Abstract. 1 Introduction

Size: px
Start display at page:

Download "Abstract. 1 Introduction"

Transcription

1 Some results on the strength evaluation of vaulted masonry structures D. Abruzzese, M. Como, G. Lanni Department of Civil Engineering, University of Rome 'Tor Vergata \ Italy Abstract Within the framework of the studies on masonry structures that use the notension model for the masonry material, the paper aims to analyze the strength of some vaulted masonry structures, very frequent in the context of historical buildings. The analysis has been first focused to the case of the vertical loads, examining both the possibility of symmetric and non symmetric collapse mechanism. The effect of increasing horizontal forces has been then analyzed. Some useful results have been obtained particularly in the case of the circular and the pointed arch with abutment piers. 1 Introduction There is an increasing need to understand the structural behaviour of historical masonry structures, mainly for their repair and maintenance. The assumption of a consistent model of the "masonry material" behaviour is a fundamental starting point because very seldom the traditional linear elastic analysis can be useful. The response of the masonry to the applied stresses has an unilateral nature: masonry, in fact, can sustain also high compressive stresses but can resist only feeble tensions. In this context the pioneering studies of Heyman [1,2,3] on the masonry arches and vaults still today stimulate further research and analysis. According to the Heyman approach four constitutive assumptions are

2 432 Architectural Studies, Materials & Analysis made: - sliding failure cannot occur; - masonry has not tensile strength; - masonry has infinite compressive strength; - masonry is rigid under compressive stresses. These assumptions reveal particularly useful to analyze the strength of masonry structures when the failure of the structure is more due to cracks openings than to material crushing. With the above assumptions many problems of the behaviour of masonry arches and cylindrical vaults have been studied by Como et al. [4,5,6] in the framework of the Limit Analysis. In all the cases the failure mechanisms come out from the occurrence in the arches and piers of no dissipating hinges. In this context a classical problem is the evaluation of the thrust of the vaults loaded by their weight, in order to design abutments able to stand firm against overturning, or to analyze the actual behaviour of old masonry monuments. The determination of the failure mechanism of these vaulted structures can be considered as another aspect of the same problem. For a symmetric vaulted structure, with abutments piers and symmetrically loaded, the occurrence of a symmetric failure mechanism is usual taken for granted. This symmetric failure mechanism is characterized by the presence of two hinges symmetrically placed at the intrados of the vaulted arch, of a key hinge at the extrados of the vault and by the outside overturning of the piers (fig.l). Also a nonsymmetric mechanism could, on the other hand, occur at the failure. This nonsymmetric mechanism involves, on the contrary, overturning of a single pier and the presence of three hinges in the arch, as drawn in fig.2. fig.l fig.2 A second problem of relevant interest in seismic areas is the evaluation of the strength of the vaulted structures with abutments piers, loaded by their weights and by horizontal actions proportional to the same weights. In this case a non symmetric global mechanism as drawn infig.2generally occurs at

3 Architectural Studies, Materials & Analysis 433 the failure. Only if the piers are unusually squat a local failure of the only arch can occur. In the next the cases of the circular and the pointed arch will be particularly examined. Some simplified formulas will be presented in order to evaluate the collapse multiplier of the vertical loads acting on the arch and that one of the horizontal actions applied on the whole structure. Moreover the effect of a reinforcing chain will be also evaluated. 2 The circular masonry arch with abutment piers loaded by vertical forces. The scheme of the considered structure is drawn infig.3.let R be the inner radius of the arch and S its thickness; let also B and H be respectively the lower width and the height of the abutment piers. The loads are only vertical and are represented by the weights of the arch Q», distributed along the span, and the weight Qp of the piers, concentrated in the centers of gravity Gp. We will assume, on the other hand, that the forces acting on the vault, but not those acting on the piers, are increasing with the load multiplier X. itttttttttttv B \ 0 A A (i) f: *AB/\I/ "A a 8H "V. pb X fig.3 fig Symmetric collapse A single parameter % will define the symmetric mechanism, i.e. the position of the hinge localized at the intrados of the arch (fig.4). Let also AB and BC be the two portions of the half arch divided by this hinge, having weights respectively QAB and QBC. The two centers of gravity GAB and GBC of the two portions AB and BC are indicated in fig.4. They have distances from the centers of the respective chords given by:

4 434 Architectural Studies, Materials & Analysis ^Hv" 2- '2. where cp is the characteristic angle of the portion of arch (angles offig.4),and have coordinates x given by: >. i i TC s IAB+- cos- (1) and clk- YC sin^f- (3) where XA...YC are the coordinates of A,...,C in the local references system O.xy. The mechanism centers of rotation (!),(!,2) and (2) are shown infig.4 : in particular the coordinate x of (2) is: (2),= H + R. + - d,2), (4) If the part I rotates around the center (1) of an unitary angle, the part II rotates around (2) of an angle a given by: a = (1,21 (5) With all these elements we can write now the virtual work equation and obtain the expression of a kinematics multiplier for the symmetric mechanism: x:=- (6) The research of the minimum of the kinematics multiplier V varying the parameter cpe yields the symmetric collapse multiplier A,OS of the weights acting on the arch. A numerical analysis has shown that the hinge B forms at a distance from left springing given by 0.1L, where L is the span of the arch. With these assumptions we can produce easily the following simplified expression of the symmetric collapse multiplier A^,: Q. K. (7)

5 Architectural Studies, Materials & Analysis 435 where: R (8) (9) 2.2 Non-symmetric collapse In this case two parameters, the position angles cpe and cpc of the two hinges occurring inside the arch, define the mechanism (fig.6). Let so AB, BC and CD be the three portions in which the arch is divided by the internal hinges, having weights respectively QAB, QBC, QCD The three centers of gravity GAB, GBC and GCD of the three portions AB,BC and CD are indicated infig.6.they have distances from the centers of the respective chords given by (1) and coordinates x given by: G_ = MB cos-" (10) cos. +(%B-%c) _... (11) /Yc COS (Pc (12) where XA,. YD are the coordinates of A,...,D in the local references system 0,xy The mechanism centers of rotation (1),(1,2),(2), (2,3) and (3) are shown in fig.6 : in particular the coordinates of (2) are: (3)y(2,3)*-(3)%(2,3). (1.2)y-(l)y(2.3)y-(3)y (13) (2)y = (1,2)*-0)* 0,2),-OX (14) If the part I rotates around the center (1) of an unitary angle, the part II rotates around (2) of a and the part III rotates around the center (3) of (3 These angles are respectively:

6 436 Architectural Studies, Materials & Analysis ' " (3)x-(2,3)x With all these elements we can write now the virtual work equation and obtain the expression of the kinematics multiplier for the nonsymmetric mechanism: " "~ QAB[GABX - (Ox] + QBC<*[GBC* " (2) J + QcnP[GcD* ~ (3)*] The research of the minimum of the kinematics multiplier A** varying both the parameters cpe and cpc yields the non symmetric collapse multiplier of the weights acting on the arch. A numerical analysis has shown that the hinges B and C form at a distance from the left springing equal respectively to 0.5 L and 0.9 L. With these assumptions we can produce easily the following simplified expression of the nonsymmetric collapse multiplier Ao^ where: and b + 02 K. = (0 46C - 0.6) - 0.2(b ) (18) h b where h, b, s are defined by the (8). 2.3 Conclusion A numerical analysis has been performed proving that, even if the geometric parameters h, b, s change, it always occurs: K,>Kn (20) Thus it can be stated that the collapse mechanism for the circular arch with piers is symmetric as well the weight on the arch arises, and the collapse multiplier A,o is given by the (7). Empirical rules did exist for the design of the abutments: the seventeenth century architects knew the "Blondels" rule, for instance. (Heyman,[3J). This rule, on the other hand, did not involve neither the thickness of the arch or the

7 Architectural Studies, Materials & Analysis 437 height of the piers, both independently defined by some fixed ratios with the span of the arch. On the contrary, the simple formula obtained (7) puts clearly in evidence the influence of the various geometrical factors on the strength of the arch. 3 The circular masonry arch with abutment pier loaded by horizontal actions The scheme of the considered structure is drawn infig.5. The vertical loads are represented by the weight of the arch Qa, distributed along the span, and the weight Qp of the piers, concentrated in the gravity centers Gp. The horizontal actions are proportional to the vertical ones and increase with the multiplier X. fig.5 fig.6 In this case two parameters, the position angles (pa and cpe of the two hinges occurring inside the arch, define the mechanism. Let so AB, BC and CD the three portions in which the arch is divided by the internal hinges, having weights respectively QAB, QBC, QCD- The three centers of gravity GAB, GBC and GCD of the three arcs AB,BC and CD are indicated infig.6.they have distances from the centers of the respective chords given by (1), coordinates x given by (10),(11),(12) and coordinates y given by: 71 -Z-VB sm- (21) TIBC sin (22)

8 438 Architectural Studies, Materials & Analysis sin % (23) where XA,...YD are the coordinates of A,...,D in the local references system 0,xy The mechanism centers of rotation (1),(1,2),(2), (2,3) and (3) are shown in fig.6, and in particular the coordinates of (2) are given by (13),(14). If the part I rotates around the center (1) of an unitary angle, the part II rotates around (2) of a and the part III rotates around the center (3) of p. These angles are respectively given by (15). With all these elements we can write now the virtual work equation and obtain the expression of the kinematics multiplier K^ for the global mechanism: % = - "<ABl^AB* x BC BCx X CD CD* X pk_l^ (24) ~ ^-(l)j+qbc[g^-(2)ja + Q^[G^-(3)Jp + Q/"" The research of the minimum of the kinematics multiplier X*/ varying both the parameters cps and cpc yields the global collapse multiplier?ioh of the horizontal actions. A numerical analysis has shown that the hinges B and C form at a distance from the left springing equal respectively to 0.5 L and 0.9 L. With these assumptions we can produce easily the following simplified expression of the global collapse multiplier XOH: pb Q.K, 8h Q Sh where: *"*"{$ K, = [ C]-0.20(b ) (26) C 1.8 K^ = ^-[0.58-( s)c] (h ) (27) \^ l.o and C is given by (19). It is useful to observe that the term pb/8h which appears in the (25) represents the strength of the isolated pier respect to the overturning.

9 Architectural Studies, Materials & Analysis The pointed arch with abutment piers The results obtained in 2. and 3. have been extended to the case of the pointed arch, particularly frequent in the gothic architecture. A pointed arch is formed by two portions of circular arch, each having the inner radius R equal to the span L. The two portions meet exactly at the top of the pointed arch. The collapse mechanism under increasing vertical loads on the only arch is symmetric (fig.l) and the hinges localized at the intrados of the arch form at a distance from the springings equal to 0.05 L The collapse multiplier is given by a formula quite similar to the (7) if the expression (9) is substituted by the following one: L. n b (h + l.l s+0.87)^-j-^yj-0.15(b ) (28) The collapse mechanism under horizontal actions increasing proportionally to the weights is non symmetric(fig.2) and the hinges in the arch form at a distance from the left springing equal respectively to 0.4 L and 0.9 L The collapse multiplier is given by a formula quite similar to the (25) if the expressions (26), (27) and (19) are substituted by the following ones b + Olf 004C 1 h _ 1 + s I h + _ s b The effect of the reinforcing chain Very often the vaulted structures with abutments piers are reinforced with an iron chain which connects the springings. The effect of this additional elements on the collapse under horizontal or vertical actions is evaluable very easily. If we consider both a symmetric and a non symmetric collapse mechanism (fig.l and fig.2) and denote with 8 the rotation of the pier, the resistant work due to the uplifting of a pier is equal to QppB8, where p is the

10 440 Architectural Studies, Materials & Analysis geometric eccentricity of the pier weight respect to the external foot. If we add a reinforcing chain, this generally yields at the failure of the structure and the additional resistant work is equal to TO H8 if To is the yielding tension. Then the collapse multiplier formulas (7) and (25) for the circular arch and the corresponding ones for the pointed arch are completely usable substituting the real eccentricity p with a fictitious eccentricity p* equal to: (32) References 1. Heyman, J., The stone skeleton, Int. Journ. of Solids and Struct., 2, Heyman, J., Equilibrium of shell structures, Clarendon Press, Oxford Heyman, J. The masonry arch, Cambridge Press, Cambridge Como, M, A.Grimaldi, An unilateral Model for the Limit Analysis of Masonry Walls, Int. Congr. on Unilateral Problems in Structural Analysis, Ravello 1983, CISM, Springer Verlag, Como, M., A.Grimaldi, G.Lanni, New results on the horizontal strength evaluation of the masonry buildings and monuments, 9th World Conf. Earthquake Eng., Tokyo, Abruzzese, D, M.Como, G.Lanni, On the horizontal strength of the masonry cathedrals, ECEE9, Moscow, 1990

1. The general principles of the stability of masonry

1. The general principles of the stability of masonry On lines of thrust and stability of masonry arches V. Quintas D^arfamafzfo ok EsYrwcfwra? ^ ^z/?c6zczo^, E. 71&AM Universidad Politecnica de Madrid, Avda. Juan de Herrera, 4; Abstract The use of lines

More information

Basis of Structural Design

Basis of Structural Design Basis of Structural Design Course 2 Structural action: cables and arches Course notes are available for download at http://www.ct.upt.ro/users/aurelstratan/ Structural action Structural action: the way

More information

T4/1 Analysis of a barrel vault simplified calculation

T4/1 Analysis of a barrel vault simplified calculation T4. MASONRY STRUCTURES 1/4 T4/1 Analysis of a barrel vault simplified calculation Exercise: Check the given masonry vault for symmetrical loading! ata: q k = 4 kn/m (live load) ρ masonry = 17 kn/m 3 (specific

More information

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling F. Portioli, L. Cascini, R. Landolfo University of Naples Federico II, Italy P. Foraboschi IUAV University,

More information

PLASTICITY, COULOMB FRICTION AND SLIDING IN THE LIMIT ANALYSIS OF MASONRY ARCHES

PLASTICITY, COULOMB FRICTION AND SLIDING IN THE LIMIT ANALYSIS OF MASONRY ARCHES Arch Bridges ARCH 04 P. Roca and E. Oñate (Eds) CIMNE, Barcelona, 2004 PLASTICITY, COULOMB FRICTION AND SLIDING IN THE LIMIT ANALYSIS OF MASONRY ARCHES A. Sinopoli *, M. Rapallini * and Pierre Smars *

More information

Elio Sacco. Dipartimento di Ingegneria Civile e Meccanica Università di Cassino e LM

Elio Sacco. Dipartimento di Ingegneria Civile e Meccanica Università di Cassino e LM Elio Sacco Dipartimento di Ingegneria Civile e Meccanica Università di Cassino e LM The no-tension material model is adopted to evaluate the collapse load. y Thrust curve of the arch extrados intrados

More information

Proceedings of the Third International Congress on Construction History, Cottbus, May 2009

Proceedings of the Third International Congress on Construction History, Cottbus, May 2009 Proceedings of the Third International Congress on Construction History, Cottbus, May 2009 La Coupe des Pierres Jacques Heyman University of Cambridge, UK ABSTRACT: The Author discusses the methods of

More information

LIMIT LOAD OF A MASONRY ARCH BRIDGE BASED ON FINITE ELEMENT FRICTIONAL CONTACT ANALYSIS

LIMIT LOAD OF A MASONRY ARCH BRIDGE BASED ON FINITE ELEMENT FRICTIONAL CONTACT ANALYSIS 5 th GRACM International Congress on Computational Mechanics Limassol, 29 June 1 July, 2005 LIMIT LOAD OF A MASONRY ARCH BRIDGE BASED ON FINITE ELEMENT FRICTIONAL CONTACT ANALYSIS G.A. Drosopoulos I, G.E.

More information

Chapter 12. Static Equilibrium and Elasticity

Chapter 12. Static Equilibrium and Elasticity Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial

More information

Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati

Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati Module 3 Lecture 6 Internal Forces Today, we will see analysis of structures part

More information

CHAPTER The linear arch

CHAPTER The linear arch CHAPTER 6 The Romans were the first to use arches as major structural elements, employing them, mainly in semicircular form, in bridge and aqueduct construction and for roof supports, particularly the

More information

Seismic Assessment of Stone Arched Bridges

Seismic Assessment of Stone Arched Bridges Seismic Assessment of Stone Arched Bridges J. Kiyono & A. Furukawa Department of Urban Management, Kyoto University, Kyoto K. Toki Disaster Mitigation of Urban Cultural Heritage, Ritsumeikan University,

More information

TABLE OF CONTENTS SECTION TITLE PAGE 2 PRINCIPLES OF SEISMIC ISOLATION OF BRIDGES 3

TABLE OF CONTENTS SECTION TITLE PAGE 2 PRINCIPLES OF SEISMIC ISOLATION OF BRIDGES 3 TABLE OF CONTENTS SECTION TITLE PAGE 1 INTRODUCTION 1 2 PRINCIPLES OF SEISMIC ISOLATION OF BRIDGES 3 3 ANALYSIS METHODS OF SEISMICALLY ISOLATED BRIDGES 5 3.1 Introduction 5 3.2 Loadings for the Analysis

More information

The Islamic University of Gaza Department of Civil Engineering ENGC Design of Spherical Shells (Domes)

The Islamic University of Gaza Department of Civil Engineering ENGC Design of Spherical Shells (Domes) The Islamic University of Gaza Department of Civil Engineering ENGC 6353 Design of Spherical Shells (Domes) Shell Structure A thin shell is defined as a shell with a relatively small thickness, compared

More information

EVALUATION OF COLLAPSE LOAD FOR MASONRY WALLS

EVALUATION OF COLLAPSE LOAD FOR MASONRY WALLS 10 th Canadian Masonry Symposium, Banff, Alberta, June 8 12, 2005 EVALUATION OF COLLAPSE LOAD FOR MASONRY WALLS C. Anselmi 1 and E. De Rosa 2 and L. Fino 3 1 Associate Professor, Dipartimento di Costruzioni

More information

EARTHQUAKE SAFETY OF AN ARCH-GRAVITY DAM WITH A HORIZONTAL CRACK IN THE UPPER PORTION OF THE DAM

EARTHQUAKE SAFETY OF AN ARCH-GRAVITY DAM WITH A HORIZONTAL CRACK IN THE UPPER PORTION OF THE DAM EARTHQUAKE SAFETY OF AN ARCH-GRAVITY DAM WITH A HORIZONTAL CRACK IN THE UPPER PORTION OF THE DAM Martin WIELAND 1 And Sujan MALLA 2 SUMMARY A horizontal crack first appeared along the downstream wall of

More information

Fracture Mechanics of Non-Shear Reinforced R/C Beams

Fracture Mechanics of Non-Shear Reinforced R/C Beams Irina Kerelezova Thomas Hansen M. P. Nielsen Fracture Mechanics of Non-Shear Reinforced R/C Beams DANMARKS TEKNISKE UNIVERSITET Report BYG DTU R-154 27 ISSN 161-2917 ISBN 97887-7877-226-5 Fracture Mechanics

More information

LATERAL EARTH PRESSURE AND RETAINING STRUCTURES

LATERAL EARTH PRESSURE AND RETAINING STRUCTURES Topic Outline LATERAL EARTH PRESSURE AND RETAINING STRUCTURES Types of retaining structures Lateral earth pressure Earth pressure at rest Rankine s Theory Coulomb s Theory Cullman s graphic solution Braced

More information

Nonlinear Analyses on the medieval Ponte del Diavolo in Borgo a Mozzano (Italy)

Nonlinear Analyses on the medieval Ponte del Diavolo in Borgo a Mozzano (Italy) The Twelfth International Conference on Computational Structures Technology 2-5 September 2014 Naples, Italy CST2014 Nonlinear Analyses on the medieval Ponte del Diavolo in Borgo a Mozzano (Italy) A. De

More information

Experimental investigation on the torsion-shear interaction between stone blocks in frictional contact

Experimental investigation on the torsion-shear interaction between stone blocks in frictional contact Structural Studies, Repairs and Maintenance of Heritage Architecture XIV 429 Experimental investigation on the torsion-shear interaction between stone blocks in frictional contact C. Casapulla & F. Portioli

More information

DESIGN RECOMMENDATIONS FOR REINFORCED MASONRY ARCHES

DESIGN RECOMMENDATIONS FOR REINFORCED MASONRY ARCHES rch Bridges RCH 04 P. Roca and E. Oñate (Eds) CIMNE, Barcelona, 004 DESIGN RECOMMENDTIONS FOR REINFORCED MSONRY RCHES Paulo B. ourenço *, Késio Palácio * and Joaquim O. Barros * * Universidade do Minho

More information

THE VOUSSOIR BEAM REACTION CURVE

THE VOUSSOIR BEAM REACTION CURVE THE VOUSSOIR BEAM REACTION CURVE Yossef H. Hatzor Ben-Gurion University, Department of Geological and Environmental Sciences Beer-Sheva, Israel, 84105 ABSTRACT: The influence of joint spacing (s) on the

More information

Unit Workbook 1 Level 4 ENG U8 Mechanical Principles 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit Workbook 1 Level 4 ENG U8 Mechanical Principles 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF) Unit 8: Mechanical Principles Unit Workbook 1 in a series of 4 for this unit Learning Outcome 1 Static Mechanical Systems Page 1 of 23 1.1 Shafts

More information

Structural Analysis I Chapter 4 - Torsion TORSION

Structural Analysis I Chapter 4 - Torsion TORSION ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

More information

STATICALLY INDETERMINATE STRUCTURES

STATICALLY INDETERMINATE STRUCTURES STATICALLY INDETERMINATE STRUCTURES INTRODUCTION Generally the trusses are supported on (i) a hinged support and (ii) a roller support. The reaction components of a hinged support are two (in horizontal

More information

ROCKING RESPONSE OF MASONRY BLOCK STRUCTURES USING MATHEMATICAL PROGRAMMING

ROCKING RESPONSE OF MASONRY BLOCK STRUCTURES USING MATHEMATICAL PROGRAMMING ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 10 June

More information

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata

More information

ADVANCEMENTS IN ARCH ANALYSIS AND DESIGN DURING THE AGE OF ENLIGHTENMENT EMILY GARRISON. B.S., Kansas State University, 2016 A REPORT

ADVANCEMENTS IN ARCH ANALYSIS AND DESIGN DURING THE AGE OF ENLIGHTENMENT EMILY GARRISON. B.S., Kansas State University, 2016 A REPORT ADVANCEMENTS IN ARCH ANALYSIS AND DESIGN DURING THE AGE OF ENLIGHTENMENT by EMILY GARRISON B.S., Kansas State University, 2016 A REPORT submitted in partial fulfillment of the requirements for the degree

More information

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members-

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members- CE5510 Advanced Structural Concrete Design - Design & Detailing Openings in RC Flexural Members- Assoc Pr Tan Kiang Hwee Department Civil Engineering National In this lecture DEPARTMENT OF CIVIL ENGINEERING

More information

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai Geosynthetics and Reinforced Soil Structures Reinforced Soil Walls continued Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai e-mail: gopalkr@iitm.ac.inac in Outline of the Lecture

More information

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

More information

ROSE SCHOOL SEISMIC VULNERABILILTY OF MASONRY ARCH BRIDGE WALLS

ROSE SCHOOL SEISMIC VULNERABILILTY OF MASONRY ARCH BRIDGE WALLS I.U.S.S. Istituto Universitario di Studi Superiori Università degli Studi di Pavia EUROPEAN SCHOOL OF ADVANCED STUDIES IN REDUCTION OF SEISMIC RISK ROSE SCHOOL SEISMIC VULNERABILILTY OF MASONRY ARCH BRIDGE

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns EMA 370 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns Columns Introduction Columns are vertical prismatic members subjected to compressive forces Goals: 1. Study the stability

More information

Author(s) Sawamura, Yasuo; Kishida, Kiyoshi;

Author(s) Sawamura, Yasuo; Kishida, Kiyoshi; Title Experimental study on seismic resis precast arch culvert using strong e Author(s) Sawamura, Yasuo; Kishida, Kiyoshi; Citation Japanese Geotechnical Society Speci 2(48): 1684-1687 Issue Date 216-1-29

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I

MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I Engineering Mechanics Branch of science which deals with the behavior of a body with the state of rest or motion, subjected to the action of forces.

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Response Modification of Urban Infrastructure. 7 Chapter 7 Rocking Isolation of Foundations. Kazuhiko Kawashima Tokyo Institute of Technology

Response Modification of Urban Infrastructure. 7 Chapter 7 Rocking Isolation of Foundations. Kazuhiko Kawashima Tokyo Institute of Technology Response Modification of Urban Infrastructure 7 Chapter 7 Rocking Isolation of Foundations Kazuhiko Kawashima Tokyo Institute of Technology Requirements of Foundations in Seismic Design Static Seismic

More information

New model for Shear Failure of R/C Beam-Column Joints. Hitoshi Shiohara

New model for Shear Failure of R/C Beam-Column Joints. Hitoshi Shiohara New model for Shear Failure of R/ Beam-olumn Joints Hitoshi Shiohara Dept. of Architectural Engineering, The University of Tokyo, Tokyo 3-8656, Japan; PH +8(3)584-659; FAX+8(3)584-656; email:shiohara@arch.t.u-tokyo.ac.jp

More information

GLOBAL EDITION. Structural Analysis. Ninth Edition in SI Units. R. C. Hibbeler

GLOBAL EDITION. Structural Analysis. Ninth Edition in SI Units. R. C. Hibbeler GLOAL EDITION Structural Analysis Ninth Edition in SI Units R. C. Hibbeler STRUCTURAL ANALYSIS NINTH EDITION IN SI UNITS R. C. HIELER SI Conversion by Kai eng Yap oston Columbus Indianapolis New York San

More information

1 Introduction to shells

1 Introduction to shells 1 Introduction to shells Transparent Shells. Form, Topology, Structure. 1. Edition. Hans Schober. 2016 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG Z = p R 1 Introduction to

More information

CHAPTER 5. T a = 0.03 (180) 0.75 = 1.47 sec 5.12 Steel moment frame. h n = = 260 ft. T a = (260) 0.80 = 2.39 sec. Question No.

CHAPTER 5. T a = 0.03 (180) 0.75 = 1.47 sec 5.12 Steel moment frame. h n = = 260 ft. T a = (260) 0.80 = 2.39 sec. Question No. CHAPTER 5 Question Brief Explanation No. 5.1 From Fig. IBC 1613.5(3) and (4) enlarged region 1 (ASCE 7 Fig. -3 and -4) S S = 1.5g, and S 1 = 0.6g. The g term is already factored in the equations, thus

More information

Theory of Structures

Theory of Structures SAMPLE STUDY MATERIAL Postal Correspondence Course GATE, IES & PSUs Civil Engineering Theory of Structures C O N T E N T 1. ARCES... 3-14. ROLLING LOADS AND INFLUENCE LINES. 15-9 3. DETERMINACY AND INDETERMINACY..

More information

SEISMIC STATIC ANALYSIS OF A STONE ARCH- PIERS SYSTEM

SEISMIC STATIC ANALYSIS OF A STONE ARCH- PIERS SYSTEM 1217 SEISMIC STATIC ANALYSIS OF A STONE ARCH- PIERS SYSTEM NICOLA AUCIELLO and MARIA ANNA DE ROSA Istituto di Scienza e Tecnica delle Costruzioni Facolta' di Ingegneria, Universita' Degli Studi della Basilicata

More information

STRESS, STRAIN AND DEFORMATION OF SOLIDS

STRESS, STRAIN AND DEFORMATION OF SOLIDS VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I -------------------------------------------------------------------------------------------------------------------------------

More information

Discrete Element Analysis of the Minimum Thickness of Oval Masonry Domes

Discrete Element Analysis of the Minimum Thickness of Oval Masonry Domes International Journal of Architectural Heritage Conservation, Analysis, and Restoration ISSN: 1558-3058 (Print) 1558-3066 (Online) Journal homepage: http://www.tandfonline.com/loi/uarc20 Discrete Element

More information

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS 3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

More information

Tension & Compression

Tension & Compression Tension & Compression Design of Structures_Basics Toni Kotnik Professor of Design of Structures Aalto University Department of Architecture Department of Civil Engineering Body as Structure Body Worlds

More information

3 Shearing stress. 3.1 Introduction

3 Shearing stress. 3.1 Introduction 3 Shearing stress 3.1 Introduction In Chapter 1 we made a study of tensile and compressive stresses, which we called direct stresses. There is another type of stress which plays a vital role in the behaviour

More information

Objectives: After completion of this module, you should be able to:

Objectives: After completion of this module, you should be able to: Chapter 12 Objectives: After completion of this module, you should be able to: Demonstrate your understanding of elasticity, elastic limit, stress, strain, and ultimate strength. Write and apply formulas

More information

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS Atsuhiko MACHIDA And Khairy H ABDELKAREEM SUMMARY Nonlinear D FEM was utilized to carry out inelastic

More information

Earthquake Resistant Design of Reinforced Soil Structures Using Pseudo Static Method

Earthquake Resistant Design of Reinforced Soil Structures Using Pseudo Static Method American J. of Engineering and Applied Sciences 2 (3): 565-572, 2009 ISSN 1941-7020 2009 Science Publications Earthquake Resistant Design of Reinforced Soil Structures Using Pseudo Static Method B. Munwar

More information

The structural behaviour of masonry vaults: Limit state analysis with finite friction

The structural behaviour of masonry vaults: Limit state analysis with finite friction Structural Analysis of Historic Construction D Ayala & Fodde (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-46872-5 The structural behaviour of masonry vaults: Limit state analysis with finite

More information

THE SIMPLIFIED ELASTO-PLASTIC ANALYSIS MODEL OF REINFORCED CONCRETE FRAMED SHEAR WALLS

THE SIMPLIFIED ELASTO-PLASTIC ANALYSIS MODEL OF REINFORCED CONCRETE FRAMED SHEAR WALLS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 64 THE SIMPLIFIED ELASTO-PLASTIC ANALYSIS MODEL OF REINFORCED CONCRETE FRAMED SHEAR WALLS Norikazu ONOZATO

More information

SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University

SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University SHEET PILE WALLS Mehdi Mokhberi Islamic Azad University Lateral Support In geotechnical engineering, it is often necessary to prevent lateral soil movements. Tie rod Anchor Sheet pile Cantilever retaining

More information

ANALYSIS OF STERSSES. General State of stress at a point :

ANALYSIS OF STERSSES. General State of stress at a point : ANALYSIS OF STERSSES General State of stress at a point : Stress at a point in a material body has been defined as a force per unit area. But this definition is some what ambiguous since it depends upon

More information

Influence of cracked inertia and moment-curvature curve idealization on pushover analysis

Influence of cracked inertia and moment-curvature curve idealization on pushover analysis Influence of cracked inertia and moment-curvature curve idealization on pushover analysis Vivier Aurélie, Sekkat Dayae, Montens Serge Systra, 3 avenue du Coq, 75009 Paris SUMMARY: The pushover analysis

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

More information

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 UNIT-I STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm

More information

This lesson is an important one since it will deal with forces acting in conjunction with one another, against one another, and the resultant of a

This lesson is an important one since it will deal with forces acting in conjunction with one another, against one another, and the resultant of a 1 This lesson is an important one since it will deal with forces acting in conjunction with one another, against one another, and the resultant of a number of forces acting through a common point (known

More information

UNIT-III ARCHES Introduction: Arch: What is an arch? Explain. What is a linear arch?

UNIT-III ARCHES Introduction: Arch: What is an arch? Explain. What is a linear arch? UNIT-III RCES rches as structural forms Examples of arch structures Types of arches nalysis of three hinged, two hinged and fixed arches, parabolic and circular arches Settlement and temperature effects.

More information

CH. 4 BEAMS & COLUMNS

CH. 4 BEAMS & COLUMNS CH. 4 BEAMS & COLUMNS BEAMS Beams Basic theory of bending: internal resisting moment at any point in a beam must equal the bending moments produced by the external loads on the beam Rx = Cc + Tt - If the

More information

CAPACITY DESIGN FOR TALL BUILDINGS WITH MIXED SYSTEM

CAPACITY DESIGN FOR TALL BUILDINGS WITH MIXED SYSTEM 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 2367 CAPACITY DESIGN FOR TALL BUILDINGS WITH MIXED SYSTEM M.UMA MAHESHWARI 1 and A.R.SANTHAKUMAR 2 SUMMARY

More information

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

More information

VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS

VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS The 4 th World Conference on Earthquake Engineering October -7, 008, Beijing, China VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS K.

More information

PLASTIC DEFORMATION CAPACITY OF H-SHAPED STEEL BEAM CONNECTED TO CONCRETE FILLED STEEL TUBULAR COLUMN

PLASTIC DEFORMATION CAPACITY OF H-SHAPED STEEL BEAM CONNECTED TO CONCRETE FILLED STEEL TUBULAR COLUMN PLASTIC DEFORMATION CAPACITY OF H-SHAPED STEEL BEAM CONNECTED TO CONCRETE FILLED STEEL TUBULAR COLUMN Y. Sameshima, M. Kido and K. Tsuda 3 Graduate student, Graduate School of Environmental Engineering,

More information

1 Static Plastic Behaviour of Beams

1 Static Plastic Behaviour of Beams 1 Static Plastic Behaviour of Beams 1.1 Introduction Many ductile materials which are used in engineering practice have a considerable reserve capacity beyond the initial yield condition. The uniaxial

More information

Earthquake Loads According to IBC IBC Safety Concept

Earthquake Loads According to IBC IBC Safety Concept Earthquake Loads According to IBC 2003 The process of determining earthquake loads according to IBC 2003 Spectral Design Method can be broken down into the following basic steps: Determination of the maimum

More information

INFLUENCE OF THE FRICTION COEFFICIENT ON THE SEISMIC BEHAVIOR OF INCA STONE MASONRY

INFLUENCE OF THE FRICTION COEFFICIENT ON THE SEISMIC BEHAVIOR OF INCA STONE MASONRY First European Conference on Earthquake Engineering and Seismology (a joint event of the 3 th ECEE & 30 th General Assembly of the ESC) Geneva, Switzerland, 3-8 September 006 Paper Number: 709 INFLUENCE

More information

Structural behaviour of traditional mortise-and-tenon timber joints

Structural behaviour of traditional mortise-and-tenon timber joints Structural behaviour of traditional mortise-and-tenon timber joints Artur O. Feio 1, Paulo B. Lourenço 2 and José S. Machado 3 1 CCR Construtora S.A., Portugal University Lusíada, Portugal 2 University

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

Collapse Mechanisms of Small-Scale Unreinforced Masonry Vaults

Collapse Mechanisms of Small-Scale Unreinforced Masonry Vaults Collapse Mechanisms of Small-Scale Unreinforced Masonry Vaults by Elaine Elizabeth Shapiro B.S. Civil and Environmental Engineering Virginia Polytechnic Institute and State University, 2010 Submitted to

More information

7.2 Design of minaret: Geometry:

7.2 Design of minaret: Geometry: 7. Design of minaret: Geometry: The figure below shows the longitudinal section in the minaret and the cross section will be shown when start calculate the self-weight of each section. Figure 7..1 Longitudinal

More information

Seismic Design of New R.C. Structures

Seismic Design of New R.C. Structures Seismic Design Philosophy Main Concepts Seismic Design of New R.C. Structures Prof. Stephanos E. Dritsos University of Patras, Greece. Energy dissipation Ductility Capacity design Learning from Earthquakes

More information

12 Bending stresses and direct stresses corn bined

12 Bending stresses and direct stresses corn bined 12 Bending stresses and direct stresses corn bined 12.1 Introduction Many instances arise in practice where a member undergoes bending combined with a thrust or pull. If a member carries a thrust, direct

More information

MECHANICAL PROPERTIES OF SOLIDS

MECHANICAL PROPERTIES OF SOLIDS Chapter Nine MECHANICAL PROPERTIES OF SOLIDS MCQ I 9.1 Modulus of rigidity of ideal liquids is (a) infinity. (b) zero. (c) unity. (d) some finite small non-zero constant value. 9. The maximum load a wire

More information

Earthquake Simulation Tests on a 1:5 Scale 10 - Story RC Residential Building Model

Earthquake Simulation Tests on a 1:5 Scale 10 - Story RC Residential Building Model Earthquake Simulation Tests on a 1:5 Scale 1 - Story RC Residential Building Model H. S. Lee, S. J. Hwang, K. B. Lee, & C. B. Kang Korea University, Seoul, Republic of Korea S. H. Lee & S. H. Oh Pusan

More information

CHAPTER 4: BENDING OF BEAMS

CHAPTER 4: BENDING OF BEAMS (74) CHAPTER 4: BENDING OF BEAMS This chapter will be devoted to the analysis of prismatic members subjected to equal and opposite couples M and M' acting in the same longitudinal plane. Such members are

More information

ENG1001 Engineering Design 1

ENG1001 Engineering Design 1 ENG1001 Engineering Design 1 Structure & Loads Determine forces that act on structures causing it to deform, bend, and stretch Forces push/pull on objects Structures are loaded by: > Dead loads permanent

More information

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE 07 3.0 ANALYSIS AND DESIGN OF RETAINING STRUCTURES LEARNING OUTCOMES Learning outcomes: At the end of this lecture/week the students would be able to: Understand

More information

STUDY ON THE RESPONSE OF ELASTOMERIC BEARINGS WITH 3D NUMERICAL SIMULATIONS AND EXPERIMENTAL VALIDATION

STUDY ON THE RESPONSE OF ELASTOMERIC BEARINGS WITH 3D NUMERICAL SIMULATIONS AND EXPERIMENTAL VALIDATION D. Forcellini, S. Mitoulis, K. N. Kalfas COMPDYN 27 6 th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis (eds.) Rhodes

More information

Numerical simulations of a full scale load test on a stone masonry arch bridge

Numerical simulations of a full scale load test on a stone masonry arch bridge Historical Constructions, P.B. Lourenço, P. Roca (Eds.), Guimarães, 21 739 Numerical simulations of a full scale load test on a stone masonry arch bridge J. Alfaiate Prof. Auxiliar, Instituto Superior

More information

AXIAL COLLAPSE OF REINFORCED CONCRETE COLUMNS

AXIAL COLLAPSE OF REINFORCED CONCRETE COLUMNS 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 699 AXIAL COLLAPSE OF REINFORCED CONCRETE COLUMNS Manabu YOSHIMURA, Yoshikazu TAKAINE and Takaya NAKAMURA

More information

ENERGY DIAGRAM w/ HYSTERETIC

ENERGY DIAGRAM w/ HYSTERETIC ENERGY DIAGRAM ENERGY DIAGRAM w/ HYSTERETIC IMPLIED NONLINEAR BEHAVIOR STEEL STRESS STRAIN RELATIONSHIPS INELASTIC WORK DONE HYSTERETIC BEHAVIOR MOMENT ROTATION RELATIONSHIP IDEALIZED MOMENT ROTATION DUCTILITY

More information

Eurocode 8 Part 3: Assessment and retrofitting of buildings

Eurocode 8 Part 3: Assessment and retrofitting of buildings in the Euro-Mediterranean Area Eurocode 8 Part 3: Assessment and retrofitting of buildings Paolo Emilio Pinto Università di Roma La Sapienza Urgency of guidance documents for assessment and retrofit in

More information

Theory of structure I 2006/2013. Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES

Theory of structure I 2006/2013. Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES Introduction A structure refers to a system of connected parts used to support a load. Important examples related to civil engineering include buildings,

More information

Solution: T, A1, A2, A3, L1, L2, L3, E1, E2, E3, P are known Five equations in five unknowns, F1, F2, F3, ua and va

Solution: T, A1, A2, A3, L1, L2, L3, E1, E2, E3, P are known Five equations in five unknowns, F1, F2, F3, ua and va ME 323 Examination # 1 February 18, 2016 Name (Print) (Last) (First) Instructor PROBLEM #1 (20 points) A structure is constructed from members 1, 2 and 3, with these members made up of the same material

More information

INFLUENCE OF LOADING RATIO ON QUANTIFIED VISIBLE DAMAGES OF R/C STRUCTURAL MEMBERS

INFLUENCE OF LOADING RATIO ON QUANTIFIED VISIBLE DAMAGES OF R/C STRUCTURAL MEMBERS Paper N 1458 Registration Code: S-H1463506048 INFLUENCE OF LOADING RATIO ON QUANTIFIED VISIBLE DAMAGES OF R/C STRUCTURAL MEMBERS N. Takahashi (1) (1) Associate Professor, Tohoku University, ntaka@archi.tohoku.ac.jp

More information

A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES

A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES Konuralp Girgin (Ph.D. Thesis, Institute of Science and Technology,

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601. Lecture no. 6: SHEAR AND TORSION

Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601. Lecture no. 6: SHEAR AND TORSION Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 6: SHEAR AND TORSION Reinforced

More information

Foundation Engineering Prof. Dr N.K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee

Foundation Engineering Prof. Dr N.K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee Foundation Engineering Prof. Dr N.K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee Module 01 Lecture - 03 Shallow Foundation So, in the last lecture, we discussed the

More information

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONE-WAY SLABS A. J. Clark School of Engineering Department of Civil

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAALLI - 6113. QUESTION WITH ANSWERS DEARTMENT : CIVIL SEMESTER: V SUB.CODE/ NAME: CE 5 / Strength of Materials UNIT 3 COULMNS ART - A ( marks) 1. Define columns

More information

A NEW SIMPLIFIED AND EFFICIENT TECHNIQUE FOR FRACTURE BEHAVIOR ANALYSIS OF CONCRETE STRUCTURES

A NEW SIMPLIFIED AND EFFICIENT TECHNIQUE FOR FRACTURE BEHAVIOR ANALYSIS OF CONCRETE STRUCTURES Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDFCATO Publishers, D-79104 Freiburg, Germany A NEW SMPLFED AND EFFCENT TECHNQUE FOR FRACTURE BEHAVOR ANALYSS OF CONCRETE STRUCTURES K.

More information

Only for Reference Page 1 of 18

Only for Reference  Page 1 of 18 Only for Reference www.civilpddc2013.weebly.com Page 1 of 18 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER II EXAMINATION WINTER 2013 Subject Code: X20603 Date: 26-12-2013 Subject

More information

The Ultimate Load-Carrying Capacity of a Thin-Walled Shuttle Cylinder Structure with Cracks under Eccentric Compressive Force

The Ultimate Load-Carrying Capacity of a Thin-Walled Shuttle Cylinder Structure with Cracks under Eccentric Compressive Force The Ultimate Load-Carrying Capacity of a Thin-Walled Shuttle Cylinder Structure with Cracks under Eccentric Compressive Force Cai-qin Cao *, Kan Liu, Jun-zhe Dong School of Science, Xi an University of

More information

The static behavior of historical vaults and cupolas Zachowanie statyczne historycznych sklepień i kopuł

The static behavior of historical vaults and cupolas Zachowanie statyczne historycznych sklepień i kopuł NAUKA SCIENCE Alessandro Baratta 1, Ottavia Corbi 2 The static behavior of historical vaults and cupolas Zachowanie statyczne historycznych sklepień i kopuł Keywords: Masonry behaviour, Masonry vaults,

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration Module 15 Lecture 38 Vibration of Rigid Bodies Part-1 Today,

More information