Unit-1. 10th grade. Elective Fizx. Force & Motion. Solutions 1.1 Vectors page Two vectors are given in the following figure.

Size: px
Start display at page:

Download "Unit-1. 10th grade. Elective Fizx. Force & Motion. Solutions 1.1 Vectors page Two vectors are given in the following figure."

Transcription

1 page Two vectors are given in the following figure. Draw the following vectors by using the parallelogram method. a) -B + 2A b) 2B - A c) A -B

2 page Three vectors are given in the following figure. Draw the following vectors by using the tip-totail method. a) 3A +B - C b) B +C - 2A

3 page Three vectors are given in the following figure. Draw the following vectors by using the parallelogram method. a) A b) 2B - A c) B +C

4 page Five vectors are given in the following figure. What is the magnitude of the resultant vector? (The figure is composed of identical squares and one side of each square is supposed to be equal to 1 cm.)

5 page The resultant vector of five vectors and four of five vectors are given in the following figure. (The figure is composed of identical squares and one side of each square is supposed to be equal to 1 cm.) Draw the fifth vector and calculate the magnitude of that vector.

6 page Three vectors are given in the following figure. (The figure is composed of identical squares and one side of each square is supposed to be equal to 1 cm.) a) What is the magnitude of vector B? b) What is the magnitude of vector A?

7 page Two vectors applied on point O are given in the following figure. (The figure is composed of identical squares and one side of each square is supposed to be equal to 1 cm.) Draw vector A and calculate the magnitude of that vector.

8 page Three vectors applied on point O are given in the following figure. Draw the resultant vector R that is expressed as A +B +C.

9 page Five displacement vectors and their magnitudes are given in the following figure. What is the magnitude of the resultant displacement in meters?

10 page A, B and C are force vectors whose magnitudes are 6 N, 3 3 N and 3 N respectively. What is the magnitude of the resultant vector in N?

11 page A, B, C, D and E are force vectors whose magnitudes are 8 N, 8 N, 3 N, 4 3 N and 4 3 N respectively. What is the magnitude of the resultant vector in N?

12 page Displacement vector has a magnitude of 20 m and it is directed 53 o north of east. Displacement vector has a magnitude of 4 m and it is directed due north. What are the magnitude and direction of vector A B A B in meters? R = 12 2 m

13 page To get from one office to another in a company, a man travels as follows: 15 paces due north, 25 paces 53 o east of north and finally 20 paces due east. How far is he from his starting point? R=50 paces

14 page Two vectors A and B are in the same plane as given in the following figure. Their magnitudes are 10 N and 20 N respectively. What is the magnitude of the resultant vector in N?

15 page Three vectors have magnitudes of 3 N, 4 N and 8 N. Which one of the following cannot be the magnitude of the resultant vector? A) 0 B) 2 C) 4 D) 6 E) 8 3 N + 4 N < 8 N So these vectors cannot form a triangle. Then the magnitude of the resultant vector cannot be equal to zero.

16 page Two vectors are given in the following figure. Which numbered vector (1,2,3,4 or 5) is the vector "b"?

17 page Two vectors are given in the following figure. Which numbered vector (1,2,3,4 or 5) is the vector "c"?

18 page Two vectors are given in the following figure. K +L +M = 0 If then which numbered vector is the vector "M"?

AP Physics C Mechanics Vectors

AP Physics C Mechanics Vectors 1 AP Physics C Mechanics Vectors 2015 12 03 www.njctl.org 2 Scalar Versus Vector A scalar has only a physical quantity such as mass, speed, and time. A vector has both a magnitude and a direction associated

More information

Physics 12. Chapter 1: Vector Analysis in Two Dimensions

Physics 12. Chapter 1: Vector Analysis in Two Dimensions Physics 12 Chapter 1: Vector Analysis in Two Dimensions 1. Definitions When studying mechanics in Physics 11, we have realized that there are two major types of quantities that we can measure for the systems

More information

Objectives and Essential Questions

Objectives and Essential Questions VECTORS Objectives and Essential Questions Objectives Distinguish between basic trigonometric functions (SOH CAH TOA) Distinguish between vector and scalar quantities Add vectors using graphical and analytical

More information

Review. Projectile motion is a vector. - Has magnitude and direction. When solving projectile motion problems, draw it out

Review. Projectile motion is a vector. - Has magnitude and direction. When solving projectile motion problems, draw it out Projectile Motion Review Projectile motion is a vector - Has magnitude and direction When solving projectile motion problems, draw it out Two methods to drawing out vectors: 1. Tail-to-tip method 2. Parallelogram

More information

2- Scalars and Vectors

2- Scalars and Vectors 2- Scalars and Vectors Scalars : have magnitude only : Length, time, mass, speed and volume is example of scalar. v Vectors : have magnitude and direction. v The magnitude of is written v v Position, displacement,

More information

Main Ideas in Class Today

Main Ideas in Class Today Main Ideas in Class Today After today, you should be able to: Understand vector notation Use basic trigonometry in order to find the x and y components of a vector (only right triangles) Add and subtract

More information

4/13/2015. I. Vectors and Scalars. II. Addition of Vectors Graphical Methods. a. Addition of Vectors Graphical Methods

4/13/2015. I. Vectors and Scalars. II. Addition of Vectors Graphical Methods. a. Addition of Vectors Graphical Methods I. Vectors and Scalars A vector has magnitude as well as direction. Some vector quantities: displacement, velocity, force, momentum A scalar has only a magnitude. Some scalar quantities: mass, time, temperature

More information

Chapter 2 Mechanical Equilibrium

Chapter 2 Mechanical Equilibrium Chapter 2 Mechanical Equilibrium I. Force (2.1) A. force is a push or pull 1. A force is needed to change an object s state of motion 2. State of motion may be one of two things a. At rest b. Moving uniformly

More information

Student Exploration: Vectors

Student Exploration: Vectors Name: Date: Student Exploration: Vectors Vocabulary: component, dot product, magnitude, resultant, scalar, unit vector notation, vector Prior Knowledge Question (Do this BEFORE using the Gizmo.) An airplane

More information

Coordinate Systems. Chapter 3. Cartesian Coordinate System. Polar Coordinate System

Coordinate Systems. Chapter 3. Cartesian Coordinate System. Polar Coordinate System Chapter 3 Vectors Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels instructions

More information

Section 1.4: Adding and Subtracting Linear and Perpendicular Vectors

Section 1.4: Adding and Subtracting Linear and Perpendicular Vectors Section 1.4: Adding and Subtracting Linear and Perpendicular Vectors Motion in two dimensions must use vectors and vector diagrams. Vector Representation: tail head magnitude (size): given by the length

More information

Homework due Nov 28 Physics

Homework due Nov 28 Physics Homework due Nov 28 Physics Name Base your answers to questions 1 through 4 on the information and vector diagram below and on your knowledge of physics. A hiker starts at point P and walks 2.0 kilometers

More information

Vectors. Slide 2 / 36. Slide 1 / 36. Slide 3 / 36. Slide 4 / 36. Slide 5 / 36. Slide 6 / 36. Scalar versus Vector. Determining magnitude and direction

Vectors. Slide 2 / 36. Slide 1 / 36. Slide 3 / 36. Slide 4 / 36. Slide 5 / 36. Slide 6 / 36. Scalar versus Vector. Determining magnitude and direction Slide 1 / 3 Slide 2 / 3 Scalar versus Vector Vectors scalar has only a physical quantity such as mass, speed, and time. vector has both a magnitude and a direction associated with it, such as velocity

More information

Pre-Calculus Vectors

Pre-Calculus Vectors Slide 1 / 159 Slide 2 / 159 Pre-Calculus Vectors 2015-03-24 www.njctl.org Slide 3 / 159 Table of Contents Intro to Vectors Converting Rectangular and Polar Forms Operations with Vectors Scalar Multiples

More information

Definitions In physics we have two types of measurable quantities: vectors and scalars.

Definitions In physics we have two types of measurable quantities: vectors and scalars. 1 Definitions In physics we have two types of measurable quantities: vectors and scalars. Scalars: have magnitude (magnitude means size) only Examples of scalar quantities include time, mass, volume, area,

More information

Mechanics 1. Motion MEI, 20/10/08 1/5. Chapter Assessment

Mechanics 1. Motion MEI, 20/10/08 1/5. Chapter Assessment Chapter Assessment Motion. A snail moving across the lawn for her evening constitutional crawl is attracted to a live wire. On reaching the wire her speed increases at a constant rate and it doubles from.

More information

Vectors. Introduction. Prof Dr Ahmet ATAÇ

Vectors. Introduction. Prof Dr Ahmet ATAÇ Chapter 3 Vectors Vectors Vector quantities Physical quantities that have both n u m e r i c a l a n d d i r e c t i o n a l properties Mathematical operations of vectors in this chapter A d d i t i o

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 36 Slide 2 / 36 P Physics - Mechanics Vectors 2015-12-03 www.njctl.org Scalar Versus Vector Slide 3 / 36 scalar has only a physical quantity such as mass, speed, and time. vector has both a magnitude

More information

VECTORS REVIEW. ii. How large is the angle between lines A and B? b. What is angle C? 45 o. 30 o. c. What is angle θ? d. How large is θ?

VECTORS REVIEW. ii. How large is the angle between lines A and B? b. What is angle C? 45 o. 30 o. c. What is angle θ? d. How large is θ? VECTOS EVIEW Solve the following geometric problems. a. Line touches the circle at a single point. Line etends through the center of the circle. i. What is line in reference to the circle? ii. How large

More information

PART A: MULTIPLE CHOICE QUESTIONS

PART A: MULTIPLE CHOICE QUESTIONS PART A: MULTIPLE CHOICE QUESTIONS QUESTION 1. Which of the following defines a scalar quantity? (a) (b) (c) (d) Magnitude only Magnitude and direction Direction None of the above QUESTION 2. Which of the

More information

AP Physics 1 Summer Assignment

AP Physics 1 Summer Assignment N a m e : _ AP Physics 1 Summer Assignment Concepts and Connections of Math in Physics: Review This assignment is designed to refresh the student with an understanding of conceptual math problems that

More information

Vectors. Example: Example: 2 cm. Parts of a vector: 3 cm. Body / Line Segment. Tail / Toe. Tip / Head

Vectors. Example: Example: 2 cm. Parts of a vector: 3 cm. Body / Line Segment. Tail / Toe. Tip / Head Vectors The study of motion involves the introduction of a variety of quantities which are used to describe the physical world. Examples of such quantities include distance, displacement, speed, velocity,

More information

Vector x-component (N) y-component (N)

Vector x-component (N) y-component (N) Name AP Physics C Summer Assignment 2014 Where calculations are required, show your work. Be smart about significant figures. Print these sheets and hand them in (neatly done) on the first day of class.

More information

AP PHYSICS B SUMMER ASSIGNMENT: Calculators allowed! 1

AP PHYSICS B SUMMER ASSIGNMENT: Calculators allowed! 1 P PHYSICS SUMME SSIGNMENT: Calculators allowed! 1 The Metric System Everything in physics is measured in the metric system. The only time that you will see English units is when you convert them to metric

More information

Mathematical review trigonometry vectors Motion in one dimension

Mathematical review trigonometry vectors Motion in one dimension Mathematical review trigonometry vectors Motion in one dimension Used to describe the position of a point in space Coordinate system (frame) consists of a fixed reference point called the origin specific

More information

Vectors. Examples of vectors include: displacement, velocity, acceleration, and force. Examples of scalars include: distance, speed, time, and volume.

Vectors. Examples of vectors include: displacement, velocity, acceleration, and force. Examples of scalars include: distance, speed, time, and volume. Math 150 Prof. Beydler 7.4/7.5 Notes Page 1 of 6 Vectors Suppose a car is heading NE (northeast) at 60 mph. We can use a vector to help draw a picture (see right). v A vector consists of two parts: 1.

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Units of Chapter 3 Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication of a Vector by a Scalar Adding Vectors

More information

Vectors. Introduction

Vectors. Introduction Chapter 3 Vectors Vectors Vector quantities Physical quantities that have both numerical and directional properties Mathematical operations of vectors in this chapter Addition Subtraction Introduction

More information

Parametric Equations, Vectors, and Vector Valued Functions. Different parametric equations can yield the same curve:

Parametric Equations, Vectors, and Vector Valued Functions. Different parametric equations can yield the same curve: Parametric Equations, Vectors, and Vector Valued Functions Different parametric equations can yield the same curve: x=t, y=t 2 for t in [ 1,1] and x=t 3, y=t 6 for t in [ 1,1] give the same parabolic arc,

More information

Chapter 1: Physical Quantities and Vectors

Chapter 1: Physical Quantities and Vectors Chapter 1: Physical Quantities and Vectors Chapter 2: Linear Motion Chapter 3: Curvilinear Motion Physics the science that deals with matter, energy, motion and force. Branches of Physics (1) Thermodynamics

More information

GENERAL PHYSICS (101 PHYS)

GENERAL PHYSICS (101 PHYS) INAYA MEDICAL COLLEGE (IMC) PHYS 101- LECTURE 1 GENERAL PHYSICS (101 PHYS) DR. MOHAMMED MOSTAFA EMAM LECTURES & CLASS ACTIVITIES https://inayacollegedrmohammedemam.wordpress.com/ Password: drmohammedemam

More information

AP Physics 1 Summer Assignment 2016

AP Physics 1 Summer Assignment 2016 AP Physics 1 Summer Assignment 2016 You need to do this assignment on your own paper AND YOU MUST SHOW ALL OF YOUR WORK TO RECEIVE CREDIT. You can put the answers on this assignment sheet or you can put

More information

8-1 Introduction to Vectors

8-1 Introduction to Vectors State whether each quantity described is a vector quantity or a scalar quantity. 1. a box being pushed at a force of 125 newtons This quantity has a magnitude of 125 newtons, but no direction is given.

More information

Speed how fast an object is moving (also, the magnitude of the velocity) scalar

Speed how fast an object is moving (also, the magnitude of the velocity) scalar Mechanics Recall Mechanics Kinematics Dynamics Kinematics The description of motion without reference to forces. Terminology Distance total length of a journey scalar Time instant when an event occurs

More information

Kinematics in Two Dimensions; Vectors

Kinematics in Two Dimensions; Vectors Kinematics in Two Dimensions; Vectors Vectors & Scalars!! Scalars They are specified only by a number and units and have no direction associated with them, such as time, mass, and temperature.!! Vectors

More information

P Physics Summer ssignment I. The dvanced placement eams are in early May which necessitates a very fast pace. This summer homework will allow us to start on the Physics subject matter immediately when

More information

10.1 Vectors. c Kun Wang. Math 150, Fall 2017

10.1 Vectors. c Kun Wang. Math 150, Fall 2017 10.1 Vectors Definition. A vector is a quantity that has both magnitude and direction. A vector is often represented graphically as an arrow where the direction is the direction of the arrow, and the magnitude

More information

CHAPTER 2. Motion Notes

CHAPTER 2. Motion Notes CHAPTER 2 Motion Notes DISTANCE AND DISPLACEMENT Distance and displacement are two quantities which may seem to mean the same thing, yet have distinctly different definitions and meanings. DISTANCE Distance

More information

Graphical Analysis; and Vectors

Graphical Analysis; and Vectors Graphical Analysis; and Vectors Graphs Drawing good pictures can be the secret to solving physics problems. It's amazing how much information you can get from a diagram. We also usually need equations

More information

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3 New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product reading assignment read chap 3 Most physical quantities are described by a single number or variable examples:

More information

BELLWORK feet

BELLWORK feet BELLWORK 1 A hot air balloon is being held in place by two people holding ropes and standing 35 feet apart. The angle formed between the ground and the rope held by each person is 40. Determine the length

More information

motionalongastraightlinemotionalon gastraightlinemotionalongastraightli nemotionalongastraightlinemotional ongastraightlinemotionalongastraigh

motionalongastraightlinemotionalon gastraightlinemotionalongastraightli nemotionalongastraightlinemotional ongastraightlinemotionalongastraigh motionalongastraightlinemotionalon Additional Mathematics NR/GC/ Addmaths gastraightlinemotionalongastraightli nemotionalongastraightlinemotional ongastraightlinemotionalongastraigh MOTION ALONG A STRAIGHT

More information

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units.

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units. Vectors and Scalars A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units. Scalar Example Speed Distance Age Heat Number

More information

General Physics I, Spring Vectors

General Physics I, Spring Vectors General Physics I, Spring 2011 Vectors 1 Vectors: Introduction A vector quantity in physics is one that has a magnitude (absolute value) and a direction. We have seen three already: displacement, velocity,

More information

Introduction to Vectors

Introduction to Vectors Introduction to Vectors Why Vectors? Say you wanted to tell your friend that you re running late and will be there in five minutes. That s precisely enough information for your friend to know when you

More information

AP Physics C - Summer Assignment Mr. Bartolotta - Half Hollow Hills HS West Fall 2017 Spring Hmmm..I think we need a bigger mule.

AP Physics C - Summer Assignment Mr. Bartolotta - Half Hollow Hills HS West Fall 2017 Spring Hmmm..I think we need a bigger mule. P Physics C - Summer ssignment Name Mr. artolotta - Half Hollow Hills HS West Fall 017 Spring 018 Hmmm..I think we need a bigger mule. This upcoming year in physics will be reexamining many concepts you

More information

Linear Motion 1. Scalars and Vectors. Scalars & Vectors. Scalars: fully described by magnitude (or size) alone. That is, direction is not involved.

Linear Motion 1. Scalars and Vectors. Scalars & Vectors. Scalars: fully described by magnitude (or size) alone. That is, direction is not involved. Linear Motion 1 Aristotle 384 B.C. - 322 B.C. Galileo 1564-1642 Scalars and Vectors The motion of objects can be described by words such as distance, displacement, speed, velocity, and acceleration. Scalars

More information

Motion. What is Physics? Part 1: Constant Speed. Lab Physics. September Ms. Levine 1

Motion. What is Physics? Part 1: Constant Speed. Lab Physics. September Ms. Levine 1 Motion Part 1: Constant Speed What is Physics? Physics is the study of the physical world (energy and matter) and how they are related. Ms. Levine 1 Create your own motion map What is the purpose of these

More information

Linear Motion. By Jack, Cole, Kate and Linus

Linear Motion. By Jack, Cole, Kate and Linus Linear Motion By Jack, Cole, Kate and Linus What is it? -Linear Motion is the study of motion, Kinematics, and Dynamics Motion Motion is dependent on the reference frame in which you are observing. If

More information

CHAPTER 2: VECTORS IN 3D

CHAPTER 2: VECTORS IN 3D CHAPTER 2: VECTORS IN 3D 2.1 DEFINITION AND REPRESENTATION OF VECTORS A vector in three dimensions is a quantity that is determined by its magnitude and direction. Vectors are added and multiplied by numbers

More information

Name. Welcome to AP Physics. I am very excited that you have signed up to take the AP Physics class.

Name. Welcome to AP Physics. I am very excited that you have signed up to take the AP Physics class. Name P Physics Summer ssignment Fall 013-014 Welcome to P Physics. I am very excited that you have signed up to take the P Physics class. You may ask I sure would why a summer packet? There is so much

More information

DISPLACEMENT AND FORCE IN TWO DIMENSIONS

DISPLACEMENT AND FORCE IN TWO DIMENSIONS DISPLACEMENT AND FORCE IN TWO DIMENSIONS Vocabulary Review Write the term that correctly completes the statement. Use each term once. coefficient of kinetic friction equilibrant static friction coefficient

More information

Lesson 7. Chapter 3: Two-Dimensional Kinematics COLLEGE PHYSICS VECTORS. Video Narrated by Jason Harlow, Physics Department, University of Toronto

Lesson 7. Chapter 3: Two-Dimensional Kinematics COLLEGE PHYSICS VECTORS. Video Narrated by Jason Harlow, Physics Department, University of Toronto COLLEGE PHYSICS Chapter 3: Two-Dimensional Kinematics Lesson 7 Video Narrated by Jason Harlow, Physics Department, University of Toronto VECTORS A quantity having both a magnitude and a direction is called

More information

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs

Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs Name Physics Honors Pd Date Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs Sketch velocity vs. time graphs corresponding to the following descriptions of the motion of an

More information

AP Physics 1 Summer Assignment

AP Physics 1 Summer Assignment P Physics 1 Summer ssignment 1. Scientific Notation: "#$%&''&()*+$,-#$&-.)*,-/$0"/1)1$0-&3'#415$$6-)7#$7"#$,*1(#-$)*$1)#*7)%)$*&7,7)&*$,*.$1)40')%/$7"#$8*)71$9:;

More information

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3. Quiz No. 1: Tuesday Jan. 31 Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.20 Chapter 3 Vectors and Two-Dimensional Kinematics Properties of

More information

UNIT I: MECHANICS Chapter 5: Projectile Motion

UNIT I: MECHANICS Chapter 5: Projectile Motion IMPORTANT TERMS: Component Projectile Resolution Resultant Satellite Scalar quantity Vector Vector quantity UNIT I: MECHANICS Chapter 5: Projectile Motion I. Vector and Scalar Quantities (5-1) A. Vector

More information

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity What is displacement, velocity and acceleration? what units do they have? vector vs scalar? One dimensional motion, and graphing Moving man worksheet moving man doc - todo Introduction to simple graphing

More information

Construct a line perpendicular to the line below that passes through point R.

Construct a line perpendicular to the line below that passes through point R. elp, ples LE ook s. s S e T s H s WRIG Cla #8 EOU Review Name #8R Name an angle or angles in the diagram described by each of the following. 1. Supplementary to Ð AOD 2. Adjacent & congruent to Ð AOE 3.

More information

Chapter 3: Introduction to Motion

Chapter 3: Introduction to Motion Chapter 3: Introduction to Motion Motion... Particle Models Vectors vs. Scalars Position, Displacement and Distance Velocity vs. Speed Instantaneous vs. Average Acceleration start time Particle motion

More information

Scalar & Vector tutorial

Scalar & Vector tutorial Scalar & Vector tutorial scalar vector only magnitude, no direction both magnitude and direction 1-dimensional measurement of quantity not 1-dimensional time, mass, volume, speed temperature and so on

More information

AP Physics 1 Summer Assignment

AP Physics 1 Summer Assignment P Physics Summer ssignment. Scientific Notation: The following are ordinary physics problems. Write the answer in scientific notation and simplify the units (π=3). a. T s 4. 50 kg. 0 0 kg s 3 = b. F Nm

More information

Force versus distance graph

Force versus distance graph Force versus distance graph Objectives Investigate examples of kinetic and potential energy and their transformations. Calculate work from the area under the force vs. distance graph. Relate the net work

More information

Parametric Functions and Vector Functions (BC Only)

Parametric Functions and Vector Functions (BC Only) Parametric Functions and Vector Functions (BC Only) Parametric Functions Parametric functions are another way of viewing functions. This time, the values of x and y are both dependent on another independent

More information

Determine whether the given lengths can be side lengths of a right triangle. 1. 6, 7, , 15, , 4, 5

Determine whether the given lengths can be side lengths of a right triangle. 1. 6, 7, , 15, , 4, 5 Algebra Test Review Name Instructor Hr/Blk Determine whether the given lengths can be side lengths of a right triangle. 1., 7, 8. 17, 1, 8.,, For the values given, a and b are legs of a right triangle.

More information

THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY

THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY Background Remember graphs are not just an evil thing your teacher makes you create, they are a means of communication. Graphs are a way of communicating

More information

Physics 40 Chapter 3: Vectors

Physics 40 Chapter 3: Vectors Physics 40 Chapter 3: Vectors Cartesian Coordinate System Also called rectangular coordinate system x-and y- axes intersect at the origin Points are labeled (x,y) Polar Coordinate System Origin and reference

More information

Find a vector equation for the line through R parallel to the line (PQ) (Total 6 marks)

Find a vector equation for the line through R parallel to the line (PQ) (Total 6 marks) 1. The points P( 2, 4), Q (3, 1) and R (1, 6) are shown in the diagram below. (a) Find the vector PQ. (b) Find a vector equation for the line through R parallel to the line (PQ). 2. The position vector

More information

Position and Displacement

Position and Displacement Position and Displacement Ch. in your text book Objectives Students will be able to: ) Explain the difference between a scalar and a vector quantity ) Explain the difference between total distance traveled

More information

Physics 20 Lesson 10 Vector Addition

Physics 20 Lesson 10 Vector Addition Physics 20 Lesson 10 Vector Addition I. Vector Addition in One Dimension (It is strongly recommended that you read pages 70 to 75 in Pearson for a good discussion on vector addition in one dimension.)

More information

3.1 Using Vectors 3.3 Coordinate Systems and Vector Components.notebook September 19, 2017

3.1 Using Vectors 3.3 Coordinate Systems and Vector Components.notebook September 19, 2017 Using Vectors A vector is a quantity with both a size (magnitude) and a direction. Figure 3.1 shows how to represent a particle s velocity as a vector. Section 3.1 Using Vectors The particle s speed at

More information

Vector Algebra August 2013

Vector Algebra August 2013 Vector Algebra 12.1 12.2 28 August 2013 What is a Vector? A vector (denoted or v) is a mathematical object possessing both: direction and magnitude also called length (denoted ). Vectors are often represented

More information

4. The diagram below represents two concurrent forces.

4. The diagram below represents two concurrent forces. 1. Two 20.-newton forces act concurrently on an object. What angle between these forces will produce a resultant force with the greatest magnitude? A) 0º B) 45º C) 90.º D) 180.º 2. Two forces act concurrently

More information

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS OBJECTIVES After studying the material of this chapter, the student should be able to: represent the magnitude and direction of a vector using a protractor

More information

Sierzega: Kinematics 10 Page 1 of 14

Sierzega: Kinematics 10 Page 1 of 14 Sierzega: Kinematics 10 Page 1 of 14 10.1 Hypothesize (Derive a Mathematical Model) Graphically we know that the area beneath a velocity vs. time graph line represents the displacement of an object. For

More information

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Preview Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Objectives

More information

Vectors. Graphical Method. Graphical Method. SEEMS SIMPLE? = 30.5 m/s. Graphical Method. Graphical Method (TIP TO TAIL) S

Vectors. Graphical Method. Graphical Method. SEEMS SIMPLE? = 30.5 m/s. Graphical Method. Graphical Method (TIP TO TAIL) S Vectors Graphical Method General discussion. Vector - A quantity which has magnitude and direction. Velocity, acceleration, Force, E Field, Mag Field, calar - A quantity which has magnitude only. (temp,

More information

8.1 The Language of Motion

8.1 The Language of Motion 8.1 The Language of Motion 1 VOCABULARY MAGNITUDE = size, amount or number (1, 15, 4..) DIRECTION = direction (east, west, left, up ) MAKE a FOLDABLE 3 Direction Makes Difference Jimmy lives 1 km from

More information

Math 103 Selected Homework Solutions, Section 3.9

Math 103 Selected Homework Solutions, Section 3.9 Math 103 Selected Homework Solutions, Section 3.9 9. Let s be the distance from the base of the light pole to the top of the man s shadow, and the distance from the light pole to the man. 15 s 6 s We know:

More information

F R. + F 3x. + F 2y. = (F 1x. j + F 3x. i + F 2y. i F 3y. i + F 1y. j F 2x. ) i + (F 1y. ) j. F 2x. F 3y. = (F ) i + (F ) j. ) j

F R. + F 3x. + F 2y. = (F 1x. j + F 3x. i + F 2y. i F 3y. i + F 1y. j F 2x. ) i + (F 1y. ) j. F 2x. F 3y. = (F ) i + (F ) j. ) j General comments: closed book and notes but optional one page crib sheet allowed. STUDY: old exams, homework and power point lectures! Key: make sure you can solve your homework problems and exam problems.

More information

AP Physics 1 SUMMER ASSIGNMENT

AP Physics 1 SUMMER ASSIGNMENT Name: P Physics 1 SUMME SSIGNMENT Welcome Welcome to P Physics 1 at Hardin Valley academy. For many of you, this will be your first full physics course. Fortunately, we will cover many of the concepts

More information

Exam Style C4 Vectors Questions - Solutions

Exam Style C4 Vectors Questions - Solutions Exam Style C4 Vectors Questions - Solutions 1) a) We use the equation (As ) (Simplifying the direction vector) or written as b) To find the coordinates where OC lies to r, we use the direction component

More information

Chapter 3. Vectors and Two-Dimensional Motion

Chapter 3. Vectors and Two-Dimensional Motion Chapter 3 Vectors and Two-Dimensional Motion 1 Vector vs. Scalar Review All physical quantities encountered in this text will be either a scalar or a vector A vector quantity has both magnitude (size)

More information

What is Relative Motion

What is Relative Motion RELATIVE MOTION What is Relative Motion Strictly speaking all motion is relative to something. Usually that something is a reference point that is assumed to be at rest (i.e. the earth). Motion can be

More information

Vectors v Scalars. Physics 1 st Six Weeks

Vectors v Scalars. Physics 1 st Six Weeks Vectors v Scalars Physics 1 st Six Weeks An Appetizer to Start... Vectors vs. Scalars In Physics all quantities are in two categories: scalars & vectors. Scalar quantities are described by magnitude (i.e.

More information

Experiment 3 Forces are Vectors

Experiment 3 Forces are Vectors Name Partner(s): Experiment 3 Forces are Vectors Objectives Preparation Pre-Lab Understand that some quantities in physics are vectors, others are scalars. Be able to perform vector addition graphically

More information

Scalars and Vectors I

Scalars and Vectors I Scalars and Vectors I Learning Outcome When you complete this module you will be able to: Define and identify scalar and vector quantities and solve simple vector problems graphically. Learning Objectives

More information

BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14.

BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14. For problems 9 use: u (,3) v (3, 4) s (, 7). w =. 3u v = 3. t = 4. 7u = u w (,3,5) 5. wt = t (,, 4) 6. Find the measure of the angle between w and t to the nearest degree. 7. Find the unit vector having

More information

Welcome back to Physics 215

Welcome back to Physics 215 Welcome back to Physics 215 Lecture 2-2 02-2 1 Last time: Displacement, velocity, graphs Today: Constant acceleration, free fall 02-2 2 2-2.1: An object moves with constant acceleration, starting from

More information

Physics 2A Chapter 1 - Vectors Fall 2017

Physics 2A Chapter 1 - Vectors Fall 2017 These notes are eight pages. That includes some diagrams, but I realize reading them could get a bit tedious. So here is a quick summary: A vector quantity is one for which direction is relevant, like

More information

CHAPTER 2: VECTORS IN 3D 2.1 DEFINITION AND REPRESENTATION OF VECTORS

CHAPTER 2: VECTORS IN 3D 2.1 DEFINITION AND REPRESENTATION OF VECTORS CHAPTER 2: VECTORS IN 3D 2.1 DEFINITION AND REPRESENTATION OF VECTORS A vector in three dimensions is a quantity that is determined by its magnitude and direction. Vectors are added and multiplied by numbers

More information

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83)

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83) Physics Chapter 3 Notes Section 3-1: Introduction to Vectors (pages 80-83) We can use vectors to indicate both the magnitude of a quantity, and the direction. Vectors are often used in 2- dimensional problems.

More information

The graphs above are based on the average data from our marble trials. What are the differences between these two graphs? Why do you suppose they are

The graphs above are based on the average data from our marble trials. What are the differences between these two graphs? Why do you suppose they are The graphs above are based on the average data from our marble trials. What are the differences between these two graphs? Why do you suppose they are different? What does each graph tell us about our experiment?

More information

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x()

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x() Typically, if a particle is moving along the x-axis at any time, t, x() t represents the position of the particle; along the y-axis, yt () is often used; along another straight line, st () is often used.

More information

Chapter 3 Solutions. *3.1 x = r cos θ = (5.50 m) cos 240 = (5.50 m)( 0.5) = 2.75 m. y = r sin θ = (5.50 m) sin 240 = (5.50 m)( 0.866) = 4.

Chapter 3 Solutions. *3.1 x = r cos θ = (5.50 m) cos 240 = (5.50 m)( 0.5) = 2.75 m. y = r sin θ = (5.50 m) sin 240 = (5.50 m)( 0.866) = 4. Chapter 3 Solutions *3.1 = r cos θ = (5.50 m) cos 240 = (5.50 m)( 0.5) = 2.75 m = r sin θ = (5.50 m) sin 240 = (5.50 m)( 0.866) = 4.76 m 3.2 (a) d = ( 2 1 ) 2 + ( 2 1 ) 2 = (2.00 [ 3.00] 2 ) + ( 4.00 3.00)

More information

AP Physics 1 Summer Assignment 2017

AP Physics 1 Summer Assignment 2017 P Physics 1 Summer ssignment 2017 The attached pages contain a brief review, hints, and example problems. It is hoped that based on your previous math knowledge and some review, this assignment will be

More information

Scalars distance speed mass time volume temperature work and energy

Scalars distance speed mass time volume temperature work and energy Scalars and Vectors scalar is a quantit which has no direction associated with it, such as mass, volume, time, and temperature. We sa that scalars have onl magnitude, or size. mass ma have a magnitude

More information

Scalars versus vectors

Scalars versus vectors Comprehension Use with textbook pages 344 347. Scalars versus vectors 1. Define the following terms. a) scalar b) vector c) magnitude d) reference point 2. Complete the following table. Quantity Symbol

More information