers Xiang Zhang University of California, Berkeley Light-Matter Interaction: Electrons and Photons Photons Visible / IR ~ 1 m Electrons

More information

sgsp agsp W=20nm W=50nm Re(n eff (e) } Re{E z Im{E x Supplementary Figure 1: Gap surface plasmon modes in MIM waveguides.

sgsp agsp W=20nm W=50nm Re(n eff (e) } Re{E z Im{E x Supplementary Figure 1: Gap surface plasmon modes in MIM waveguides. (a) 2.4 (b) (c) W Au y Electric field (a.u) x SiO 2 (d) y Au sgsp x Energy (ev) 2. 1.6 agsp W=5nm W=5nm 1.2 1 2 3 4.1.1 1 1 Re(n eff ) -1-5 5 1 x (nm) W = 2nm E = 2eV Im{E x } Re{E z } sgsp Electric field

More information

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES Tomáš Váry, Juraj Chlpík, Peter Markoš ÚJFI, FEI STU, Bratislava E-mail: tomas.vary@stuba.sk Received xx April 2012; accepted xx May 2012. 1.

More information

Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation. in a 2D Crystal

Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation. in a 2D Crystal Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation in a 2D Crystal Mervin Zhao 1, 2, Ziliang Ye 1, 2, Ryuji Suzuki 3, 4, Yu Ye 1, 2, Hanyu Zhu 1, Jun Xiao 1, Yuan Wang 1,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nPHYS1804 Supplementary Information J. Zhu 1, J. Christensen 2, J. Jung 2,3, L. Martin-Moreno 4, X. Yin 1, L. Fok 1, X. Zhang 1 and F. J. Garcia-Vidal 2 1 NSF Nano-scale

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/1/e151117/dc1 Supplementary Materials for Quantum Hall effect in a bulk antiferromagnet EuMni2 with magnetically confined two-dimensional Dirac fermions Hidetoshi

More information

Supporting Information

Supporting Information Supporting Information Light emission near a gradient metasurface Leonard C. Kogos and Roberto Paiella Department of Electrical and Computer Engineering and Photonics Center, Boston University, Boston,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Nano-scale plasmonic motors driven by light Ming Liu 1, Thomas Zentgraf 1, Yongmin Liu 1, Guy Bartal 1 & Xiang Zhang 1,2 1 NSF Nano-scale Science and Engineering Center (NSEC),

More information

Supplementary Figure 1 SEM images and corresponding Fourier Transformation of nanoparticle arrays before pattern transfer (left), after pattern

Supplementary Figure 1 SEM images and corresponding Fourier Transformation of nanoparticle arrays before pattern transfer (left), after pattern Supplementary Figure 1 SEM images and corresponding Fourier Transformation of nanoparticle arrays before pattern transfer (left), after pattern transfer but before pattern shrinkage (middle), and after

More information

Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients

Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients D. R. Smith *, S. Schultz Department of Physics, University of California, San Diego,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information I. Schematic representation of the zero- n superlattices Schematic representation of a superlattice with 3 superperiods is shown in Fig. S1. The superlattice

More information

Optical Properties of Left-Handed Materials by Nathaniel Ferraro 01

Optical Properties of Left-Handed Materials by Nathaniel Ferraro 01 Optical Properties of Left-Handed Materials by Nathaniel Ferraro 1 Abstract Recently materials with the unusual property of having a simultaneously negative permeability and permittivity have been tested

More information

Multiple Fano Resonances Structure for Terahertz Applications

Multiple Fano Resonances Structure for Terahertz Applications Progress In Electromagnetics Research Letters, Vol. 50, 1 6, 2014 Multiple Fano Resonances Structure for Terahertz Applications Hadi Amarloo *, Daniel M. Hailu, and Safieddin Safavi-Naeini Abstract A new

More information

Reply to Comment on Negative refractive index in artificial. metamaterials (preprint arxiv.org:physics/ )

Reply to Comment on Negative refractive index in artificial. metamaterials (preprint arxiv.org:physics/ ) Reply to Comment on Negative refractive index in artificial metamaterials (preprint arxiv.org:physics/0609234) A. N. Grigorenko, Department of Physics and Astronomy, University of Manchester, Manchester,

More information

Towards optical left-handed metamaterials

Towards optical left-handed metamaterials FORTH Tomorrow: Modelling approaches for metamaterials Towards optical left-handed metamaterials M. Kafesaki, R. Penciu, Th. Koschny, P. Tassin, E. N. Economou and C. M. Soukoulis Foundation for Research

More information

Supplementary information for. plasmonic nanorods interacting with J-aggregates.

Supplementary information for. plasmonic nanorods interacting with J-aggregates. Supplementary information for Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. by Gülis Zengin, Göran Johansson, Peter Johansson, Tomasz J. Antosiewicz,

More information

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL. Title Polarization characteristics of photonic crystal fib Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori CitationOptics Express, 19(4): 3799-3808 Issue Date 2011-02-14 Doc URL http://hdl.handle.net/2115/45257

More information

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida Optical and Photonic Glasses : Non-Linear Optical Glasses III Metal Doped Nano-Glasses Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Metal-doped

More information

Study of left-handed materials

Study of left-handed materials Retrospective Theses and Dissertations 2008 Study of left-handed materials Jiangfeng Zhou Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/rtd Part of the Condensed

More information

A Broadband Flexible Metamaterial Absorber Based on Double Resonance

A Broadband Flexible Metamaterial Absorber Based on Double Resonance Progress In Electromagnetics Research Letters, Vol. 46, 73 78, 2014 A Broadband Flexible Metamaterial Absorber Based on Double Resonance ong-min Lee* Abstract We present a broadband microwave metamaterial

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Important announcements Homework #1 is due. Homework #2 is assigned, due

More information

Flute-Model Acoustic Metamaterials with Simultaneously. Negative Bulk Modulus and Mass Density

Flute-Model Acoustic Metamaterials with Simultaneously. Negative Bulk Modulus and Mass Density Flute-Model Acoustic Metamaterials with Simultaneously Negative Bulk Modulus and Mass Density H. C. Zeng, C. R. Luo, H. J. Chen, S. L. Zhai and X. P. Zhao * Smart Materials Laboratory, Department of Applied

More information

Absorption suppression in photonic crystals

Absorption suppression in photonic crystals PHYSICAL REVIEW B 77, 442 28 Absorption suppression in photonic crystals A. Figotin and I. Vitebskiy Department of Mathematics, University of California at Irvine, Irvine, California 92697, USA Received

More information

Supplementary Material for. Resonant Transparency and Non-Trivial Excitations in Toroidal Metamaterials

Supplementary Material for. Resonant Transparency and Non-Trivial Excitations in Toroidal Metamaterials Supplementary Material for Resonant Transparency and Non-Trivial Excitations in Toroidal Metamaterials V. A. Fedotov 1, A. V. Rogacheva 1, V. Savinov 1, D. P. Tsai 2,3, N. I. Zheludev 1, 4 1 Optoelectronics

More information

Supplementary Figure 1. Schematics of light transmission and reflection from a slab confined between

Supplementary Figure 1. Schematics of light transmission and reflection from a slab confined between Supplementary Figures: Supplementary Figure. Schematics of light transmission and reflection from a slab confined between two infinite media. Supplementary Figure. Reflectivity of a magneto-electric slab

More information

Optical properties of spherical and anisotropic gold shell colloids

Optical properties of spherical and anisotropic gold shell colloids 8 Optical properties of spherical and anisotropic gold shell colloids Core/shell colloids consisting of a metal shell and a dielectric core are known for their special optical properties. The surface plasmon

More information

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium with thickness L. Supplementary Figure Measurement of

More information

Supplementary Figure 1: Determination of the ratio between laser photons and photons from an ensemble of SiV - centres under Resonance Fluorescence.

Supplementary Figure 1: Determination of the ratio between laser photons and photons from an ensemble of SiV - centres under Resonance Fluorescence. Supplementary Figure 1: Determination of the ratio between laser photons and photons from an ensemble of SiV - centres under Resonance Fluorescence. a To determine the luminescence intensity in each transition

More information

NOVEL BROADBAND TERAHERTZ NEGATIVE REFRACTIVE INDEX METAMATERIALS: ANALYSIS AND EXPERIMENT

NOVEL BROADBAND TERAHERTZ NEGATIVE REFRACTIVE INDEX METAMATERIALS: ANALYSIS AND EXPERIMENT Progress In Electromagnetics Research, PIER 64, 25 218, 26 NOVEL BROADBAND TERAHERTZ NEGATIVE REFRACTIVE INDEX METAMATERIALS: ANALYSIS AND EXPERIMENT N. Wongkasem and A. Akyurtlu Department of Electrical

More information

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Supplemental Material L. Shi, T. K. Hakala, H. T. Rekola, J. -P.

More information

Directed Sub-Wavelength Imaging Using a Layered Metal-Dielectric System

Directed Sub-Wavelength Imaging Using a Layered Metal-Dielectric System Directed Sub-Wavelength Imaging Using a Layered Metal-Dielectric System Wood, B. and Pendry, J. B. Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BW, United Kingdom Tsai, D. P.

More information

Electromagnetic Metamaterials

Electromagnetic Metamaterials Electromagnetic Metamaterials Dr. Alkim Akyurtlu Center for Electromagnetic Materials and Optical Systems University of Massachusetts Lowell September 19, 2006 Objective Outline Background on Metamaterials

More information

Electromagnetic Metamaterials

Electromagnetic Metamaterials Photonic Bandgap and Electromagnetic Metamaterials Andrew Kirk andrew.kirk@mcgill.ca ca Department of Electrical and Computer Engineering McGill Institute for Advanced Materials A Kirk 11/24/2008 Photonic

More information

Characterization of Left-Handed Materials

Characterization of Left-Handed Materials Characterization of Left-Handed Materials Massachusetts Institute of Technology 6.635 lecture notes 1 Introduction 1. How are they realized? 2. Why the denomination Left-Handed? 3. What are their properties?

More information

Dr. Tao Li

Dr. Tao Li Tao Li taoli@nju.edu.cn Nat. Lab. of Solid State Microstructures Department of Materials Science and Engineering Nanjing University Concepts Basic principles Surface Plasmon Metamaterial Summary Light

More information

Author(s) Tamayama, Y; Nakanishi, T; Sugiyama. Citation PHYSICAL REVIEW B (2006), 73(19)

Author(s) Tamayama, Y; Nakanishi, T; Sugiyama. Citation PHYSICAL REVIEW B (2006), 73(19) Observation of Brewster's effect fo Titleelectromagnetic waves in metamateri theory Author(s) Tamayama, Y; Nakanishi, T; Sugiyama Citation PHYSICAL REVIEW B (2006), 73(19) Issue Date 2006-05 URL http://hdl.handle.net/2433/39884

More information

arxiv: v1 [physics.optics] 17 Jan 2013

arxiv: v1 [physics.optics] 17 Jan 2013 Three Dimensional Broadband Tunable Terahertz Metamaterials Kebin Fan,1 Andrew C. Strikwerda,2 Xin Zhang,1, and Richard D. Averitt2, arxiv:1301.3977v1 [physics.optics] 17 Jan 2013 1 Department of Mechanical

More information

Structural Control of Metamaterial Oscillator Strength and Electric Field Enhancement at Terahertz Frequencies

Structural Control of Metamaterial Oscillator Strength and Electric Field Enhancement at Terahertz Frequencies Structural Control of Metamaterial Oscillator Strength and Electric Field Enhancement at Terahertz Frequencies G. R. Keiser 1*, H. R. Seren 2, A.C. Strikwerda 1,3, X. Zhang 2, and R. D. Averitt 1,4 1 Boston

More information

Tooth-shaped plasmonic waveguide filters with nanometeric. sizes

Tooth-shaped plasmonic waveguide filters with nanometeric. sizes Tooth-shaped plasmonic waveguide filters with nanometeric sizes Xian-Shi LIN and Xu-Guang HUANG * Laboratory of Photonic Information Technology, South China Normal University, Guangzhou, 510006, China

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Novel Silica Surface Charge Density Mediated Control of the Optical Properties of Embedded Optically

More information

Investigation of one-dimensional photonic bandgap structures containing lossy double-negative metamaterials through the Bloch impedance

Investigation of one-dimensional photonic bandgap structures containing lossy double-negative metamaterials through the Bloch impedance Shi et al. Vol. 3, No. 6 / June 23 / J. Opt. Soc. Am. B 473 Investigation of one-dimensional photonic bandgap structures containing lossy double-negative metamaterials through the Bloch impedance Fenghua

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES Supplementary Figure 1. Projected band structures for different coupling strengths. (a) The non-dispersive quasi-energy diagrams and (b) projected band structures for constant coupling

More information

Supplementary Figure 1 Simulations of the lm thickness dependence of plasmon modes on lms or disks on a 30 nm thick Si 3 N 4 substrate.

Supplementary Figure 1 Simulations of the lm thickness dependence of plasmon modes on lms or disks on a 30 nm thick Si 3 N 4 substrate. Supplementary Figure 1 Simulations of the lm thickness dependence of plasmon modes on lms or disks on a 30 nm thick Si 3 N 4 substrate. (a) Simulated plasmon energy at k=30 µm 1 for the surface plasmon

More information

90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity

90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity 90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity Yuqian Ye 1 and Sailing He 1,2,* 1 Centre for Optical and Electromagnetic Research, State Key Laboratory

More information

SCATTERING CROSS SECTION OF A META-SPHERE

SCATTERING CROSS SECTION OF A META-SPHERE Progress In Electromagnetics Research Letters, Vol. 9, 85 91, 009 SCATTERING CROSS SECTION OF A META-SPHERE A. Alexopoulos Electronic Warfare and Radar Division Defence Science and Technology Organisation

More information

Epsilon-Near-Zero and Plasmonic Dirac Point by using 2D materials

Epsilon-Near-Zero and Plasmonic Dirac Point by using 2D materials Epsilon-Near-Zero and Plasmonic Dirac Point by using 2D materials Marios Mattheakis Co-authors: Prof. Efthimios Kaxiras Prof. Costas Valagiannopoulos 5-8 July 2016 NN16, Thessaloniki Graphene as Plasmonic

More information

Super-reflection and Cloaking Based on Zero Index Metamaterial

Super-reflection and Cloaking Based on Zero Index Metamaterial Super-reflection and Cloaking Based on Zero Index Metamaterial Jiaming Hao, Wei Yan, and Min Qiu Photonics and Microwave ngineering, Royal Institute of Technology (KTH), lectrum 9, 164 4, Kista, Sweden

More information

FDTD simulations of far infrared effective magnetic activity in microstructured TiO2

FDTD simulations of far infrared effective magnetic activity in microstructured TiO2 FDTD simulations of far infrared effective magnetic activity in microstructured TiO2 Cristian Kusko and Mihai Kusko IMT-Bucharest, Romania E-mail: cristian.kusko@imt.ro Motivation and Outline Metamaterials

More information

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots Towards the Lasing Spaser: Controlling Metamaterial Optical Response with Semiconductor Quantum Dots E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev,, Optoelectronics Research Centre, University

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials

Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials SUPPLEMENTARY INFORMATION Letters DOI: 10.1038/s41566-017-0002-6 In the format provided by the authors and unedited. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials

More information

THE INDIAN COMMUNITY SCHOOL, KUWAIT

THE INDIAN COMMUNITY SCHOOL, KUWAIT THE INDIAN COMMUNITY SCHOOL, KUWAIT SERIES : I SE / 2016-2017 CODE : N 042 MAX. MARKS : 70 TIME ALLOWED : 3 HOURS NO. OF PAGES : 6 PHYSICS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

More information

Introduction to optical waveguide modes

Introduction to optical waveguide modes Chap. Introduction to optical waveguide modes PHILIPPE LALANNE (IOGS nd année) Chapter Introduction to optical waveguide modes The optical waveguide is the fundamental element that interconnects the various

More information

PT-symmetry and Waveguides/ (3) Waveguides & Bragg structures

PT-symmetry and Waveguides/ (3) Waveguides & Bragg structures PT-symmetry and Waveguides/ (3) Waveguides & Bragg structures Course 3 : Bragg with gain/loss (complex ) modulation Unidirectionality of plane-wave coupling History of gain-modulation (1970 s & 1990 s)

More information

Nonlinear Electrodynamics and Optics of Graphene

Nonlinear Electrodynamics and Optics of Graphene Nonlinear Electrodynamics and Optics of Graphene S. A. Mikhailov and N. A. Savostianova University of Augsburg, Institute of Physics, Universitätsstr. 1, 86159 Augsburg, Germany E-mail: sergey.mikhailov@physik.uni-augsburg.de

More information

Supplementary Figure 1. Optical and magneto-optical responses for 80 nm diameter particles

Supplementary Figure 1. Optical and magneto-optical responses for 80 nm diameter particles Supplementary Figure 1 Optical and magneto-optical responses for 80 nm diameter particles The schematics on the left illustrate the direction of incident polarization and the induced dipole moments that

More information

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. Plasmonics The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. A possible way out is the conversion of light into plasmons. They have much shorter

More information

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7 Lecture 7 Chapter 3 Electromagnetic Theory, Photons. and Light Sources of light Emission of light by atoms The electromagnetic spectrum see supplementary material posted on the course website Electric

More information

Analysis of Metamaterial Cloaks Using Circular Split Ring Resonator Structures

Analysis of Metamaterial Cloaks Using Circular Split Ring Resonator Structures Copyright 216 Tech Science Press CMC, Vol.53, No.3, pp.132-14, 216 Analysis of Metamaterial Cloaks Using Circular Split Ring Resonator Structures Susan Thomas 1 and Dr. Balamati Choudhury 2 Abstract A

More information

Valley photonic crystals for control of spin and topology

Valley photonic crystals for control of spin and topology In the format provided by the authors and unedited. DOI: 10.1038/NMAT4807 Valley photonic crystals for control of spin and topology Jian-Wen Dong 1,,, Xiao-Dong Chen 1,, Hanyu Zhu, Yuan Wang,3,3, 4, &

More information

l* = 109 nm Glycerol Clean Water Glycerol l = 108 nm Wavelength (nm)

l* = 109 nm Glycerol Clean Water Glycerol l = 108 nm Wavelength (nm) 1/ (rad -1 ) Normalized extinction a Clean 0.8 Water l* = 109 nm 0.6 Glycerol b 2.0 1.5 500 600 700 800 900 Clean Water 0.5 Glycerol l = 108 nm 630 660 690 720 750 Supplementary Figure 1. Refractive index

More information

Supporting information. Unidirectional Doubly Enhanced MoS 2 Emission via

Supporting information. Unidirectional Doubly Enhanced MoS 2 Emission via Supporting information Unidirectional Doubly Enhanced MoS 2 Emission via Photonic Fano Resonances Xingwang Zhang, Shinhyuk Choi, Dake Wang, Carl H. Naylor, A. T. Charlie Johnson, and Ertugrul Cubukcu,,*

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/331/6014/189/dc1 Supporting Online Material for Light-Induced Superconductivity in a Stripe-Ordered Cuprate D. Fausti,* R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M.

More information

Problem set 3. Electromagnetic waves

Problem set 3. Electromagnetic waves Second Year Electromagnetism Michaelmas Term 2017 Caroline Terquem Problem set 3 Electromagnetic waves Problem 1: Poynting vector and resistance heating This problem is not about waves but is useful to

More information

ORE Open Research Exeter

ORE Open Research Exeter ORE Open Research Exeter TITLE The resonant electromagnetic fields of an array of metallic slits acting as Fabry-Perot cavities AUTHORS Hibbins, Alastair P.; Lockyear, Matthew J.; Sambles, J. Roy JOURNAL

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:.38/nature4889 Section I. Effective Hamiltonian of accidental Dirac points in Hermitian systems Here we consider the Hermitian system of a D square-lattice PhC tuned to accidental degeneracy between

More information

On the signs of the imaginary parts of the effective permittivity and permeability in metamaterials

On the signs of the imaginary parts of the effective permittivity and permeability in metamaterials 1016 J. Opt. Soc. Am. B/ Vol. 27, No. 5/ May 2010 J. Woodley and M. Mojahedi On the signs of the imaginary parts of the effective permittivity and permeability in metamaterials J. Woodley 1, * and M. Mojahedi

More information

Physics of Light and Optics

Physics of Light and Optics Physics of Light and Optics Justin Peatross and Harold Stokes Brigham Young University Department of Physics and Astronomy All Publication Rights Reserved (2001) Revised April 2002 This project is supported

More information

Plasmonic fractals: ultrabroadband light trapping in thin film solar cells by a Sierpinski nanocarpet

Plasmonic fractals: ultrabroadband light trapping in thin film solar cells by a Sierpinski nanocarpet Plasmonic fractals: ultrabroadband light trapping in thin film solar cells by a Sierpinski nanocarpet Hanif Kazerooni 1, Amin Khavasi, 2,* 1. Chemical Engineering Faculty, Amirkabir University of Technology

More information

arxiv: v2 [physics.optics] 5 Feb 2009

arxiv: v2 [physics.optics] 5 Feb 2009 All-Dielectric Rod-Type Metamaterials at Optical Frequencies K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal Groupe d Etude des Semiconducteurs, UMR 5650 CNRS-UM2, CC074, Place

More information

Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly)

Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly) Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly) and D3 (Fabry Pérot cavity mode). (a) Schematic (top) showing the reflectance measurement geometry and simulated angle-resolved

More information

Beyond Stefan-Boltzmann Law: Thermal Hyper- Conductivity

Beyond Stefan-Boltzmann Law: Thermal Hyper- Conductivity Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 5-6-2012 Beyond Stefan-Boltzmann Law: Thermal Hyper- Conductivity Evgenii E. Narimanov Birck Nanotechnology Center,

More information

Notes on Huygens Principle 2000 Lawrence Rees

Notes on Huygens Principle 2000 Lawrence Rees Notes on Huygens Principle 2000 Lawrence Rees In the 17 th Century, Christiaan Huygens (1629 1695) proposed what we now know as Huygens Principle. We often invoke Huygens Principle as one of the fundamental

More information

Tuning the far-field superlens: from UV to visible

Tuning the far-field superlens: from UV to visible Tuning the far-field superlens: from UV to visible Yi Xiong, Zhaowei Liu, Stéphane Durant, Hyesog Lee, Cheng Sun, and Xiang Zhang* 510 Etcheverry Hall, NSF Nanoscale Science and Engineering Center (NSEC),

More information

D"tIC. D FILE COPy. INFRARED ABSORPTION BY SMALL BISMUTH PARTICLES R.E. SHERRIFF and R.P. DEVATY. cfar. 1.

DtIC. D FILE COPy. INFRARED ABSORPTION BY SMALL BISMUTH PARTICLES R.E. SHERRIFF and R.P. DEVATY. cfar. 1. D FILE COPy D"tIC Physica A 157 (1989) 395-399 North-Holland, Amsterdam - V B ' 0 cfar N INFRARED ABSORPTION BY SMALL BISMUTH PARTICLES R.E. SHERRIFF and R.P. DEVATY Department of Physics and Astronomy,

More information

II Theory Of Surface Plasmon Resonance (SPR)

II Theory Of Surface Plasmon Resonance (SPR) II Theory Of Surface Plasmon Resonance (SPR) II.1 Maxwell equations and dielectric constant of metals Surface Plasmons Polaritons (SPP) exist at the interface of a dielectric and a metal whose electrons

More information

Surface Plasmon Polariton Assisted Metal-Dielectric Multilayers as Passband Filters for Ultraviolet Range

Surface Plasmon Polariton Assisted Metal-Dielectric Multilayers as Passband Filters for Ultraviolet Range Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the International School and Conference on Optics and Optical Materials, ISCOM07, Belgrade, Serbia, September 3 7, 2007 Surface Plasmon Polariton

More information

Symmetry breaking and strong coupling in planar optical metamaterials

Symmetry breaking and strong coupling in planar optical metamaterials Symmetry breaking and strong coupling in planar optical metamaterials Koray Aydin 1*, Imogen M. Pryce 1, and Harry A. Atwater 1,2 1 Thomas J. Watson Laboratories of Applied Physics California Institute

More information

The Zeeman Effect in Atomic Mercury (Taryl Kirk )

The Zeeman Effect in Atomic Mercury (Taryl Kirk ) The Zeeman Effect in Atomic Mercury (Taryl Kirk - 2001) Introduction A state with a well defined quantum number breaks up into several sub-states when the atom is in a magnetic field. The final energies

More information

Long-Wavelength Optical Properties of a Plasmonic Crystal

Long-Wavelength Optical Properties of a Plasmonic Crystal Long-Wavelength Optical Properties of a Plasmonic Crystal Cheng-ping Huang 1,2, Xiao-gang Yin 1, Qian-jin Wang 1, Huang Huang 1, and Yong-yuan Zhu 1 1 National Laboratory of Solid State Microstructures,

More information

Supplementary Information for. Colloidal Ribbons and Rings from Janus Magnetic Rods

Supplementary Information for. Colloidal Ribbons and Rings from Janus Magnetic Rods Supplementary Information for Colloidal Ribbons and Rings from Janus Magnetic Rods Jing Yan, Kundan Chaudhary, Sung Chul Bae, Jennifer A. Lewis, and Steve Granick,,, and Department of Materials Science

More information

Influence of Plasmonic Array Geometry on Energy Transfer from a. Quantum Well to a Quantum Dot Layer

Influence of Plasmonic Array Geometry on Energy Transfer from a. Quantum Well to a Quantum Dot Layer Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Influence of Plasmonic Array Geometry on Energy Transfer from a Quantum Well to a Quantum Dot

More information

Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals

Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals Md Muntasir Hossain 1, Gengyan Chen 2, Baohua Jia 1, Xue-Hua Wang 2 and Min Gu 1,* 1 Centre for Micro-Photonics and CUDOS,

More information

arxiv:cond-mat/ v1 22 Jul 2002

arxiv:cond-mat/ v1 22 Jul 2002 Propagation of waves in metallic photonic crystals at low frequencies and some theoretical aspects of left-handed materials arxiv:cond-mat/0207535v1 22 Jul 2002 Abstract A. L. Pokrovsky, A. L. Efros, Department

More information

Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics

Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics Ankit Vora, Jephias Gwamuri 2, Nezih Pala 3, Anand Kulkarni, Joshua M. Pearce,2, and Durdu Ö. Güney,*

More information

Magnetic response of split-ring resonator metamaterials: From effective medium dispersion to photonic band gaps

Magnetic response of split-ring resonator metamaterials: From effective medium dispersion to photonic band gaps PRAMANA c Indian Academy of Sciences Vol. 78, No. 3 journal of March 2012 physics pp. 483 492 Magnetic response of split-ring resonator metamaterials: From effective medium dispersion to photonic band

More information

Supporting information for Metal-semiconductor. nanoparticle hybrids formed by self-organization: a platform to address exciton-plasmon coupling

Supporting information for Metal-semiconductor. nanoparticle hybrids formed by self-organization: a platform to address exciton-plasmon coupling Supporting information for Metal-semiconductor nanoparticle hybrids formed by self-organization: a platform to address exciton-plasmon coupling Christian Strelow, T. Sverre Theuerholz, Christian Schmidtke,

More information

W ith tremendous development in the past decade, the performance of the left-handed metamaterial

W ith tremendous development in the past decade, the performance of the left-handed metamaterial OPEN SUBJECT AREAS: ELECTRONICS, PHOTONICS AND DEVICE PHYSICS A meta-substrate to enhance the bandwidth of metamaterials Hongsheng Chen 1,2, Zuojia Wang 1,2, Runren Zhang 1,2, Huaping Wang 3, Shisheng

More information