Chapter 1: Physical Quantities and Vectors

Size: px
Start display at page:

Download "Chapter 1: Physical Quantities and Vectors"

Transcription

1

2 Chapter 1: Physical Quantities and Vectors Chapter 2: Linear Motion Chapter 3: Curvilinear Motion

3 Physics the science that deals with matter, energy, motion and force. Branches of Physics (1) Thermodynamics (5) Quantum Physics (2) Optics (6) Nuclear Physics (3) Mechanics (7) Magnetism (4) Acoustics (8) Electricity

4 Physical Quantities Scalar Quantity quantities specified by magnitude only Ex. Time, Mass, Speed, Distance, Temperature, Volume, Area, Work, Energy. Vector Quantity quantities specified by both magnitude and directions. Ex. Velocity, Displacement, Acceleration, Force, Weight, Momentum, Impulse.

5 Forces are analyzed in a number of ways; it is common approach to establish a coordinate system to quantify the forces and their effects in a system or body. Since it is customary to assign the axes, the analysis may be coplanar (two-dimensional) or non-coplanar (three-dimensional).

6 A system of forces may be represented by a resultant force which has the same effect as the system. Forces on an object Equivalent Resultant Force 2N 1N 3N 2N 6N The resultant force, much like any other force, has magnitude and direction. The geometric sum of the forces will yield the resultant. 4N Resultant =0 6N 3N 3N

7 Coplanar Force Systems analyze forces acting on a body by taking their components along two designated axes. A force system can be identified into two main types: concurrent non-concurrent.

8 The resultant of concurrent forces must be defined by magnitude and direction. Magnitude represents the length of the vector while the direction is referred from the defined axis. Resultant Force

9 The equilibrant of the forces is a single vector that can balance two or more vectors - it is equal in magnitude as the resultant - opposite the direction of the resultant - acting along the same line of action as the resultant Resultant Force Equilibrant

10 Solutions to Vectors Problems: (1) Graphical Method (with the aid of ruler and protractor) (a) Parallelogram (b) Triangle Method (Tip-to-Tail Method) (c) Polygon Method (2) Analytical/Mathematical Method (a) Use of Pythagorean Theorem (b) Use of Sine/Cosine Law (c) Component Method

11 Example 1: Given: A = 150 lbs, 60ᵒ N of E B = 200 lbs, 20ᵒ S of E Find the resultant and its direction using graphical and analytical method.

12 Example 2: Given: A = 100 lbs, NE B = 150 lbs, 30ᵒ N of W C = 200 lbs, Due South Find the resultant and its direction using graphical and analytical method.

13 Example 3: In the final game of last year s regular season, south was playing New Greer Academy for the Conference Championship. In the last play of the game, star quarterback Avery took a snap from scrimmage and scooted backwards (northwards) 8.0 yards. He then ran sideways (westward out of the pocket for 12.0 yard before finally throwing a 34.0 yard pass directly downfield (southward) to Kendall for the game-winning touchdown. Determine the magnitude and direction of the ball s displacement.

14 Example 4: Four forces act concurrently at a point. Force A has a magnitude of 70 lb and is directed 30ᵒ N of E; force B has a magnitude of 60 lb and is directed westward; force C has a magnitude of 50 lb and is directed southward; and force D has a magnitude of 40 lb and is directed 20ᵒ E of S. (a) What is the x-component and y-component of the resultant of the four forces? (b) What are the magnitude and direction of a fifth force will produce equilibrium at the point?

15 Example 5: A group of physics students, after three days of hiking, are 30 km north of their starting position. On the first day they hiked 20 km east. On the second day they hiked 30 km in a direction 53ᵒ north of west. Using the component method: (a) Find the x-component and y-component of their displacement vector on the third day. (b) Find the magnitude and direction of their displacement vector on the third day.

16 Example 6: A man walks one morning from his house to a store that is 5000 m N40 o E from his house. He started covering 1200 m NE; then goes 1000 m 10 o S of E; then saw a friend who is 800 m 30 o E of N from where he is. Determine: (a) How far and in what direction was his friend from his house? (b) If he continued with his journey, how far and in what direction was his displacement from where his friend was to finally get to the store? (c) From the store, he first went to another friend s house before going back home. This friend s house is 950 m N50 o W form the store. How far and in what direction from his house is his second friend s house? (Solve graphically or analytically)

17 Example 7: The force vector A has a magnitude of 20 lb and points 25ᵒ east of north. The force vector B has a magnitude of 35 lb and points 24ᵒ north of west. The force vector C has a magnitude of 10 lb and points south. Assuming that the force vectors are coplanar and concurrent: (a) Find the magnitude and direction of A+B + C. (b) Find the magnitude and direction of 3A 2B C. (c) Find the magnitude and direction of 2A B+3C.

18 Example 8: A boy scout continues walking 10 m SW from a campsite, then 15 m 40 o S of W, then saw a baby ape 9m S from where he is, and walks toward it. Use graphical or analytical method to answer the following questions, but use only one method to answer both. (a) How far and in what direction was the baby ape from the campsite? (b) He then left the ape started to walk away from it to a tree for some rest. When he reached the tree, his position is now 20m S 30 o E from the campsite. Determine the magnitude and the direction of the last displacement covered to get to the tree.

19 Example 9: X, Y, and Z are coplanar, concurrent forces. If X = 150 lb, 35ᵒ W of S; Y = 220 lb, 21.5ᵒ N of W; and X + Y + Z = 200lb, W: (a) What is the magnitude and direction of Z? (b) What is the magnitude of X 2Y + Z? (c) What is the direction of X 2Y + Z?

Name: Class: Date: Solution x 1 = units y 1 = 0. x 2 = d 2 cos = = tan 1 y

Name: Class: Date: Solution x 1 = units y 1 = 0. x 2 = d 2 cos = = tan 1 y Assessment Chapter Test B Teacher Notes and Answers Two-Dimensional Motion and Vectors CHAPTER TEST B (ADVANCED) 1. b 2. d 3. d x 1 = 3.0 10 1 cm east y 1 = 25 cm north x 2 = 15 cm west x tot = x 1 + x

More information

Vector x-component (N) y-component (N)

Vector x-component (N) y-component (N) Name AP Physics C Summer Assignment 2014 Where calculations are required, show your work. Be smart about significant figures. Print these sheets and hand them in (neatly done) on the first day of class.

More information

PART A: MULTIPLE CHOICE QUESTIONS

PART A: MULTIPLE CHOICE QUESTIONS PART A: MULTIPLE CHOICE QUESTIONS QUESTION 1. Which of the following defines a scalar quantity? (a) (b) (c) (d) Magnitude only Magnitude and direction Direction None of the above QUESTION 2. Which of the

More information

Vectors. Example: Example: 2 cm. Parts of a vector: 3 cm. Body / Line Segment. Tail / Toe. Tip / Head

Vectors. Example: Example: 2 cm. Parts of a vector: 3 cm. Body / Line Segment. Tail / Toe. Tip / Head Vectors The study of motion involves the introduction of a variety of quantities which are used to describe the physical world. Examples of such quantities include distance, displacement, speed, velocity,

More information

Section 1.4: Adding and Subtracting Linear and Perpendicular Vectors

Section 1.4: Adding and Subtracting Linear and Perpendicular Vectors Section 1.4: Adding and Subtracting Linear and Perpendicular Vectors Motion in two dimensions must use vectors and vector diagrams. Vector Representation: tail head magnitude (size): given by the length

More information

Definitions In physics we have two types of measurable quantities: vectors and scalars.

Definitions In physics we have two types of measurable quantities: vectors and scalars. 1 Definitions In physics we have two types of measurable quantities: vectors and scalars. Scalars: have magnitude (magnitude means size) only Examples of scalar quantities include time, mass, volume, area,

More information

The Science of Physics

The Science of Physics Assessment The Science of Physics Chapter Test B MULTIPLE CHOICE In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. A hiker

More information

10.1 Vectors. c Kun Wang. Math 150, Fall 2017

10.1 Vectors. c Kun Wang. Math 150, Fall 2017 10.1 Vectors Definition. A vector is a quantity that has both magnitude and direction. A vector is often represented graphically as an arrow where the direction is the direction of the arrow, and the magnitude

More information

2- Scalars and Vectors

2- Scalars and Vectors 2- Scalars and Vectors Scalars : have magnitude only : Length, time, mass, speed and volume is example of scalar. v Vectors : have magnitude and direction. v The magnitude of is written v v Position, displacement,

More information

Objectives and Essential Questions

Objectives and Essential Questions VECTORS Objectives and Essential Questions Objectives Distinguish between basic trigonometric functions (SOH CAH TOA) Distinguish between vector and scalar quantities Add vectors using graphical and analytical

More information

AP* PHYSICS B DESCRIBING MOTION: KINEMATICS IN TWO DIMENSIONS &VECTORS

AP* PHYSICS B DESCRIBING MOTION: KINEMATICS IN TWO DIMENSIONS &VECTORS AP* PHYSICS B DESCRIBING MOTION: KINEMATICS IN TWO DIMENSIONS &VECTORS The moment of truth has arrived! To discuss objects that move in something other than a straight line we need vectors. VECTORS Vectors

More information

Physics 12. Chapter 1: Vector Analysis in Two Dimensions

Physics 12. Chapter 1: Vector Analysis in Two Dimensions Physics 12 Chapter 1: Vector Analysis in Two Dimensions 1. Definitions When studying mechanics in Physics 11, we have realized that there are two major types of quantities that we can measure for the systems

More information

Student Exploration: Vectors

Student Exploration: Vectors Name: Date: Student Exploration: Vectors Vocabulary: component, dot product, magnitude, resultant, scalar, unit vector notation, vector Prior Knowledge Question (Do this BEFORE using the Gizmo.) An airplane

More information

Vector Addition and Subtraction: Graphical Methods

Vector Addition and Subtraction: Graphical Methods Vector Addition and Subtraction: Graphical Methods Bởi: OpenStaxCollege Displacement can be determined graphically using a scale map, such as this one of the Hawaiian Islands. A journey from Hawai i to

More information

Webreview cp physics ch 3 practice test (holt)

Webreview cp physics ch 3 practice test (holt) Name: Class: _ Date: _ ID: A Webreview cp physics ch 3 practice test (holt) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Identify the following quantities

More information

Main Ideas in Class Today

Main Ideas in Class Today Main Ideas in Class Today After today, you should be able to: Understand vector notation Use basic trigonometry in order to find the x and y components of a vector (only right triangles) Add and subtract

More information

VECTORS REVIEW NAME:

VECTORS REVIEW NAME: VECTORS REVIEW NAME: 1. The vector diagram below represents two forces, F 1 and F 2 simultaneously acting on an object. Which vector best represents the resultant of the two forces? 2. A child walks 5.0

More information

Unit-1. 10th grade. Elective Fizx. Force & Motion. Solutions 1.1 Vectors page Two vectors are given in the following figure.

Unit-1. 10th grade. Elective Fizx. Force & Motion. Solutions 1.1 Vectors page Two vectors are given in the following figure. page - 18 1. Two vectors are given in the following figure. Draw the following vectors by using the parallelogram method. a) -B + 2A b) 2B - A c) A -B page - 18 2. Three vectors are given in the following

More information

4. The diagram below represents two concurrent forces.

4. The diagram below represents two concurrent forces. 1. Two 20.-newton forces act concurrently on an object. What angle between these forces will produce a resultant force with the greatest magnitude? A) 0º B) 45º C) 90.º D) 180.º 2. Two forces act concurrently

More information

Vectors & scalars: Force as vector Review

Vectors & scalars: Force as vector Review Vectors & scalars: Force as vector Review Name 1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below. What additional force, when applied to the

More information

DISPLACEMENT AND FORCE IN TWO DIMENSIONS

DISPLACEMENT AND FORCE IN TWO DIMENSIONS DISPLACEMENT AND FORCE IN TWO DIMENSIONS Vocabulary Review Write the term that correctly completes the statement. Use each term once. coefficient of kinetic friction equilibrant static friction coefficient

More information

8-1 Introduction to Vectors

8-1 Introduction to Vectors State whether each quantity described is a vector quantity or a scalar quantity. 1. a box being pushed at a force of 125 newtons This quantity has a magnitude of 125 newtons, but no direction is given.

More information

Chapter 2 Mechanical Equilibrium

Chapter 2 Mechanical Equilibrium Chapter 2 Mechanical Equilibrium I. Force (2.1) A. force is a push or pull 1. A force is needed to change an object s state of motion 2. State of motion may be one of two things a. At rest b. Moving uniformly

More information

Physics 20 Lesson 10 Vector Addition

Physics 20 Lesson 10 Vector Addition Physics 20 Lesson 10 Vector Addition I. Vector Addition in One Dimension (It is strongly recommended that you read pages 70 to 75 in Pearson for a good discussion on vector addition in one dimension.)

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Units of Chapter 3 Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication of a Vector by a Scalar Adding Vectors

More information

North by Northwest - An Introduction to Vectors

North by Northwest - An Introduction to Vectors HPP A9 North by Northwest - An Introduction to Vectors Exploration GE 1. Let's suppose you and a friend are standing in the parking lot near the Science Building. Your friend says, "I am going to run at

More information

Vectors and Kinematics Notes 1 Review

Vectors and Kinematics Notes 1 Review Velocity is defined as the change in displacement with respect to time. Vectors and Kinematics Notes 1 Review Note that this formula is only valid for finding constant velocity or average velocity. Also,

More information

AP Physics C Mechanics Vectors

AP Physics C Mechanics Vectors 1 AP Physics C Mechanics Vectors 2015 12 03 www.njctl.org 2 Scalar Versus Vector A scalar has only a physical quantity such as mass, speed, and time. A vector has both a magnitude and a direction associated

More information

8.1 THE LANGUAGE OF MOTION

8.1 THE LANGUAGE OF MOTION Unit 3 Motion 8.1 THE LANGUAGE OF MOTION 8.1 LEARNING OUTCOMES Vector quantities, such as displacement and velocity, have both a magnitude and a direction. An object in uniform motion will travel equal

More information

So, whether or not something is moving depends on your frame of reference.

So, whether or not something is moving depends on your frame of reference. When an object changes position relative to a reference point. (Frame of reference) Not from where she s sitting, but from space, the earth rotates and the wall with it. So, whether or not something is

More information

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion Two-Dimensional Motion and Vectors Table of Contents Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Section 1 Introduction to Vectors

More information

Linear Motion. By Jack, Cole, Kate and Linus

Linear Motion. By Jack, Cole, Kate and Linus Linear Motion By Jack, Cole, Kate and Linus What is it? -Linear Motion is the study of motion, Kinematics, and Dynamics Motion Motion is dependent on the reference frame in which you are observing. If

More information

UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1

UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1 UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1 UNIT V: Multi-Dimensional Kinematics and Dynamics As we have already discussed, the study of the rules of nature (a.k.a. Physics) involves both

More information

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:.

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:. Week 2 Student name:. Class code:.. Teacher name:. DUXCollege Week 2 Theory 1 Present information graphically of: o Displacement vs time o Velocity vs time for objects with uniform and non-uniform linear

More information

Chapter 2: 2-Dimensional Motion

Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion 2.1 Position 2.2 Distance and Displacement 2.3 Average Speed and Average Velocity 2.4 Instant Speed and Instant

More information

GENERAL PHYSICS (101 PHYS)

GENERAL PHYSICS (101 PHYS) INAYA MEDICAL COLLEGE (IMC) PHYS 101- LECTURE 1 GENERAL PHYSICS (101 PHYS) DR. MOHAMMED MOSTAFA EMAM LECTURES & CLASS ACTIVITIES https://inayacollegedrmohammedemam.wordpress.com/ Password: drmohammedemam

More information

Announcements 9 Sep 2014

Announcements 9 Sep 2014 Announcements 9 Sep 2014 1. Prayer 2. Course homepage via: physics.byu.edu Class web pages Physics 105 (Colton J) Colton - Lecture 3 - pg 1 Which of the problems from last night's HW assignment would you

More information

General Physics I, Spring Vectors

General Physics I, Spring Vectors General Physics I, Spring 2011 Vectors 1 Vectors: Introduction A vector quantity in physics is one that has a magnitude (absolute value) and a direction. We have seen three already: displacement, velocity,

More information

Graphical Vector Addition

Graphical Vector Addition Vectors Chapter 4 Vectors and Scalars Measured quantities can be of two types Scalar quantities: only require magnitude (and proper unit) for description. Examples: distance, speed, mass, temperature,

More information

Vectors at right angles #1) A car travels 100 m south, then 30 m east, and finally 80m north. Find the resultant displacement.

Vectors at right angles #1) A car travels 100 m south, then 30 m east, and finally 80m north. Find the resultant displacement. AP Physics Mechanics Chapter 3 Vectors and Motion in 2 dimensions Text chapter 3 - Reading pp. 51-68 textbook HW -- #2,3,5,6,8,9,12,18,20,17,19,22,42,44,45,48 3.1-3.2 Vectors and Scalars Revisited List

More information

Scalar & Vector tutorial

Scalar & Vector tutorial Scalar & Vector tutorial scalar vector only magnitude, no direction both magnitude and direction 1-dimensional measurement of quantity not 1-dimensional time, mass, volume, speed temperature and so on

More information

Physics 30S Unit 1 Kinematics

Physics 30S Unit 1 Kinematics Physics 30S Unit 1 Kinematics Mrs. Kornelsen Teulon Collegiate Institute 1 P a g e Grade 11 Physics Math Basics Answer the following questions. Round all final answers to 2 decimal places. Algebra 1. Rearrange

More information

Assignment No. 1 RESULTANT OF COPLANAR FORCES

Assignment No. 1 RESULTANT OF COPLANAR FORCES Assignment No. 1 RESULTANT OF COPLANAR FORCES Theory Questions: 1) Define force and body. (Dec. 2004 2 Mks) 2) State and explain the law of transmissibility of forces. (May 2009 4 Mks) Or 3) What is law

More information

5 Displacement and Force in Two Dimensions BIGIDEA Write the Big Idea for this chapter.

5 Displacement and Force in Two Dimensions BIGIDEA Write the Big Idea for this chapter. 5 Displacement and Force in Two Dimensions BIGIDEA Write the Big Idea for this chapter. Use the What I Know column to list the things you know about the Big Idea. Then list the questions you have about

More information

Significant Figures & Vectors

Significant Figures & Vectors You have to complete this reading Booklet before you attempt the Substantive Assignment. Significant Figures Significant Figures & Vectors There are two kinds of numbers in the world Exact: o Example:

More information

Grade 6 Math Circles October 9 & Visual Vectors

Grade 6 Math Circles October 9 & Visual Vectors Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles October 9 & 10 2018 Visual Vectors Introduction What is a vector? How does it differ

More information

HOLT PHYSICS Test A Two-Dimensional Motion and Vectors

HOLT PHYSICS Test A Two-Dimensional Motion and Vectors Chapter 3 HOLT PHYSICS Test A Two-Dimensional Motion and Vectors MULTIPLE CHOICE On the line at the left of each statement, write the letter of the choice that best completes the statement or answers the

More information

Vectors v Scalars. Physics 1 st Six Weeks

Vectors v Scalars. Physics 1 st Six Weeks Vectors v Scalars Physics 1 st Six Weeks An Appetizer to Start... Vectors vs. Scalars In Physics all quantities are in two categories: scalars & vectors. Scalar quantities are described by magnitude (i.e.

More information

Chapter 5: Forces in Two Dimensions. Click the mouse or press the spacebar to continue.

Chapter 5: Forces in Two Dimensions. Click the mouse or press the spacebar to continue. Chapter 5: Forces in Two Dimensions Click the mouse or press the spacebar to continue. Chapter 5 Forces in Two Dimensions In this chapter you will: Represent vector quantities both graphically and algebraically.

More information

Vectors. Examples of vectors include: displacement, velocity, acceleration, and force. Examples of scalars include: distance, speed, time, and volume.

Vectors. Examples of vectors include: displacement, velocity, acceleration, and force. Examples of scalars include: distance, speed, time, and volume. Math 150 Prof. Beydler 7.4/7.5 Notes Page 1 of 6 Vectors Suppose a car is heading NE (northeast) at 60 mph. We can use a vector to help draw a picture (see right). v A vector consists of two parts: 1.

More information

Physics 40 Chapter 3: Vectors

Physics 40 Chapter 3: Vectors Physics 40 Chapter 3: Vectors Cartesian Coordinate System Also called rectangular coordinate system x-and y- axes intersect at the origin Points are labeled (x,y) Polar Coordinate System Origin and reference

More information

Scalars and Vectors I

Scalars and Vectors I Scalars and Vectors I Learning Outcome When you complete this module you will be able to: Define and identify scalar and vector quantities and solve simple vector problems graphically. Learning Objectives

More information

Kinematics in Two Dimensions; Vectors

Kinematics in Two Dimensions; Vectors Kinematics in Two Dimensions; Vectors Vectors & Scalars!! Scalars They are specified only by a number and units and have no direction associated with them, such as time, mass, and temperature.!! Vectors

More information

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS OBJECTIVES After studying the material of this chapter, the student should be able to: represent the magnitude and direction of a vector using a protractor

More information

Vectors a vector is a quantity that has both a magnitude (size) and a direction

Vectors a vector is a quantity that has both a magnitude (size) and a direction Vectors In physics, a vector is a quantity that has both a magnitude (size) and a direction. Familiar examples of vectors include velocity, force, and electric field. For any applications beyond one dimension,

More information

Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit:

Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit: Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit: B1. Perform vector analysis in one or two dimensions identify scalars and vectors resolve a vector into two

More information

Here is a sample problem that shows you how to use two different methods to add twodimensional

Here is a sample problem that shows you how to use two different methods to add twodimensional LAB 2 VECTOR ADDITION-METHODS AND PRACTICE Purpose : You will learn how to use two different methods to add vectors. Materials: Scientific calculator, pencil, unlined paper, protractor, ruler. Discussion:

More information

4/13/2015. I. Vectors and Scalars. II. Addition of Vectors Graphical Methods. a. Addition of Vectors Graphical Methods

4/13/2015. I. Vectors and Scalars. II. Addition of Vectors Graphical Methods. a. Addition of Vectors Graphical Methods I. Vectors and Scalars A vector has magnitude as well as direction. Some vector quantities: displacement, velocity, force, momentum A scalar has only a magnitude. Some scalar quantities: mass, time, temperature

More information

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3. Quiz No. 1: Tuesday Jan. 31 Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.20 Chapter 3 Vectors and Two-Dimensional Kinematics Properties of

More information

Vector Addition and Subtraction

Vector Addition and Subtraction Matthew W. Milligan Vector Addition and Subtraction Learning to add all over again... Vectors 2-D Kinematics I. Vector Addition/Subtraction - Graphical II. Vector Components - Applications III. Vector

More information

Clarifications. 1/31/2007 Physics 253

Clarifications. 1/31/2007 Physics 253 1 Clarifications Extra Credit There are two assignments for each unit. The total credit is 10 points/ unit To be precise the score for each unit equals the number of questions answered correctly divided

More information

Student Content Brief Advanced Level

Student Content Brief Advanced Level Student Content Brief Advanced Level Vectors Background Information Physics and Engineering deal with quantities that have both size and direction. These physical quantities have a special math language

More information

Chapter 5. Forces in Two Dimensions

Chapter 5. Forces in Two Dimensions Chapter 5 Forces in Two Dimensions Chapter 5 Forces in Two Dimensions In this chapter you will: Represent vector quantities both graphically and algebraically. Use Newton s laws to analyze motion when

More information

Experiment 3: Vector Addition

Experiment 3: Vector Addition Experiment 3: Vector Addition EQUIPMENT Force Table (4) Pulleys (4) Mass Hangers Masses Level (TA s Table) (2) Protractors (2) Rulers (4) Colored Pencils (bold colors) Figure 3.1: Force Table 15 16 Experiment

More information

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units.

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units. Vectors and Scalars A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units. Scalar Example Speed Distance Age Heat Number

More information

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars Chapter 3. Vectors I. Vectors and Scalars 1. What type of quantity does the odometer of a car measure? a) vector; b) scalar; c) neither scalar nor vector; d) both scalar and vector. 2. What type of quantity

More information

Vector components and motion

Vector components and motion Vector components and motion Objectives Distinguish between vectors and scalars and give examples of each. Use vector diagrams to interpret the relationships among vector quantities such as force and acceleration.

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

Review. Projectile motion is a vector. - Has magnitude and direction. When solving projectile motion problems, draw it out

Review. Projectile motion is a vector. - Has magnitude and direction. When solving projectile motion problems, draw it out Projectile Motion Review Projectile motion is a vector - Has magnitude and direction When solving projectile motion problems, draw it out Two methods to drawing out vectors: 1. Tail-to-tip method 2. Parallelogram

More information

9/29/2014. Chapter 3 Kinematics in Two Dimensions; Vectors. 3-1 Vectors and Scalars. Contents of Chapter Addition of Vectors Graphical Methods

9/29/2014. Chapter 3 Kinematics in Two Dimensions; Vectors. 3-1 Vectors and Scalars. Contents of Chapter Addition of Vectors Graphical Methods Lecture PowerPoints Chapter 3 Physics: Principles with Applications, 7 th edition Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors This work is protected by United States copyright laws and is

More information

Motion in Two Dimensions Reading Notes

Motion in Two Dimensions Reading Notes Motion in Two Dimensions Reading Notes Name: Section 3-1: Vectors and Scalars What typeface do we use to indicate a vector? Test Your Understanding: Circle the quantities that are vectors. Acceleration

More information

Vectors. A Vector is a quantity that has both magnitude and direction

Vectors. A Vector is a quantity that has both magnitude and direction Vectors In Chapter 1, we conceptually introduced the Vector: A Vector is a quantity that has both magnitude and direction In Chapter 3, we want to develop and learn how to work with vectors analytically.

More information

Supplemental Activity: Vectors and Forces

Supplemental Activity: Vectors and Forces Supplemental Activity: Vectors and Forces Objective: To use a force table to test equilibrium conditions. Required Equipment: Force Table, Pasco Mass and Hanger Set, String, Ruler, Polar Graph Paper, Protractor,

More information

3 TWO-DIMENSIONAL KINEMATICS

3 TWO-DIMENSIONAL KINEMATICS Chapter 3 Two-Dimensional Kinematics 95 3 TWO-DIMENSIONAL KINEMATICS Figure 3.1 Everyday motion that we experience is, thankfully, rarely as tortuous as a rollercoaster ride like this the Dragon Khan in

More information

1.3 Two-Dimensional Motion. Communicating Directions

1.3 Two-Dimensional Motion. Communicating Directions Applying Inquiry Skills 7. With the period of the spark timer on a horizontal air table set at 0.10 s, students set two pucks, A and B, moving in the same direction. The resulting dots are shown in Figure

More information

Progressive Science Initiative. Click to go to website:

Progressive Science Initiative. Click to go to website: Slide 1 / 246 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below.

1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below. Name Vectors Practice 1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below. What additional force, when applied to the object, will establish

More information

Adding Vectors in Two Dimensions

Adding Vectors in Two Dimensions Slide 37 / 125 Adding Vectors in Two Dimensions Return to Table of Contents Last year, we learned how to add vectors along a single axis. The example we used was for adding two displacements. Slide 38

More information

Vector Addition INTRODUCTION THEORY

Vector Addition INTRODUCTION THEORY Vector Addition INTRODUCTION All measurable quantities may be classified either as vector quantities or as scalar quantities. Scalar quantities are described completely by a single number (with appropriate

More information

Oh My Vector! An introduction to vectors and forces

Oh My Vector! An introduction to vectors and forces Oh My Vector! An introduction to vectors and forces AUTHOR: Shawn Piasecki LESSON SOURCE: http://www.phy6.org/stargaze/lvector.htm DATE LESSON TO BE TAUGHT: 11 th through 14 th day of 4 week unit. GRADE

More information

Lecture PowerPoints. Chapter 3 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 3 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 3 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided

More information

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time.

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time. Mechanics Symbols: Equations: Kinematics The Study of Motion s = distance or displacement v = final speed or velocity u = initial speed or velocity a = average acceleration s u+ v v v u v= also v= a =

More information

AP Physics 1 Summer Assignment 2016

AP Physics 1 Summer Assignment 2016 AP Physics 1 Summer Assignment 2016 You need to do this assignment on your own paper AND YOU MUST SHOW ALL OF YOUR WORK TO RECEIVE CREDIT. You can put the answers on this assignment sheet or you can put

More information

SPH3U1 Lesson 01 Kinematics

SPH3U1 Lesson 01 Kinematics POSITION, MOTION AND DISPLACEMENT LEARNING GOALS Students will: Define what is meant by a vector quantity and by a scalar quantity. Understand the concept of position (a vector quantity). Relate a change

More information

Please Visit us at:

Please Visit us at: IMPORTANT QUESTIONS WITH ANSWERS Q # 1. Differentiate among scalars and vectors. Scalars Vectors (i) The physical quantities that are completely (i) The physical quantities that are completely described

More information

Vectors. An Introduction

Vectors. An Introduction Vectors An Introduction There are two kinds of quantities Scalars are quantities that have magnitude only, such as position speed time mass Vectors are quantities that have both magnitude and direction,

More information

Chapter 8 Scalars and vectors

Chapter 8 Scalars and vectors Chapter 8 Scalars and vectors Heinemann Physics 1 4e Section 8.1 Scalars and vectors Worked example: Try yourself 8.1.1 DESCRIBING VECTORS IN ONE DIMENSION west east + 50 N Describe the vector using: a

More information

SCIENCE 1206 Unit 3. Physical Science Motion

SCIENCE 1206 Unit 3. Physical Science Motion SCIENCE 1206 Unit 3 Physical Science Motion Converting Base Units The Step Stair Method is a simple trick to converting these units. Kilo (k) Hecta (h) Deka (D) Larger unit as you go up the steps! Divide

More information

Mathematical review trigonometry vectors Motion in one dimension

Mathematical review trigonometry vectors Motion in one dimension Mathematical review trigonometry vectors Motion in one dimension Used to describe the position of a point in space Coordinate system (frame) consists of a fixed reference point called the origin specific

More information

Accelerated Math 7 Second Semester Final Practice Test

Accelerated Math 7 Second Semester Final Practice Test Accelerated Math 7 Second Semester Final Practice Test Name Period Date Part 1 Learning Target 5: I can solve problems applying scale factor to geometric figures or scale drawings. 1. What is the value

More information

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school.

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school. Position-versus-Time Graphs Below is a motion diagram, made at 1 frame per minute, of a student walking to school. A motion diagram is one way to represent the student s motion. Another way is to make

More information

Motion along a straight line

Motion along a straight line 1 Motion along a straight line Relativeness of motion Activity: Observations from inside and outside of a moving bus. When you look outside a moving bus, do the trees and houses appear to move backwards?

More information

Chapter 2 One-Dimensional Kinematics

Chapter 2 One-Dimensional Kinematics Review: Chapter 2 One-Dimensional Kinematics Description of motion in one dimension Copyright 2010 Pearson Education, Inc. Review: Motion with Constant Acceleration Free fall: constant acceleration g =

More information

The Study of Concurrent Forces with the Force Table

The Study of Concurrent Forces with the Force Table The Study of Concurrent Forces with the Force Table Apparatus: Force table with 4 pulleys, centering ring and string, 50 g weight hangers, slotted weights, protractors, and rulers. Discussion: The force

More information

Vectors. Vector Practice Problems: Odd-numbered problems from

Vectors. Vector Practice Problems: Odd-numbered problems from Vectors Vector Practice Problems: Odd-numbered problems from 3.1-3.21 After today, you should be able to: Understand vector notation Use basic trigonometry in order to find the x and y components of a

More information

MECHANICS. Prepared by Engr. John Paul Timola

MECHANICS. Prepared by Engr. John Paul Timola MECHANICS Prepared by Engr. John Paul Timola MECHANICS a branch of the physical sciences that is concerned with the state of rest or motion of bodies that are subjected to the action of forces. subdivided

More information

Grade 6 Math Circles October 9 & Visual Vectors

Grade 6 Math Circles October 9 & Visual Vectors Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles October 9 & 10 2018 Visual Vectors Introduction What is a vector? How does it differ

More information

Graphical Analysis; and Vectors

Graphical Analysis; and Vectors Graphical Analysis; and Vectors Graphs Drawing good pictures can be the secret to solving physics problems. It's amazing how much information you can get from a diagram. We also usually need equations

More information

Vectors A Guideline For Motion

Vectors A Guideline For Motion AP Physics-1 Vectors A Guideline For Motion Introduction: You deal with scalar quantities in many aspects of your everyday activities. For example, you know that 2 liters plus 2 liters is 4 liters. The

More information

Vectors. Vectors. Vectors. Reminder: Scalars and Vectors. Vector Practice Problems: Odd-numbered problems from

Vectors. Vectors. Vectors. Reminder: Scalars and Vectors. Vector Practice Problems: Odd-numbered problems from Vectors Vector Practice Problems: Odd-numbered problems from 3.1-3.21 Reminder: Scalars and Vectors Vector: Scalar: A number (magnitude) with a direction. Just a number. I have continually asked you, which

More information