Tuning of superconducting niobium nitride terahertz metamaterials

Size: px
Start display at page:

Download "Tuning of superconducting niobium nitride terahertz metamaterials"

Transcription

1 Tuning of superconducting niobium nitride terahertz metamaterials Jingbo Wu, Biaobing Jin,* Yuhua Xue, Caihong Zhang, Hao Dai, Labao Zhang, Chunhai Cao, Lin Kang, Weiwei Xu, Jian Chen and Peiheng Wu Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing , China Abstract: Superconducting planar terahertz (THz) metamaterials (MMs), with unit cells of different sizes, are fabricated on 200 nm-thick niobium nitride (NbN) films deposited on MgO substrates. They are characterized using THz time domain spectroscopy over a temperature range from 8.1 K to 300 K, crossing the critical temperature of NbN films. As the gap frequency (f g = 2Δ 0 /h, where Δ 0 is the energy gap at 0 K and h is the Plank constant) of NbN is 1.18 THz, the experimentally observed THz spectra span a frequency range from below f g to above it. We have found that, as the resonance frequency approaches f g, the relative tuning range of MMs is quite wide (30%). We attribute this observation to the large change of kinetic inductance of superconducting film Optical Society of America OCIS codes: ( ) Metamaterials; ( ) Resonance; ( ) Spectroscopy, terahertz. References and links 1. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, Metamaterials and negative refractive index, Science 305(5685), (2004). 2. V. M. Shalaev, Optical negative-index metamaterials, Nat. Photonics 1(1), (2007). 3. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, Terahertz magnetic response from artificial materials, Science 303(5663), (2004). 4. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Active terahertz metamaterial devices, Nature 444(7119), (2006). 5. H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, Recent progress in electromagnetic metamaterial devices for terahertz applications, IEEE J. Sel. Top. Quantum Electron. 99, 1 10 (2010). 6. W. Withayachumnankul, and D. Abbott, Metamaterials in the terahertz regime, IEEE Photon. J. 1(2), (2009). 7. R. Singh, A. K. Azad, J. F. O Hara, A. J. Taylor, and W. Zhang, Effect of metal permittivity on resonant properties of terahertz metamaterials, Opt. Lett. 33(13), (2008). 8. R. Singh, E. Smirnova, A. J. Taylor, J. F. O Hara, and W. Zhang, Optically thin terahertz metamaterials, Opt. Express 16(9), (2008). 9. R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, Cryogenic temperatures as a path toward high-q terahertz metamaterials, Appl. Phys. Lett. 96(7), (2010). 10. J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, Terahertz superconductor metamaterial, Appl. Phys. Lett. 97(7), (2010). 11. V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, Temperature control of Fano resonances and transmission in superconducting metamaterials, Opt. Express 18(9), (2010). 12. B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, Low loss and magnetic field-tunable superconducting terahertz metamaterial, Opt. Express 18(16), (2010). 13. H. T. Chen, H. Yang, R. Singh, J. F. O Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, Tuning the resonance in high-temperature superconducting terahertz metamaterials, Phys. Rev. Lett. 105(24), (2010). 14. D. Schurig, J. J. Mock, and D. R. Smith, Electric-field-coupled resonators for negative permittivity metamaterials, Appl. Phys. Lett. 88(4), (2006). 15. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, Electrically resonant terahertz metamaterials: Theoretical and experimental investigations, Phys. Rev. B 75, (2006). 16. H. T. Chen, J. F. O Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, Complementary planar terahertz metamaterials, Opt. Express 15(3), (2007). (C) 2011 OSA 20 June 2011 / Vol. 19, No. 13 / OPTICS EXPRESS 12021

2 17. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, Saturation of the magnetic response of split-ring resonators at optical frequencies, Phys. Rev. Lett. 95(22), (2005). 18. L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, Suppression of superconductivity in epitaxial NbN ultrathin films, J. Appl. Phys. 109(3), (2011). 19. A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O Hara, Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators, Appl. Phys. Lett. 92(1), (2008). 20. J. F. O Hara, E. Smirnova, A. K. Azad, H. T. Chen, and A. J. Taylor, Effects of microstructure variations on macroscopic terahertz metafilm properties, Act. Passive Electron. Compon. 2007, (2007). 21. T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Second Edition, (Cambridge University Press, 2004), Chap M. Tinkham, Introduction to superconductivity, (McGraw-Hill, 1980) 23. M. J. Lancaster, Passive Microwave Device Applications of High-Temperature superconductors, (Cambridge University Press, 2006), Chap S. Hensen, G. Müller, C. T. Rieck, and K. Scharnberg, In-plane surface impedance of epitaxial YBa 2Cu 3O 7+Δ films: Comparison of experimental data taken at 87 GHz with d- and s-wave models of superconductivity, Phys. Rev. B 56(10), (1997). 25. T. Hao, C. J. Stevens, and D. J. Edwards, Optimization of Metamaterials by Q factor, Electron. Lett. 41(11), (2005). 26. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, Sharp Fano resonances in THz metamaterials, Opt. Express 19(7), (2011). 27. R. Singh, C. Rockstuhl, and W. Zhang, Strong influence of packing density in terahertz metamaterials, Appl. Phys. Lett. 97(24), (2010). 28. R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates, Opt. Lett. 36(7), (2011). 1. Introduction The development of metamaterials (MMs), which acquire their electromagnetic properties from artificial subwavelength metallic elements rather than the composition, has led to the realization of properties and applications that cannot be obtained with natural materials [1,2]. At terahertz (THz) frequencies, the new class of MMs is viewed as efficient devices for manipulating THz waves [3 6]. The resonant properties of planar metamaterials could be tuned by varying the surface impedance of metallic film, such as changing the thickness of the metallic film or engineering the conductivity [7,8]. Superconducting THz MMs have recently drawn great attentions in the THz and MMs fields, due to their low ohmic loss as well as their thermal and magnetic-field tuning behaviors [9 13]. When the temperature is close to the transition temperature (T c ) and adjusted over even a rather narrow range, large tuning can be obtained due to the large change of effective kinetic inductance of superconducting film. This change is enhanced as the working frequency is going higher. However, these behaviors cannot be observed if the frequency of the THz wave is much higher than the gap frequency f g = 2Δ 0 /h, where Δ 0 is the energy gap of the superconductor at 0 K, and h is the Plank constant. Thus it is expected that a wide tuning range can be obtained as the frequency is approaching f g. Here we look at the THz transmissions through a class of electrically resonant superconducting MMs with resonance frequencies going from below f g to above it. The MMs are made from 200 nm-thick niobium nitride (NbN) films. It is shown that the resonance strengths of NbN MMs are persistently high when the frequency is below f g but drop sharply beyond f g. And the relative frequency tuning range [f(t c )-f min ]/f(t c ) is the largest (up to 30%) as the resonance frequency approaches f g, where f(t c ) and f min and are the resonance frequency at the critical temperature T c and the minimum of the resonance frequency in superconducting state, respectively. 2. Experiments and discussions The electric inductive-capacitive (ELC) resonator structure is used in our work [14 16]. Figure 1(a) shows the planar geometry of a unit cell. The geometric parameters are set to be l = a, t = 0.1a, g = 0.1a, w = 0.2a, and the dimensions of each unit cell is 1.2a 1.2a. Four samples are fabricated (denoted by S1, S2, S3 and S4) with the same structure but different values of a, a = 20, 25, 35, and 50 μm respectively. Assuming that the films are ideal conducting ones, we have found by simulations the fundamental frequencies of S1-S4 to be (C) 2011 OSA 20 June 2011 / Vol. 19, No. 13 / OPTICS EXPRESS 12022

3 1.44, 1.17, 0.84, and 0.59 THz respectively, revealing the fact that the larger the sizes of the unit cell are, the lower the resonance frequencies are [17]. For our NbN films, Δ 0 calculated from previous measurements [18] is 2.45 mev, and thus f g is 1.18 THz, which is below the resonance frequency of S1. Therefore, the transmission characteristics of superconducting NbN THz MMs can be studied over a range when the resonance frequency changes from below f g to above it. Fig. 1. (a) The planar geometry of single ELC structure. (b) The photo micrograph of S4, and the incident polarized electric field is parallel to the gap. The NbN films used in our experiments typically have T c = 15.8 K and are deposited on 500 μm-thick MgO substrates (<100> orientation) using RF magnetron sputtering. The thickness of NbN film (d) is 200 nm for each sample. Photolithography and reactive ion etching are used to pattern the film surface periodical ELC resonator structure. The optical micrograph image of S4 is shown in Fig. 1(b). The samples are mounted in a continuous flow liquid helium cryostat, which is installed in the THz time domain spectroscopy (TDS) system. The THz transmission spectra are measured in a temperature range of K using a bare MgO substrate as the reference. In the measurements, the electric fields are applied parallel to the gap of capacitor (shown in Fig. 1(b)). Shown in Figs. 2(a) and 2(b) are the transmission spectra of S1-S4 at 18 K and 8.1 K. At 18 K, the resonance frequencies for S1-S4 are 1.47, 1.24, 0.84 and 0.60 THz respectively, which agree with the simulation. When temperature lowers to 8.1 K, these frequencies become 1.25, 1.02, 0.80 and 0.58 THz. Now, the resonance frequency of S1 remains to be larger than f g. When the samples go from normal to superconducting, all the resonance frequencies decrease. This is attributed to the occurrence of kinetic inductance in superconducting states. At 18 K, the resonance transmission minima are all around 5 db. As temperature goes down to 8.1 K, these values are about 30 db except for S1, in which case the minimum is 11.9 db and MMs made of superconducting films do not seem to be superior to that made of normal metal. Based on transmission-line RLC model, the power transmission coefficient at resonance frequency can be approximated as follows [19,20], 1 ns T 1 ns Z 0 / R where n s is the refractive index of substrate, Z 0 is the impedance of vacuum, and R is the resistance of ELC resonator at resonance frequency. And R can be calculated by the equation, R = R s (3.02l/t) = 30.2R s, where R s is the surface resistance of smooth NbN film, and 3.02l is the equivalent length of loop [21]. From Eq. (1) we can know the deep resonant minima mean low R, or relatively low loss of the superconducting MMs. The large resonant minimum for S1 is because its resonance frequency is larger than f g. Based on BCS theory, the NbN film has a s-wave pair symmetry without nodes in the gap, and keep a constant value in all 2, (1) (C) 2011 OSA 20 June 2011 / Vol. 19, No. 13 / OPTICS EXPRESS 12023

4 directions in momentum space [22]. As the frequency of incident photons is large than f g, almost all paired electrons are broken into quasi-particles, leading to the abrupt increase of R s and a large decrease of depth of the resonant minimum. Fig. 2. THz transmission spectra of S1-S4 (a) at 18 K and (b) at 8.1 K. Quantitatively, R s can be calculated from the following equation [23], 0 0 Rs Re j / coth d j, where σ is the complex conductivity of NbN film. Then R s is obtained through theoretic simulation in the framework of the BCS theory [18,24], and the resonant minimum as a function of the resonance frequency is plotted in Fig. 3(a) (solid line). A relative good agreement between the measurements (square dots) and the calculations is obtained. Here it is important to note that the radiation loss, which arises from the coupling of MMs to free space radiation, is not considered in the simulation [7,9,25]. In the low frequency region, the radiation loss may play an important role in the total loss, making it very difficult to obtain a deep resonant minimum. Recently, the suppression of radiation loss has been demonstrated by introducing asymmetry in split ring resonators to excite sharp Fano resonance which weakly couples to free space, or packing the unit cell at an optimal periodicity to confine electromagnetic fields in MM array [26,27]. The temperature dependence of the resonance frequencies for all samples is also studied. Figure 3(b) shows the normalized resonance frequency f(t)/f(16k) as a function of temperature. We have found that a large relative tuning range up to 30% can be obtained as the resonance frequency approaches to f g. And this is the largest tuning so far we can achieve. The physical reason is that the biggest change of inductance of superconducting loop happens (2) (C) 2011 OSA 20 June 2011 / Vol. 19, No. 13 / OPTICS EXPRESS 12024

5 in this case. The geometric inductance (L g ) can be calculated as follows, L g μ 0 (πa) 1/2 = μ 0 l(π/2) 1/2, where μ 0 is the permeability of vacuum and A = (l/2) 1/2 is the area of small rectangle loop [21]. The kinetic inductance (L k ) is distinct for MMs in superconducting state, and it can be estimated by the formula, L k μ 0 λcoth(d/λ) (3.02l/t), where λ is the penetration depth of NbN film [21,23]. Thus, the normalized change of inductance can be calculated as follows, L / L L / L 2.41 coth( d / ) / t. (3) k g When frequency is below f g, λ is almost constant, so the smaller t of S2 leads to the comparatively larger ΔL/L than S3 and S4. As resonance frequency exceeds f g, the L k is seriously degraded due to strong absorption of photons. The above factors result in the large frequency change of S2 since its resonance frequency is closest to f g. This provides a nice method to tune the frequency by temperature. Fig. 3. (a) The simulated (square dots) and measured (solid line) resonant minimum as a function of resonance frequency at 8.1 K. (b) The temperature dependence of resonance frequency normalized with the resonance frequency at 16 K for S1-S4 Changing the thickness of the metal film, at the scale of the skin depth, offers an effective way to control the resonance property of THz MMs [8]. The similar tuning behavior also occurs in superconducting MMs. Remarkable enhancement of frequency tuning range by reducing the film thickness has been demonstrated in YBCO MMs [13]. According to Eq. (3), reducing d of NbN film could enhance ΔL/L. Thus, we fabricate another sample (denoted by S5) with the same structure as S2 but the NbN film is 100 nm-thick NbN film in an attempt to improve the frequency tuning property, The temperature dependent transmission spectra are (C) 2011 OSA 20 June 2011 / Vol. 19, No. 13 / OPTICS EXPRESS 12025

6 measured and plotted in Fig. 4. The resonance frequency shifts from 966 GHz at 8.1 K to 754 GHz at 13 K (indicated by arrow). The 212 GHz red-shift of resonance frequency is much wider than the red-shift of S2 (146 GHz) and the other three samples. However, as S5 goes into normal state, the resonance dip is not easy to discern because of the increased ohmic resistance as NbN film becomes thinner. What is more, such frequency tuning occurs in a quite smaller temperature range compared with MMs fabricated from metallic films on ferroelectric substrate [28], meaning faster response. Furthermore, if the ELC resonator is substituted with an improved resonator structure, which exhibits larger ΔL/L in superconducting state, we could get better tuning property. Therefore, the potential is great to boost the frequency tuning range of NbN MMs. 3 Conclusions Fig. 4. Transmission spectra of S5 at various temperatures. The arrow indicates the resonance frequency of S5 at 13 K. In summary, we have demonstrated that the superconducting NbN MMs exhibit remarkably high resonance strength until their resonance frequencies reach f g. Moreover, the MMs with resonance frequency approaching f g have wide tuning properties due to relatively large change of inductance. And appropriate modification in resonator structure will improve the tuning capability of superconducting MMs further. We expect that our results could contribute to the applications of superconducting MMs in tunable broadband THz devices. Acknowledgments This work is supported by the MOST 973 Project of China (No. 2007CB310404, No. 2011CBA00107), the National Natural Science Foundation (No ), the Program for New Century Excellent Talents in University (NCET ), the Fundamental Research Funds for the Central Universities ( ) and the Specialized Research Fund for Doctoral Program of Higher Education ( ). (C) 2011 OSA 20 June 2011 / Vol. 19, No. 13 / OPTICS EXPRESS 12026

Low Loss and Magnetic Field-tuned Superconducting THz Metamaterial

Low Loss and Magnetic Field-tuned Superconducting THz Metamaterial Low Loss and Magnetic Field-tuned Superconducting THz Metamaterial Biaobing Jin, 1, * Caihong Zhang, 1 Sebastian Engelbrecht, 2 Andrei Pimenov, 2 Jingbo Wu, 1 Qinyin Xu, 1 Chunhai Cao, 1 Jian Chen, 1 Weiwei

More information

arxiv: v1 [cond-mat.supr-con] 8 Sep 2010

arxiv: v1 [cond-mat.supr-con] 8 Sep 2010 Tuning the Resonance in High Temperature Superconducting Terahertz Metamaterials Hou-Tong Chen, Hao Yang, Ranjan Singh, John F. O Hara, Abul K. Azad, Stuart A. Trugman, Q. X. Jia, and Antoinette J. Taylor

More information

Terahertz Nonlinear Superconducting Metamaterials

Terahertz Nonlinear Superconducting Metamaterials Terahertz Nonlinear Superconducting Metamaterials Caihong Zhang, 1 Biaobing Jin, 2 Jiaguang Han, 1,3 Iwao Kawayama, 1 Hiro Murakami, 1 Jingbo Wu, 2 Lin Kang, 2 Jian Chen, 2 Peiheng Wu, 2 and Masayoshi

More information

Asymmetric planar terahertz metamaterials

Asymmetric planar terahertz metamaterials Asymmetric planar terahertz metamaterials Ranjan Singh, 1,2,* Ibraheem A. I. Al-Naib, 3 Martin Koch, 3 and Weili Zhang 1 1 School of Electrical and Computer Engineering, Oklahoma State University, Stillwater,

More information

A Broadband Flexible Metamaterial Absorber Based on Double Resonance

A Broadband Flexible Metamaterial Absorber Based on Double Resonance Progress In Electromagnetics Research Letters, Vol. 46, 73 78, 2014 A Broadband Flexible Metamaterial Absorber Based on Double Resonance ong-min Lee* Abstract We present a broadband microwave metamaterial

More information

A SYMMETRICAL DUAL-BAND TERAHERTZ META- MATERIAL WITH CRUCIFORM AND SQUARE LOOPS. Microsystem and Information Technology, Shanghai , China

A SYMMETRICAL DUAL-BAND TERAHERTZ META- MATERIAL WITH CRUCIFORM AND SQUARE LOOPS. Microsystem and Information Technology, Shanghai , China Progress In Electromagnetics Research C, Vol. 33, 259 267, 2012 A SYMMETRICAL DUAL-BAND TERAHERTZ META- MATERIAL WITH CRUCIFORM AND SQUARE LOOPS B. Li 1, *, L. X. He 2, Y. Z. Yin 1, W. Y. Guo 2, 3, and

More information

Multiple Fano Resonances Structure for Terahertz Applications

Multiple Fano Resonances Structure for Terahertz Applications Progress In Electromagnetics Research Letters, Vol. 50, 1 6, 2014 Multiple Fano Resonances Structure for Terahertz Applications Hadi Amarloo *, Daniel M. Hailu, and Safieddin Safavi-Naeini Abstract A new

More information

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang Department of Electronic Science and Engineering Nanjing University Nanjing , China

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang Department of Electronic Science and Engineering Nanjing University Nanjing , China Progress In Electromagnetics Research, PIER 101, 231 239, 2010 POLARIZATION INSENSITIVE METAMATERIAL ABSORBER WITH WIDE INCIDENT ANGLE B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang Department

More information

Random terahertz metamaterials

Random terahertz metamaterials Random terahertz metamaterials Ranjan Singh, 1 Xinchao Lu, 1 Jianqiang Gu, 1,2 Zhen Tian, 1,2 and Weili Zhang 1,a) 1 School of Electrical and Computer Engineering, Oklahoma State University, Stillwater,

More information

Progress In Electromagnetics Research, Vol. 134, , 2013 A WIDEBAND AND DUAL-RESONANT TERAHERTZ METAMATERIAL USING A MODIFIED SRR STRUC- TURE

Progress In Electromagnetics Research, Vol. 134, , 2013 A WIDEBAND AND DUAL-RESONANT TERAHERTZ METAMATERIAL USING A MODIFIED SRR STRUC- TURE Progress In Electromagnetics Research, Vol. 134, 289 299, 2013 A WIDEBAND AND DUAL-RESONANT TERAHERTZ METAMATERIAL USING A MODIFIED SRR STRUC- TURE Wanyi Guo 1, 2, *, Lianxing He 1, Biao Li 3, Teng Teng

More information

An efficient way to reduce losses of left-handed metamaterials

An efficient way to reduce losses of left-handed metamaterials An efficient way to reduce losses of left-handed metamaterials Jiangfeng Zhou 1,2,, Thomas Koschny 1,3 and Costas M. Soukoulis 1,3 1 Ames Laboratory and Department of Physics and Astronomy,Iowa State University,

More information

Configurable metamaterial absorber with pseudo wideband spectrum

Configurable metamaterial absorber with pseudo wideband spectrum Configurable metamaterial absorber with pseudo wideband spectrum Weiren Zhu, 1, Yongjun Huang, 2 Ivan D. Rukhlenko, 1 Guangjun Wen, 2 and Malin Premaratne 1 1 Advanced Computing and Simulation Laboratory

More information

Negative refractive index response of weakly and strongly coupled optical metamaterials.

Negative refractive index response of weakly and strongly coupled optical metamaterials. Negative refractive index response of weakly and strongly coupled optical metamaterials. Jiangfeng Zhou, 1 Thomas Koschny, 1, Maria Kafesaki, and Costas M. Soukoulis 1, 1 Ames Laboratory and Department

More information

Tailoring electromagnetic responses in terahertz superconducting metamaterials

Tailoring electromagnetic responses in terahertz superconducting metamaterials Front. Optoelectron. 2015, 8(1): 44 56 DOI 10.1007/s12200-014-0439-x REVIEW ARTICLE Tailoring electromagnetic responses in terahertz superconducting metamaterials Xiaoling ZHANG, Jianqiang GU ( ), Jiaguang

More information

Terahertz electric response of fractal metamaterial structures

Terahertz electric response of fractal metamaterial structures Terahertz electric response of fractal metamaterial structures F. Miyamaru, 1 Y. Saito, 1 M. W. Takeda, 1 B. Hou, 2 L. Liu, 2 W. Wen, 2 and P. Sheng 2 1 Department of Physics, Faculty of Science, Shinshu

More information

Observation of a New Magnetic Response in 3-Dimensional Split Ring Resonators under Normal Incidence

Observation of a New Magnetic Response in 3-Dimensional Split Ring Resonators under Normal Incidence Observation of a New Magnetic Response in 3-Dimensional Split Ring Resonators under Normal Incidence Sher-Yi Chiam 1,, Andrew A. Bettiol 1, Mohammed Bahou 2, JiaGuang Han 1, Herbert O. Moser 2 and Frank

More information

Dual-band planar electric metamaterial in the terahertz regime

Dual-band planar electric metamaterial in the terahertz regime Dual-band planar electric metamaterial in the terahertz regime Yu Yuan 1, Christopher Bingham 2, Talmage Tyler 1, Sabarni Palit 1, Thomas H. Hand 1, Willie J. Padilla 2, David R. Smith 1, Nan Marie Jokerst

More information

Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial

Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial Zheng-Gao Dong, 1,* Shuang-Ying Lei, 2 Qi Li, 1 Ming-Xiang Xu, 1 Hui Liu, 3 Tao Li, 3 Fu-Ming Wang, 3 and Shi-Ning

More information

Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers

Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers Burak Ozbey 1 and Ozgur Aktas 1,* 1 Department of Electrical and Electronics Engineering, Bilkent University, Bilkent,

More information

Plasmon-induced transparency in twisted Fano terahertz metamaterials

Plasmon-induced transparency in twisted Fano terahertz metamaterials Plasmon-induced transparency in twisted Fano terahertz metamaterials Yingfang Ma, 1 Zhongyang Li, 1 Yuanmu Yang, 1 Ran Huang, Ranjan Singh, 3 Shuang Zhang, 4 Jianqiang Gu, 1 Zhen Tian, 1 Jiaguang Han,

More information

GHz magnetic response of split ring resonators

GHz magnetic response of split ring resonators Photonics and Nanostructures Fundamentals and Applications 2 (2004) 155 159 www.elsevier.com/locate/photonics GHz magnetic response of split ring resonators Lei Zhang a, G. Tuttle a, C.M. Soukoulis b,

More information

Suppression of radiation loss by hybridization effect in two coupled split-ring resonators

Suppression of radiation loss by hybridization effect in two coupled split-ring resonators Suppression of radiation loss by hybridization effect in two coupled split-ring resonators T. Q. Li, 1 H. Liu, 1, * T. Li, 1 S. M. Wang, 1 J. X. Cao, 1 Z. H. Zhu, 1 Z. G. Dong, 1 S. N. Zhu, 1 and X. Zhang

More information

Near-field interactions in electric inductive capacitive resonators for metamaterials

Near-field interactions in electric inductive capacitive resonators for metamaterials IOP PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 45 (2012) 485101 (7pp) doi:10.1088/0022-3727/45/48/485101 Near-field interactions in electric inductive capacitive resonators

More information

Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain

Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain C. Zhu 1, H. Liu 1,*, S. M. Wang 1, T. Li 1, J. X. Cao 1, Y. J. Zheng 1, L. Li 1, Y. Wang 1, S. N. Zhu

More information

arxiv: v1 [physics.optics] 17 Jan 2013

arxiv: v1 [physics.optics] 17 Jan 2013 Three Dimensional Broadband Tunable Terahertz Metamaterials Kebin Fan,1 Andrew C. Strikwerda,2 Xin Zhang,1, and Richard D. Averitt2, arxiv:1301.3977v1 [physics.optics] 17 Jan 2013 1 Department of Mechanical

More information

H. S. Chen, L. Huang, and X. X. Cheng The Electromagnetics Academy at Zhejiang University Zhejiang University, Hangzhou , China

H. S. Chen, L. Huang, and X. X. Cheng The Electromagnetics Academy at Zhejiang University Zhejiang University, Hangzhou , China Progress In Electromagnetics Research, Vol. 5, 37 326, 2 MAGNETIC PROPERTIES OF METAMATERIAL COMPOSED OF CLOSED RINGS H. S. Chen, L. Huang, and X. X. Cheng The Electromagnetics Academy at Zhejiang University

More information

90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity

90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity 90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity Yuqian Ye 1 and Sailing He 1,2,* 1 Centre for Optical and Electromagnetic Research, State Key Laboratory

More information

Steering polarization of infrared light through hybridization effect in a tri-rod structure

Steering polarization of infrared light through hybridization effect in a tri-rod structure B96 J. Opt. Soc. Am. B/ Vol. 26, No. 12/ December 2009 Cao et al. Steering polarization of infrared light through hybridization effect in a tri-rod structure Jingxiao Cao, 1 Hui Liu, 1,3 Tao Li, 1 Shuming

More information

Analysis of Metamaterial Cloaks Using Circular Split Ring Resonator Structures

Analysis of Metamaterial Cloaks Using Circular Split Ring Resonator Structures Copyright 216 Tech Science Press CMC, Vol.53, No.3, pp.132-14, 216 Analysis of Metamaterial Cloaks Using Circular Split Ring Resonator Structures Susan Thomas 1 and Dr. Balamati Choudhury 2 Abstract A

More information

Johnson, N.P. and Khokhar, A.Z. and Chong, H.M.H. and De La Rue, R.M. and McMeekin, S. (2006) Characterisation at infrared wavelengths of metamaterials formed by thin-film metallic split-ring resonator

More information

Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film

Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film B. J. Lee, L. P. Wang, and Z. M. Zhang George W. Woodruff School of Mechanical Engineering Georgia

More information

PHYSICAL REVIEW B 71,

PHYSICAL REVIEW B 71, Coupling of electromagnetic waves and superlattice vibrations in a piezomagnetic superlattice: Creation of a polariton through the piezomagnetic effect H. Liu, S. N. Zhu, Z. G. Dong, Y. Y. Zhu, Y. F. Chen,

More information

Enhancing and suppressing radiation with some permeability-near-zero structures

Enhancing and suppressing radiation with some permeability-near-zero structures Enhancing and suppressing radiation with some permeability-near-zero structures Yi Jin 1,2 and Sailing He 1,2,3,* 1 Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical

More information

Frequency-tunable metamaterials using broadside-coupled split ring resonators

Frequency-tunable metamaterials using broadside-coupled split ring resonators Frequency-tunable metamaterials using broadside-coupled split ring resonators Evren Ekmekci 1, 3, 4, Andrew C. Strikwerda 1, Kebin Fan 2, Xin Zhang 2, Gonul Turhan-Sayan 3, and Richard D. Averitt 1 1 Boston

More information

Theoretical study of left-handed behavior of composite metamaterials

Theoretical study of left-handed behavior of composite metamaterials Photonics and Nanostructures Fundamentals and Applications 4 (2006) 12 16 www.elsevier.com/locate/photonics Theoretical study of left-handed behavior of composite metamaterials R.S. Penciu a,b, *, M. Kafesaki

More information

Asymmetric Chiral Metamaterial Multi-Band Circular Polarizer Based on Combined Twisted Double-Gap Split-Ring Resonators

Asymmetric Chiral Metamaterial Multi-Band Circular Polarizer Based on Combined Twisted Double-Gap Split-Ring Resonators Progress In Electromagnetics Research C, Vol. 49, 141 147, 2014 Asymmetric Chiral Metamaterial Multi-Band Circular Polarizer Based on Combined Twisted Double-Gap Split-Ring Resonators Wenshan Yuan 1, Honglei

More information

Negative index short-slab pair and continuous wires metamaterials in the far infrared regime

Negative index short-slab pair and continuous wires metamaterials in the far infrared regime Negative index short-slab pair and continuous wires metamaterials in the far infrared regime T. F. Gundogdu 1,2*, N. Katsarakis 1,3, M. Kafesaki 1,2, R. S. Penciu 1, G. Konstantinidis 1, A. Kostopoulos

More information

Nonlinear Metamaterial Composite Structure with Tunable Tunneling Frequency

Nonlinear Metamaterial Composite Structure with Tunable Tunneling Frequency Progress In Electromagnetics Research Letters, Vol. 71, 91 96, 2017 Nonlinear Metamaterial Composite Structure with Tunable Tunneling Frequency Tuanhui Feng *,HongpeiHan,LiminWang,andFeiYang Abstract A

More information

Design and Characterization of a Dual-Band Metamaterial Absorber Based on Destructive Interferences

Design and Characterization of a Dual-Band Metamaterial Absorber Based on Destructive Interferences Progress In Electromagnetics Research C, Vol. 47, 95, 24 Design and Characterization of a Dual-Band Metamaterial Absorber Based on Destructive Interferences Saeid Jamilan, *, Mohammad N. Azarmanesh, and

More information

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0. Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.6 H 0.4 colloids. The standard derivation is 4.4 %. Supplementary

More information

A POLARIZATION-INDEPENDENT WIDE-ANGLE DUAL DIRECTIONAL ABSORPTION METAMATERIAL AB- SORBER

A POLARIZATION-INDEPENDENT WIDE-ANGLE DUAL DIRECTIONAL ABSORPTION METAMATERIAL AB- SORBER Progress In Electromagnetics Research M, Vol. 27, 191 201, 2012 A POLARIZATION-INDEPENDENT WIDE-ANGLE DUAL DIRECTIONAL ABSORPTION METAMATERIAL AB- SORBER Lei Lu 1, *, Shaobo Qu 1, Hua Ma 1, Fei Yu 1, Song

More information

Temperature control of Fano resonances and transmission in superconducting metamaterials

Temperature control of Fano resonances and transmission in superconducting metamaterials Temperature control of Fano resonances and transmission in superconducting metamaterials V.A. Fedotov 1,*, A. Tsiatmas 1, J. H. Shi 1,4, R. Buckingham 2, P. de Groot 2, Y. Chen 3, S. Wang 5, and N.I. Zheludev

More information

TUNABLE METAMATERIAL DESIGN COMPOSED OF TRIANGULAR SPLIT RING RESONATOR AND WIRE STRIP FOR S- AND C- MICROWAVE BANDS

TUNABLE METAMATERIAL DESIGN COMPOSED OF TRIANGULAR SPLIT RING RESONATOR AND WIRE STRIP FOR S- AND C- MICROWAVE BANDS Progress In Electromagnetics Research B, Vol. 22, 341 357, 2010 TUNABLE METAMATERIAL DESIGN COMPOSED OF TRIANGULAR SPLIT RING RESONATOR AND WIRE STRIP FOR S- AND C- MICROWAVE BANDS C. Sabah Johann Wolfgang

More information

Supporting Information

Supporting Information Supporting Information Longqing Cong, 1,2 Yogesh Kumar Srivastava, 1,2 Ankur Solanki, 1 Tze Chien Sum, 1 and Ranjan Singh 1,2,* 1 Division of Physics and Applied Physics, School of Physical and Mathematical

More information

High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures

High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures Jie Shu, 1 Weilu Gao, 1 Kimberly Reichel, 1 Daniel Nickel, 1 Jason Dominguez, 2 Igal Brener, 2,3 Daniel M. Mittleman,

More information

Stand-up magnetic metamaterials at terahertz frequencies

Stand-up magnetic metamaterials at terahertz frequencies Stand-up magnetic metamaterials at terahertz frequencies Kebin Fan, Andrew C. Strikwerda, Hu Tao, Xin Zhang,,3 and Richard D. Averitt,4 Boston University, Department of Mechanical Engineering, Cummington

More information

Flute-Model Acoustic Metamaterials with Simultaneously. Negative Bulk Modulus and Mass Density

Flute-Model Acoustic Metamaterials with Simultaneously. Negative Bulk Modulus and Mass Density Flute-Model Acoustic Metamaterials with Simultaneously Negative Bulk Modulus and Mass Density H. C. Zeng, C. R. Luo, H. J. Chen, S. L. Zhai and X. P. Zhao * Smart Materials Laboratory, Department of Applied

More information

Two-dimensional Cross Embedded Metamaterials

Two-dimensional Cross Embedded Metamaterials PIERS ONLINE, VOL. 3, NO. 3, 7 4 Two-dimensional Cross Embedded Metamaterials J. Zhang,, H. Chen,, L. Ran,, Y. Luo,, and J. A. Kong,3 The Electromagentics Academy at Zhejiang University, Zhejiang University

More information

DUAL-BAND TERAHERTZ CHIRAL METAMATERIAL WITH GIANT OPTICAL ACTIVITY AND NEGATIVE REFRACTIVE INDEX BASED ON CROSS-WIRE STRU- CURE

DUAL-BAND TERAHERTZ CHIRAL METAMATERIAL WITH GIANT OPTICAL ACTIVITY AND NEGATIVE REFRACTIVE INDEX BASED ON CROSS-WIRE STRU- CURE Progress In Electromagnetics Research M, Vol. 31, 59 69, 2013 DUAL-BAND TERAHERTZ CHIRAL METAMATERIAL WITH GIANT OPTICAL ACTIVITY AND NEGATIVE REFRACTIVE INDEX BASED ON CROSS-WIRE STRU- CURE Fang Fang

More information

New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과

New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과 New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과 Metamaterial Near field Configuration in Periodic Structures New Material Material and Metamaterial Material Metamaterial

More information

Progress In Electromagnetics Research, Vol. 115, , 2011

Progress In Electromagnetics Research, Vol. 115, , 2011 Progress In Electromagnetics Research, Vol. 115, 381 397, 2011 DUAL-BAND TERAHERTZ METAMATERIAL AB- SORBER WITH POLARIZATION INSENSITIVITY AND WIDE INCIDENT ANGLE X.-J. He, Y. Wang, J.-M. Wang, and T.-L.

More information

W.-L. Chen Institute of Manufacturing Engineering National Cheng Kung University No. 1, University Road, Tainan City 701, Taiwan, R.O.C.

W.-L. Chen Institute of Manufacturing Engineering National Cheng Kung University No. 1, University Road, Tainan City 701, Taiwan, R.O.C. Progress In Electromagnetics Research M, Vol. 10, 25 38, 2009 COMPARATIVE ANALYSIS OF SPLIT-RING RESONATORS FOR TUNABLE NEGATIVE PERMEABILITY METAMATERIALS BASED ON ANISOTROPIC DIELECTRIC SUBSTRATES J.-Y.

More information

An Electrically Engineered Meta-Material Absorber

An Electrically Engineered Meta-Material Absorber An Electrically Engineered Meta-Material Absorber Shi (Mark) Gu Advised By: Dr. Steven Cummer Submitted in Partial Fulfillment of Graduation with Distinction Requirements On: 4-20-2009 1 Abstract Recent

More information

Gradient-index metamaterials and spoof surface plasmonic waveguide

Gradient-index metamaterials and spoof surface plasmonic waveguide Gradient-index metamaterials and spoof surface plasmonic waveguide Hui Feng Ma State Key Laboratory of Millimeter Waves Southeast University, Nanjing 210096, China City University of Hong Kong, 11 October

More information

Author(s) Tamayama, Y; Nakanishi, T; Sugiyama. Citation PHYSICAL REVIEW B (2006), 73(19)

Author(s) Tamayama, Y; Nakanishi, T; Sugiyama. Citation PHYSICAL REVIEW B (2006), 73(19) Observation of Brewster's effect fo Titleelectromagnetic waves in metamateri theory Author(s) Tamayama, Y; Nakanishi, T; Sugiyama Citation PHYSICAL REVIEW B (2006), 73(19) Issue Date 2006-05 URL http://hdl.handle.net/2433/39884

More information

Ultra-Compact Metamaterial Absorber with Low-Permittivity Dielectric Substrate

Ultra-Compact Metamaterial Absorber with Low-Permittivity Dielectric Substrate Progress In Electromagnetics Research M, Vol. 4, 25 32, 25 Ultra-Compact Metamaterial Absorber with ow-permittivity Dielectric Substrate Haibin Sun, Yongjun Huang, *, Jian i,weirenzhu 2, and Guangjun Wen

More information

A Wideband Wide-Angle Ultra-Thin Metamaterial Microwave Absorber

A Wideband Wide-Angle Ultra-Thin Metamaterial Microwave Absorber Progress In Electromagnetics Research M, Vol. 44, 39 46, 2015 A Wideband Wide-Angle Ultra-Thin Metamaterial Microwave Absorber Deepak Sood * and Chandra Charu Tripathi Abstract A novel design of wideband,

More information

Tuning of photonic bandgaps by a field-induced structural change of fractal metamaterials

Tuning of photonic bandgaps by a field-induced structural change of fractal metamaterials Tuning of photonic bandgaps by a field-induced structural change of fractal metamaterials Bo Hou, Gu Xu, Hon Kwan Wong, and Weijia Wen Department of Physics, the Hong Kong University of Science and Technology,

More information

Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film

Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film Invited Paper Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film Li Huang 1*, Beibei Zeng 2, Chun-Chieh Chang 2 and Hou-Tong Chen 2* 1 Physics

More information

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots Towards the Lasing Spaser: Controlling Metamaterial Optical Response with Semiconductor Quantum Dots E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev,, Optoelectronics Research Centre, University

More information

Evaluation of kinetic-inductance nonlinearity in a singlecrystal NbTiN-based coplanar waveguide

Evaluation of kinetic-inductance nonlinearity in a singlecrystal NbTiN-based coplanar waveguide Proc. 14th Int. Conf. on Global Research and Education, Inter-Academia 2015 2016 The Japan Society of Applied Physics Evaluation of kinetic-inductance nonlinearity in a singlecrystal NbTiN-based coplanar

More information

MICROWAVE SURFACE IMPEDANCE OF A NEARLY FERROELECTRIC SUPERCONDUCTOR

MICROWAVE SURFACE IMPEDANCE OF A NEARLY FERROELECTRIC SUPERCONDUCTOR Progress In Electromagnetics Research, PIER 73, 39 47, 2007 MICROWAVE SURFACE IMPEDANCE OF A NEARLY FERROELECTRIC SUPERCONDUCTOR C.-J. Wu Department of Applied Physics National University of Kaohsiung

More information

Split Cylinder Resonators with a New Magnetic Resonance in the Midinfrared under Normal Incidence

Split Cylinder Resonators with a New Magnetic Resonance in the Midinfrared under Normal Incidence Split Cylinder Resonators with a New Magnetic Resonance in the Midinfrared under Normal Incidence Sher-Yi Chiam, Andrew A. Bettiol, JiaGuang Han, and Frank Watt Department of Physics, Science Drive 3,

More information

Design principles for infrared wide-angle perfect absorber based on plasmonic structure

Design principles for infrared wide-angle perfect absorber based on plasmonic structure Design principles for infrared wide-angle perfect absorber based on plasmonic structure Mingbo Pu, Chenggang Hu, Min Wang, Cheng Huang, Zeyu Zhao, Changtao Wang, Qin Feng, and Xiangang Luo* State Key Laboratory

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature09776 Supplementary Information for Unnaturally high refractive index terahertz metamaterial Muhan Choi, Seung Hoon Lee, Yushin Kim, Seung Beom Kang, Jonghwa Shin, Min Hwan Kwak, Kwang-Young

More information

Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle

Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Q. X. Liang,

More information

Towards optical left-handed metamaterials

Towards optical left-handed metamaterials FORTH Tomorrow: Modelling approaches for metamaterials Towards optical left-handed metamaterials M. Kafesaki, R. Penciu, Th. Koschny, P. Tassin, E. N. Economou and C. M. Soukoulis Foundation for Research

More information

limitations J. Zhou, E. N. Economou and C. M. Soukoulis

limitations J. Zhou, E. N. Economou and C. M. Soukoulis Mesoscopic Physics in Complex Media, 01011 (010) DOI:10.1051/iesc/010mpcm01011 Owned by the authors, published by EDP Sciences, 010 Optical metamaterials: Possibilities and limitations M. Kafesaki, R.

More information

Canalization of Sub-wavelength Images by Electromagnetic Crystals

Canalization of Sub-wavelength Images by Electromagnetic Crystals Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 37 Canalization of Sub-wavelength Images by Electromagnetic Crystals P. A. Belov 1 and C. R. Simovski 2 1 Queen Mary

More information

Tuning the far-field superlens: from UV to visible

Tuning the far-field superlens: from UV to visible Tuning the far-field superlens: from UV to visible Yi Xiong, Zhaowei Liu, Stéphane Durant, Hyesog Lee, Cheng Sun, and Xiang Zhang* 510 Etcheverry Hall, NSF Nanoscale Science and Engineering Center (NSEC),

More information

Terahertz Metamaterial Devices

Terahertz Metamaterial Devices Invited Paper Terahertz Metamaterial Devices R. D. Averitt* a, W. J. Padilla b, H. T. hen c, J. F. O Hara c, A. J. Taylor c,. Highstrete d, M. Lee d, J. M. O. Zide e, S. R. Bank e, A.. Gossard e a Department

More information

Infrared carpet cloak designed with uniform silicon grating structure

Infrared carpet cloak designed with uniform silicon grating structure Infrared carpet cloak designed with uniform silicon grating structure Xiaofei Xu, Yijun Feng, Yu Hao, Juming Zhao, Tian Jiang Department of Electronic Science and Engineering, Nanjing Univerisity, Nanjing,

More information

Substrate effect on aperture resonances in a thin metal film

Substrate effect on aperture resonances in a thin metal film Substrate effect on aperture resonances in a thin metal film J. H. Kang 1, Jong-Ho Choe 1,D.S.Kim 2, Q-Han Park 1, 1 Department of Physics, Korea University, Seoul, 136-71, Korea 2 Department of Physics

More information

High transmittance left-handed materials involving symmetric split-ring resonators

High transmittance left-handed materials involving symmetric split-ring resonators Photonics and Nanostructures Fundamentals and Applications 5 (2007) 149 155 www.elsevier.com/locate/photonics High transmittance left-handed materials involving symmetric split-ring resonators N. Katsarakis

More information

Analysis and Design of the CRLH SICL Unit Cell using Effective Parameters

Analysis and Design of the CRLH SICL Unit Cell using Effective Parameters This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.* No.*,*-* Analysis and Design of the CRH SIC Unit Cell

More information

Structural Control of Metamaterial Oscillator Strength and Electric Field Enhancement at Terahertz Frequencies

Structural Control of Metamaterial Oscillator Strength and Electric Field Enhancement at Terahertz Frequencies Structural Control of Metamaterial Oscillator Strength and Electric Field Enhancement at Terahertz Frequencies G. R. Keiser 1*, H. R. Seren 2, A.C. Strikwerda 1,3, X. Zhang 2, and R. D. Averitt 1,4 1 Boston

More information

The Design and Analysis of a Novel Split-H-Shaped Metamaterial for Multi-Band Microwave Applications

The Design and Analysis of a Novel Split-H-Shaped Metamaterial for Multi-Band Microwave Applications Materials 2014, 7, 4994-5011; doi:10.3390/ma7074994 Article OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials The Design and Analysis of a Novel Split-H-Shaped Metamaterial for Multi-Band

More information

DETERMINING THE EFFECTIVE ELECTROMAGNETIC PARAMETERS OF BIANISOTROPIC METAMATERIALS WITH PERIODIC STRUCTURES

DETERMINING THE EFFECTIVE ELECTROMAGNETIC PARAMETERS OF BIANISOTROPIC METAMATERIALS WITH PERIODIC STRUCTURES Progress In Electromagnetics Research M, Vol. 29, 79 93, 213 DETERMINING THE EFFECTIVE ELECTROMAGNETIC PARAMETERS OF BIANISOTROPIC METAMATERIALS WITH PERIODIC STRUCTURES Lei Chen *, Zhenya Lei, Rui Yang,

More information

A Compact Ultrathin Ultra-wideband Metamaterial Microwave Absorber

A Compact Ultrathin Ultra-wideband Metamaterial Microwave Absorber 514 A Compact Ultrathin Ultra-wideband Metamaterial Microwave Absorber D. Sood*, Chandra C. Tripathi, Department of Electronics & Communication Engineering, University Institute of Engineering & Technology,

More information

Construction of Chiral Metamaterial with U-Shaped Resonator Assembly

Construction of Chiral Metamaterial with U-Shaped Resonator Assembly Construction of Chiral Metamaterial with U-Shaped Resonator Assembly Xiang Xiong 1, Wei-Hua Sun 1, Yong-Jun Bao 2,1, Ru-Wen Peng 1, Mu Wang 1,*, Cheng Sun 2, Xiang Lu 3, Jun Shao 3, Zhi-Feng Li 3, Nai-Ben

More information

Subcell misalignment in vertically cascaded metamaterial absorbers

Subcell misalignment in vertically cascaded metamaterial absorbers Subcell misalignment in vertically cascaded metamaterial absorbers Qin Chen, 1,2,* Fuhe Sun, 1 and Shichao Song 1 1 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics,

More information

Homogenous Optic-Null Medium Performs as Optical Surface Transformation

Homogenous Optic-Null Medium Performs as Optical Surface Transformation Progress In Electromagnetics Research, Vol. 151, 169 173, 2015 Homogenous Optic-Null Medium Performs as Optical Surface Transformation Fei Sun 1 and Sailing He1, 2, * Abstract An optical surface transformation

More information

arxiv: v2 [physics.optics] 12 May 2008

arxiv: v2 [physics.optics] 12 May 2008 Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays arxiv:0804.2942v2 [physics.optics] 12 May 2008 Hou-Tong Chen 1, Hong Lu 2, Abul K. Azad 1, Richard D.

More information

Superconductivity Induced Transparency

Superconductivity Induced Transparency Superconductivity Induced Transparency Coskun Kocabas In this paper I will discuss the effect of the superconducting phase transition on the optical properties of the superconductors. Firstly I will give

More information

arxiv: v1 [physics.optics] 13 Nov 2014

arxiv: v1 [physics.optics] 13 Nov 2014 arxiv:1411.377v1 [physics.optics] 13 Nov 214 High quality factor, fully switchable THz superconducting metasurface G. Scalari, 1, a) C. Maissen, 1 S. Cibella, R. Leoni, 2 and J. Faist 1 1) Institute of

More information

Super-reflection and Cloaking Based on Zero Index Metamaterial

Super-reflection and Cloaking Based on Zero Index Metamaterial Super-reflection and Cloaking Based on Zero Index Metamaterial Jiaming Hao, Wei Yan, and Min Qiu Photonics and Microwave ngineering, Royal Institute of Technology (KTH), lectrum 9, 164 4, Kista, Sweden

More information

NOVEL BROADBAND TERAHERTZ NEGATIVE REFRACTIVE INDEX METAMATERIALS: ANALYSIS AND EXPERIMENT

NOVEL BROADBAND TERAHERTZ NEGATIVE REFRACTIVE INDEX METAMATERIALS: ANALYSIS AND EXPERIMENT Progress In Electromagnetics Research, PIER 64, 25 218, 26 NOVEL BROADBAND TERAHERTZ NEGATIVE REFRACTIVE INDEX METAMATERIALS: ANALYSIS AND EXPERIMENT N. Wongkasem and A. Akyurtlu Department of Electrical

More information

Engineering heavily doped silicon for broadband absorber in the terahertz regime

Engineering heavily doped silicon for broadband absorber in the terahertz regime Engineering heavily doped silicon for broadband absorber in the terahertz regime Mingbo Pu, Min Wang, Chenggang Hu, Cheng Huang, Zeyu Zhao, Yanqin Wang, and Xiangang Luo * State Key Laboratory of Optical

More information

PERFECT METAMATERIAL ABSORBER WITH DUAL BANDS

PERFECT METAMATERIAL ABSORBER WITH DUAL BANDS Progress In Electromagnetics Research, Vol. 108, 37 49, 2010 PERFECT METAMATERIAL ABSORBER WITH DUAL BANDS M.-H. Li, H.-L. Yang, and X.-W. Hou College of Physical Science and Technology Huazhong Normal

More information

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Progress In Electromagnetics Research M, Vol. 34, 171 179, 2014 Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Parsa Pirouznia * and Bahram Azizollah Ganji Abstract

More information

Polarization insensitive metamaterial absorber based on E-shaped all-dielectric structure

Polarization insensitive metamaterial absorber based on E-shaped all-dielectric structure JOURNAL OF ADVANCED DIELECTRICS Vol. 5, No. 1 (2015) 1550009 (6 pages) The Authors DOI: 10.1142/S2010135X15500095 Polarization insensitive metamaterial absorber based on E-shaped all-dielectric structure

More information

A Simple Unidirectional Optical Invisibility Cloak Made of Water

A Simple Unidirectional Optical Invisibility Cloak Made of Water Progress In Electromagnetics Research, Vol. 146, 1 5, 2014 A Simple Unidirectional Optical Invisibility Cloak Made of Water Bin Zheng 1, 2, Lian Shen 1, 2, Zuozhu Liu 1, 2, Huaping Wang 1, 3, *, Xianmin

More information

U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution

U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution Mustafa Turkmen 1,2,3, Serap Aksu 3,4, A. Engin Çetin 2,3, Ahmet A. Yanik 2,3, Alp Artar 2,3, Hatice Altug 2,3,4, * 1 Electrical

More information

TUNING OF RESONANCE FREQUENCY IN ARRAY OF SPLIT-RING RESONATORS IN TERAHERTZ RANGE

TUNING OF RESONANCE FREQUENCY IN ARRAY OF SPLIT-RING RESONATORS IN TERAHERTZ RANGE Lithuanian Journal of Physics, Vol. 54, No. 1, pp. 15 19 (2014) Lietuvos mokslų akademija, 2014 TUNING OF RESONANCE FREQUENCY IN ARRAY OF SPLIT-RING RESONATORS IN TERAHERTZ RANGE G. Šlekas, Ž. Kancleris,

More information

Negative magnetic permeability of split ring resonators in the visible light region

Negative magnetic permeability of split ring resonators in the visible light region Optics Communications 8 () 3 3.elsevier.com/locate/optcom Negative magnetic permeability of split ring resonators in the visible light region Atsushi Ishikaa a,b, Takuo Tanaka a, * a Nanophotonics Laboratory,

More information

MEMS Based Structurally Tunable Metamaterials at Terahertz Frequencies

MEMS Based Structurally Tunable Metamaterials at Terahertz Frequencies DOI 10.1007/s10762-010-9646-8 MEMS Based Structurally Tunable Metamaterials at Terahertz Frequencies Hu Tao & Andrew C. Strikwerda & Kebin Fan & Willie J. Padilla & Xin Zhang & Richard Douglas Averitt

More information

A Highly Tunable Sub-Wavelength Chiral Structure for Circular Polarizer

A Highly Tunable Sub-Wavelength Chiral Structure for Circular Polarizer A Highly Tunable Sub-Wavelength Chiral Structure for Circular Polarizer Menglin. L. N. Chen 1, Li Jun Jiang 1, Wei E. I. Sha 1 and Tatsuo Itoh 2 1 Dept. Of EEE, The University Of Hong Kong 2 EE Dept.,

More information

Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements

Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements T. Driscoll and D. N. Basov Physics Department, University of California-San Diego, La Jolla, California

More information

Yu-Sheng Lin, Chia-Yi Huang, and Chengkuo Lee, Member, IEEE

Yu-Sheng Lin, Chia-Yi Huang, and Chengkuo Lee, Member, IEEE IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 21, NO. 4, JULY/AUGUST 2015 2700207 Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism Yu-Sheng

More information

Magnetic response of split-ring resonator metamaterials: From effective medium dispersion to photonic band gaps

Magnetic response of split-ring resonator metamaterials: From effective medium dispersion to photonic band gaps PRAMANA c Indian Academy of Sciences Vol. 78, No. 3 journal of March 2012 physics pp. 483 492 Magnetic response of split-ring resonator metamaterials: From effective medium dispersion to photonic band

More information