motionalongastraightlinemotionalon gastraightlinemotionalongastraightli nemotionalongastraightlinemotional ongastraightlinemotionalongastraigh

Size: px
Start display at page:

Download "motionalongastraightlinemotionalon gastraightlinemotionalongastraightli nemotionalongastraightlinemotional ongastraightlinemotionalongastraigh"

Transcription

1 motionalongastraightlinemotionalon Additional Mathematics NR/GC/ Addmaths gastraightlinemotionalongastraightli nemotionalongastraightlinemotional ongastraightlinemotionalongastraigh MOTION ALONG A STRAIGHT LINE tlinemotionalongastraightlinemotion alongastraightlinemotionalongastraig Name htlinemotionalongastraightlinemotio... nalongastraightlinemotionalongastra ightlinemotionalongastraightlinemoti onalongastraightlinemotionalongastr aightlinemotionalongastraightlinemo tionalongastraightlinemotionalongast raightlinemotionalongastraightlinem otionalongastraightlinemotionalonga straightlinemotionalongastraightline motionalongastraightlinemotionalon gastraightlinemotionalongastraightli nemotionalongastraightlinemotional ongastraightlinemotionalongastraigh SMSJ/009 tlinemotionalongastraightlinemotion

2 MOTION ALONG A STRAIGHT LINE 1. DISPLACEMENT A. IDENTIFY DIRECTION OF DISPLACEMENT OF A PARTICLE FROM A FIXED POINT NOTES: If the right side of O is considered the positive direction, then DISPLACEMENT ORIENTATION 1.POSITIVE The particle is on the RIGHT of O..NEGATIVE 3.ZERO The particle is on the LEFT of O The particle is AT O or return to O again EXERCISE 1 A particle moves along a straight line with the displacement s m and t is the time after passing through a fixed point O. Find the displacement of the particle after the corresponding time. Displacement formulae Displacement within 1 s Displacement at 3 s s = t² -t s = 1² -(1) =-1 Meaning that the particle is 1m on the left of O s = 3² -(3) = 3 Meaning that the particle is 3m on the right O a) s = t² + (b) s = t² -t -1 (d) s = t³ - t² -3 zefry@sas.edu.my

3 B. DETERMINE THE TOTAL DISTANCE TRAVELLED BY A PARTICLE OVER A TIME INTERVAL Example A particle moves along the straight line with the displacement s m and t is the time after passing through the fixed point O. Given the displacement s = 8 4t² therefore find the total distance taken after 4 seconds. Solution When, t = 0, s = 8 4t² s = 8 4(0) = 8 When t = 4, s = 8 4(4)² = 8 64 = 56 t = 4 O t = 0 56 m 8 m Total distance traveled = = 64m zefry@sas.edu.my 3

4 EXERCISE 1. A particle moves along the straight line with the displacement s m and t is the time after passing through the fixed point O. Find the total distance taken after 3 seconds for the following cases. Displacement formulae initial displacement (t = 0) Total distance taken in the first three second (a) s = t² 3 (b) s = 5 t² (c) s = 5t 1 (d) s = t 5t zefry@sas.edu.my 4

5 EXERCISE 3 1. A particle moves along the straight line with the displacement s m is given as s = t 3 and t is the time after passing through the fixed point O. Find a) the displacement of the particle at t = 1 and t = 3, b) the distance traveled in the first 3 seconds. A particle moves along the straight line with the displacement s m is given as s = t 4t + 3 and t is the time after passing through the fixed point O. Find a) the initial displacement, b) the total distance traveled in the third second, c) the range of time when the particle is at the left of O. 3. A particle moves along the straight line with the displacement s m is given as s = 60 t 5t and t is the time after passing through the fixed point O. Find a) the time when the particle is at 100 m to the right of O, b) the time when the particle is at 5 m to the left of O, c) the time when the particle passes through O again. 4. A particle moves along the straight line. Its displacement, s m from a fixed point O at t second is given by s = 8t + t. Find the total distance traveled (a) in the first 5 seconds zefry@sas.edu.my 5

6 (b) in the fifth second. 5. A particle moves along the straight line. Its displacement, s m from a fixed point O at t second is given by s = 5 + 4t t. Given that the particle moves to the right of O until t = seconds and then moves to the left towards O. Find the total distance traveled by the particle in the first 8 seconds. zefry@sas.edu.my 6

7 . VELOCITY A. DETERMINE VELOCITY FUNCTION OF A PARTICLE BY DIFFERENTIATION NOTES The velocity of a particle, v, at the instant t is the rate of change of displacement with respect to time, that is ds v = dt If the direction of motion to the right is considered as the positive direction, then Velocity (v) Particle moving to Positive, v > 0 The particle is moving to the RIGHT Negative, v < 0 The particle is moving to the LEFT v = 0 The particle is at instantaneous rest/ stops momentarily/ stationary/ maximum or minimum displacement EXERCISE 4 A particle moves along a straight line with its displacements, s m and the time t after passing through point O. Find the velocity when t = 3 and initial velocity for each of the following: Displacement velocity Velocity when t = 3 Initial Velocity (a) s = 4 + 9t 3t v = 9 6t v = 9 6(3) = 9 t = 0, v = 4 (b) s= t² 4t + (c) s = t² 4t (c) s = t² -1t + 16 zefry@sas.edu.my 7

8 Example A particle moves along the straight line. Its displacement, s m from a fixed point O at t second is given by s = = t² -1t Find (a) the time when the particle is at instantaneous rest (b) the range of t for the positive velocity Solution s = t² -1t + 16 v = ds = t 1 dt (a) If particle is at rest,v = 0, t 1 = 0 t = 6s (b) If positive velocity, then v > 0; t 1 > 0 t > 6s EXERCISE 5 1 A particle moves along a straight line with the velocity of v ms and t is the time after passing a fixed point O. Find the time when the particle is at instantaneous rest and the time as the particle moves to the left. Velocity formulae (a) v = 9t² 4 Time when the particle comes instantaneously to rest the range of t when particle moves to the left (b) v = t² 3t (c) v = t + t 8 zefry@sas.edu.my 8

9 EXERCISE 6 1. A particle moves in a straight line with its displacement, s meter and time t second after passed through a fixed point O. Given that s=t³ 15t² + 36t, find (a) the displacement when the velocity is zero (b) time when the particle moved to the left.. A particle moves in a straight line with its displacement, s meter and time t second after passed through a fix point O. Given that s = 4 + 9t 3t, find (a) the time when the particle comes instantaneously to rest (b) the maximum displacement. B. DETERMINE DISPLACEMENT FUNCTION OF A PARTICLE WHEN VELOCITY IS GIVEN BY INTEGRATION EXAMPLE: The velocity of a particle which is moving along a straight line is given as v =3t + 4. Find the displacement at second. SOLUTION: s = vdt, s = ( 3t 4) dt = 3 t 4t, c c is a constant When t = 0, s = 0; 3(0) 0 = 4(0) c c = 0 3t Therefore s = 4t 3() when t =, s = 4() = 14 m zefry@sas.edu.my 9

10 EXERCISE 7 VELOCITY FUNCTION Displacement when t = 3 1. v = 5 + 3t. v = 4 t 8 3 EXERCISE 7: 1 A particle moves along a straight line with the velocity of v ms, and t is the time after passing a fixed point O. Find the total distance traveled in the first three seconds: Velocity displacement Time when the particle stops momentarily Total distance traveled in the first three seconds v = 6 6t s = ( 6 6t) dt v = 0 t = 0, s = 0 = 6t 3t + c 6 6t = 0 t = 1, s = 6(1) 3(1) = 3 t = 0, s = 0, c = 0 t = 3, s = 6(3) 3(3) = 19 t = 1 s = 6t 3t total distance = = v = 3t 5t v = t t zefry@sas.edu.my 10

11 EXERCISE 8 1. A particle moves in a straight line with the velocity v = 36 6t where t is the time in second after passing through point O. Find (a) the time when the distance is maximum (b) the maximum distance.. A particle moves in a straight line with the velocity v = t 4 where t is the time in second after passing through point O. Find (a) the displacement of the particle after 4 seconds (b) the displacement when the particle stops momentarily. 3. A particle moves in a straight line with the velocity v ms -1 1 where v = 1 t 3 is the time in seconds after passing through a fixed point O. Find (a) the displacement of the particle after 4 seconds (b) the maximum distance traveled by the particle before it changed its direction. where t zefry@sas.edu.my 11

12 3. ACCELERATION A. DETERMINE ACCELERATION FUNCTION OF A PARTICLE BY DIFFERENTIATION The instantaneous acceleration of a particle, a, at the instant t, is the rate of change of velocity with respect to time, that is dv d s a = = dt dt 1. The uniform acceleration means that the velocity change in the unvarying rate.. Meaning of the signs of acceleration: a 0 velocity increases when t increases. a 0 velocity decreases when t increases. ( deceleration or retardation). a 0 uniform velocity / v maximum or minimum EXERCISE 9 1 A particle moves with its velocity v ms and t is the time after passing through a fixed point O. Find the initial acceleration and acceleration when t = 3 for each of the following. Velocity formulae Initial acceleration Acceleration at 3 s example: v = 3t t² dv a= = 3 t dt When t = 0, a = 3 (0) When t =3, a = 3 (3) = 3ms 1 = 3ms (a) v =t² + 5t (b) v = t³ + t² 6 zefry@sas.edu.my 1

13 Displacement formulae Initial acceleration Acceleration at 3 s (c) s = t³ t² + 8 (d) s = t t³ (e) s = 4t t³ B. DETERMINE VELOCITY FUNCTION OF A PARTICLE FROM ACCELERATION FUNCTION BY INTEGRATION EXAMPLE: The acceleration of a particle which is moving along a straight line from its instantaneous rest is a ms and t s is the time after passing through a fixed point O. Find the maximum velocity of the particle. Acceleration function Velocity function Maximum or minimum velocity v = a = 6 t a dt Maximum velocity ; a = 0 6 t = 0 t = 3 = (6 t)dt = 6t t² + c When t = 3,v = 6 (3) 3² = 9 ms 1 When t = 0, v = 0, therefore c =0. v = 6t t² zefry@sas.edu.my 13

14 Acceleration function Velocity function Maximum or minimum velocity (a) a = 6 4t (b) a = t 4 (c) a = 6t² t zefry@sas.edu.my 14

15 EXERCISE A particle is moving along a straight line and passed a fixed point O with its velocity, v ms 1. Given v = t(t 3) and t is the time in second after passed through O. Find (a) displacement when t = 5 second (b) maximum distance before it changed its direction (c) total distance traveled in the first 5 second. A particle moves along a straight line through a fixed point O. Its acceleration, a cm s, is given by a = t + 3, where t is the time in seconds after passing through O. Given that its initial velocity is 10 cm s 1. Find (a) the velocity of the particle when its acceleration is 11 cm s 1 (b) the total distance traveled by the particle during 4 seconds after passing through 0. zefry@sas.edu.my 15

16 3. A particle moves along a straight line passing through a fixed point O with velocity 1 1 ms. Its acceleration, a ms, is given by a = 3t, where t is the time in seconds after passing through O. Find (a) the time at which the particle is at instantaneous rest (b) the time at which the particle passes through O again. zefry@sas.edu.my 16

CHAPTER 9 MOTION ALONG A STRAIGHT LINE FORM 5 PAPER 2

CHAPTER 9 MOTION ALONG A STRAIGHT LINE FORM 5 PAPER 2 PPER. particle moves in a straight line and passes through a fixed point O, with a velocity of m s. Its acceleration, a m s, t seconds after passing through O is given by a 8 4t. The particle stops after

More information

Horizontal Motion 1 An object is said to be at rest, if the position of the object does not change with time with respect to its surroundings An object is said to be in motion, if its position changes

More information

an expression, in terms of t, for the distance of the particle from O at time [3]

an expression, in terms of t, for the distance of the particle from O at time [3] HORIZON EDUCATION SINGAPORE Additional Mathematics Practice Questions: Kinematics Set 1 1 A particle moves in a straight line so that t seconds after passing through O, its velocity v cm s -1, is given

More information

Chapter 2. Motion along a Straight Line

Chapter 2. Motion along a Straight Line Chapter 2 Motion along a Straight Line 1 2.1 Motion Everything in the universe, from atoms to galaxies, is in motion. A first step to study motion is to consider simplified cases. In this chapter we study

More information

Chapter 2: Motion along a straight line

Chapter 2: Motion along a straight line Chapter 2: Motion along a straight line This chapter uses the definitions of length and time to study the motions of particles in space. This task is at the core of physics and applies to all objects irregardless

More information

DISTANCE, VELOCITY AND ACCELERATION. dt.

DISTANCE, VELOCITY AND ACCELERATION. dt. DISTANCE-TIME GRAPHS DISTANCE, VELOCITY AND ACCELERATION Rates of change, starts with a distance s against time t graph. The gradient of the graph ds at a point gives the speed of the object at that instant.

More information

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas CALCULUS KINEMATICS CALCULUS KINEMATICS IN SCALAR FORM Question (**) A particle P is moving on the x axis and its acceleration a ms, t seconds after a given instant, is given by a = 6t 8, t 0. The particle

More information

Motion Along a Straight Line (Motion in One-Dimension)

Motion Along a Straight Line (Motion in One-Dimension) Chapter 2 Motion Along a Straight Line (Motion in One-Dimension) Learn the concepts of displacement, velocity, and acceleration in one-dimension. Describe motions at constant acceleration. Be able to graph

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h 1 / 30 CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, August 21, 2012 2 / 30 INTRODUCTION

More information

Distance vs. Displacement

Distance vs. Displacement Distance vs. Displacement Assume a basketball player moves from one end of the court to the other and back. Distance is twice the length of the court Distance is always positive Displacement is zero x

More information

State the condition under which the distance covered and displacement of moving object will have the same magnitude.

State the condition under which the distance covered and displacement of moving object will have the same magnitude. Exercise CBSE-Class IX Science Motion General Instructions: (i) (ii) (iii) (iv) Question no. 1-15 are very short answer questions. These are required to be answered in one sentence each. Questions no.

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information

Experiment 3. d s = 3-2 t ANALYSIS OF ONE DIMENSIONAL MOTION

Experiment 3. d s = 3-2 t ANALYSIS OF ONE DIMENSIONAL MOTION Experiment 3 ANALYSIS OF ONE DIMENSIONAL MOTION Objectives 1. To establish a mathematical relationship between the position and the velocity of an object in motion. 2. To define the velocity as the change

More information

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity 3 Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity Distance An important part of describing the motion of an object is to describe how far it has moved, which is distance. The SI unit

More information

Speed how fast an object is moving (also, the magnitude of the velocity) scalar

Speed how fast an object is moving (also, the magnitude of the velocity) scalar Mechanics Recall Mechanics Kinematics Dynamics Kinematics The description of motion without reference to forces. Terminology Distance total length of a journey scalar Time instant when an event occurs

More information

Motion In One Dimension

Motion In One Dimension Motion In One Dimension Particle A particle is ideally just a piece or a quantity of matter, having practically no linear dimensions but only a position. In practice it is difficult to get such particle,

More information

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

HRW 7e Chapter 2 Page 1 of 13

HRW 7e Chapter 2 Page 1 of 13 HRW 7e Chapter Page of 3 Halliday/Resnick/Walker 7e Chapter. Huber s speed is v 0 =(00 m)/(6.509 s)=30.7 m/s = 0.6 km/h, where we have used the conversion factor m/s = 3.6 km/h. Since Whittingham beat

More information

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x()

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x() Typically, if a particle is moving along the x-axis at any time, t, x() t represents the position of the particle; along the y-axis, yt () is often used; along another straight line, st () is often used.

More information

KINEMATICS OF A PARTICLE. Prepared by Engr. John Paul Timola

KINEMATICS OF A PARTICLE. Prepared by Engr. John Paul Timola KINEMATICS OF A PARTICLE Prepared by Engr. John Paul Timola Particle has a mass but negligible size and shape. bodies of finite size, such as rockets, projectiles, or vehicles. objects can be considered

More information

PHY131H1F Introduction to Physics I Class 2

PHY131H1F Introduction to Physics I Class 2 PHY131H1F Introduction to Physics I Class 2 Today: Chapter 1. Motion Diagrams Particle Model Vector Addition, Subtraction Position, velocity, and acceleration Position vs. time graphs Garden-Variety Clicker

More information

Mechanics 1. Motion MEI, 20/10/08 1/5. Chapter Assessment

Mechanics 1. Motion MEI, 20/10/08 1/5. Chapter Assessment Chapter Assessment Motion. A snail moving across the lawn for her evening constitutional crawl is attracted to a live wire. On reaching the wire her speed increases at a constant rate and it doubles from.

More information

One Dimensional Motion (Motion in a Straight Line)

One Dimensional Motion (Motion in a Straight Line) One Dimensional Motion (Motion in a Straight Line) Chapter MOTION QUANTITIES 1 Kinematics - Intro Mechanics generally consists of two parts: Kinematics and Dynamics. Mechanics Kinematics Description of

More information

MOTION. Chapter 2: Sections 1 and 2

MOTION. Chapter 2: Sections 1 and 2 MOTION Chapter 2: Sections 1 and 2 Vocab: Ch 2.1-2.2 Distance Displacement Speed Average speed Instantaneous speed Velocity Acceleration Describing Motion Motion is an object s change in position relative

More information

Chapter 2. Kinematics in One Dimension

Chapter 2. Kinematics in One Dimension Register Clickers Chapter 2 Kinematics in One Dimension Kinematics deals with the concepts that are needed to describe motion. Dynamics deals with the effect that forces have on motion. Together, kinematics

More information

Pre-Test Developed by Sean Moroney and James Petersen UNDERSTANDING THE VELOCITY CURVE. The Velocity Curve in Calculus

Pre-Test Developed by Sean Moroney and James Petersen UNDERSTANDING THE VELOCITY CURVE. The Velocity Curve in Calculus in Calculus UNDERSTANDING THE VELOCITY CURVE Pre-Test Developed by Sean Moroney and James Petersen Introductory Calculus - in Calculus the Pre-Test Learning about the Velocity Curve During the course of

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

Chapter 2: Kinematics

Chapter 2: Kinematics Section 1 Chapter 2: Kinematics To simplify the concept of motion, we will first consider motion that takes place in one direction. To measure motion, you must choose a frame of reference. Frame of reference

More information

f x x, where f x (E) f, where ln

f x x, where f x (E) f, where ln AB Review 08 Calculator Permitted (unless stated otherwise) 1. h0 ln e h 1 lim is h (A) f e, where f ln (B) f e, where f (C) f 1, where ln (D) f 1, where f ln e ln 0 (E) f, where ln f f 1 1, where t is

More information

Course Name : Physics I Course # PHY 107. Note - 3 : Motion in One Dimension

Course Name : Physics I Course # PHY 107. Note - 3 : Motion in One Dimension Course Name : Physics I Course # PHY 107 Note - 3 : Motion in One Dimension Abu Mohammad Khan Department of Mathematics and Physics North South University https://abukhan.weebly.com Copyright: It is unlawful

More information

In this activity, we explore the application of differential equations to the real world as applied to projectile motion.

In this activity, we explore the application of differential equations to the real world as applied to projectile motion. Applications of Calculus: Projectile Motion ID: XXXX Name Class In this activity, we explore the application of differential equations to the real world as applied to projectile motion. Open the file CalcActXX_Projectile_Motion_EN.tns

More information

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment Unit 6 (1-Dimensional Motion) Practice Assessment Choose the best answer to the following questions. Indicate the confidence in your answer by writing C (Confident), S (So-so), or G (Guessed) next to the

More information

Problem: What affect does the force of launch have on the average speed of a straw rocket?

Problem: What affect does the force of launch have on the average speed of a straw rocket? Describing Motion and Measuring Speed A Straw Rocket Lab Background: An object is in motion when its distance from another object is changing. Whether an object is moving or not depends on your point of

More information

Wednesday 9/27. Please open quizizz

Wednesday 9/27. Please open quizizz Wednesday 9/27 Please open quizizz Graphing Acceleration VT Graphs VELOCITY m/s VELOCITY TIME GRAPHS Moving in a positive direction, SPEEDING UP Constant speed NO ACCELERATION Moving in a positive direction,

More information

VARIABLE MASS PROBLEMS

VARIABLE MASS PROBLEMS VARIABLE MASS PROBLEMS Question 1 (**) A rocket is moving vertically upwards relative to the surface of the earth. The motion takes place close to the surface of the earth and it is assumed that g is the

More information

LESSON 2-4: Acceleration

LESSON 2-4: Acceleration DEVIL PHYSICS BADDEST CLASS ON CAMPUS PRE-IB PHYSICS LESSON 2-4: Acceleration 1. Objectives. By the end of this class you should be able to: a) SC.912.P.12.2: Analyze the motion of an object in terms of

More information

Chapter 2: 1D Kinematics

Chapter 2: 1D Kinematics Chapter 2: 1D Kinematics Description of motion involves the relationship between position, displacement, velocity, and acceleration. A fundamental goal of 1D kinematics is to determine x(t) if given initial

More information

Motion Along a Straight Line

Motion Along a Straight Line PHYS 101 Previous Exam Problems CHAPTER Motion Along a Straight Line Position & displacement Average & instantaneous velocity Average & instantaneous acceleration Constant acceleration Free fall Graphical

More information

Motion Graphs Practice

Motion Graphs Practice Name Motion Graphs Practice d vs. t Graphs d vs. t Graphs d vs. t Graphs 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. 3. The

More information

Position, Velocity, Acceleration

Position, Velocity, Acceleration 191 CHAPTER 7 Position, Velocity, Acceleration When we talk of acceleration we think of how quickly the velocity is changing. For example, when a stone is dropped its acceleration (due to gravity) is approximately

More information

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I.

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I. Antiderivatives Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if F x f x for all x I. Theorem If F is an antiderivative of f on I, then every function of

More information

Chapter 2. Kinematics in One Dimension

Chapter 2. Kinematics in One Dimension Register Clickers Chapter 2 Kinematics in One Dimension Kinematics deals with the concepts that are needed to describe motion. Dynamics deals with the effect that forces have on motion. Together, kinematics

More information

IB Math SL Year 2 Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited

IB Math SL Year 2 Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited Learning Goals: How do you apply integrals to real-world scenarios? Recall: Linear Motion When an object is moving, a ball in the air

More information

Displacement, Velocity and Acceleration in one dimension

Displacement, Velocity and Acceleration in one dimension Displacement, Velocity and Acceleration in one dimension In this document we consider the general relationship between displacement, velocity and acceleration. Displacement, velocity and acceleration are

More information

Motion along a straight line. Physics 11a. 4 Basic Quantities in Kinematics. Motion

Motion along a straight line. Physics 11a. 4 Basic Quantities in Kinematics. Motion Physics 11a Motion along a straight line Motion Position and Average velocity and average speed Instantaneous velocity and speed Acceleration Constant acceleration: A special case Free fall acceleration

More information

KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES

KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES 014.08.06. KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES www.biofizika.aok.pte.hu Premedical course 04.08.014. Fluids Kinematics Dynamics MECHANICS Velocity and acceleration

More information

Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN

Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN EMU Physics Department Motion along a straight line q Motion q Position and displacement q Average velocity and average speed q Instantaneous velocity and

More information

Definitions. Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion.

Definitions. Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion. Lecture 2 Definitions Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion. Dynamics: The study of the forces that cause motion. Chapter Outline Consider

More information

Remember... Average rate of change slope of a secant (between two points)

Remember... Average rate of change slope of a secant (between two points) 3.7 Rates of Change in the Natural and Social Sciences Remember... Average rate of change slope of a secant (between two points) Instantaneous rate of change slope of a tangent derivative We will assume

More information

Motion along a straight line. Lecture 2. Motion along a straight line. Motion. Physics 105; Summer 2006

Motion along a straight line. Lecture 2. Motion along a straight line. Motion. Physics 105; Summer 2006 Lecture 2 Motion along a straight line (HR&W, Chapter 2) Physics 105; Summer 2006 Motion along a straight line Motion Position and Displacement Average velocity and average speed Instantaneous velocity

More information

Motion. Aristotle. Motion: usually something abstract, such as the laws of motion.

Motion. Aristotle. Motion: usually something abstract, such as the laws of motion. Motion Key Words position graph uniform speed trajectory ax-is (-es plural) motion velocity velocity unit movement distance acceleration relative displacement rectilinear deceleration A body in motion

More information

Kinematics and One Dimensional Motion

Kinematics and One Dimensional Motion Kinematics and One Dimensional Motion Kinematics Vocabulary Kinema means movement Mathematical description of motion Position Time Interval Displacement Velocity; absolute value: speed Acceleration Averages

More information

Differential Equations: Homework 2

Differential Equations: Homework 2 Differential Equations: Homework Alvin Lin January 08 - May 08 Section.3 Exercise The direction field for provided x 0. dx = 4x y is shown. Verify that the straight lines y = ±x are solution curves, y

More information

Mathematics - Course 221

Mathematics - Course 221 221. 20-3 Mathematics - Course 221 SIMPLE APPLICATIONS OF DERIVATIVES I Equations of Tangent and Normal to a Curve This exercise is included to consolidate the trainee's concept of derivative as tangent

More information

KINEMATICS WHERE ARE YOU? HOW FAST? VELOCITY OR SPEED WHEN YOU MOVE. Typical Cartesian Coordinate System. usually only the X and Y axis.

KINEMATICS WHERE ARE YOU? HOW FAST? VELOCITY OR SPEED WHEN YOU MOVE. Typical Cartesian Coordinate System. usually only the X and Y axis. KINEMATICS File:The Horse in Motion.jpg - Wikimedia Foundation 1 WHERE ARE YOU? Typical Cartesian Coordinate System usually only the X and Y axis meters File:3D coordinate system.svg - Wikimedia Foundation

More information

Chapter 2. Motion along a straight line. We find moving objects all around us. The study of motion is called kinematics.

Chapter 2. Motion along a straight line. We find moving objects all around us. The study of motion is called kinematics. Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 3: LINEAR MOTION This lecture will help you understand: Motion Is Relative Speed : Average and Instantaneous Velocity Acceleration Free Fall Motion Is Relative

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time.

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time. Chapter: Chapter 2 Learning Objectives LO 2.1.0 Solve problems related to position, displacement, and average velocity to solve problems. LO 2.1.1 Identify that if all parts of an object move in the same

More information

Physics I Exam 1 Spring 2015 (version A)

Physics I Exam 1 Spring 2015 (version A) 95.141 Physics I Exam 1 Spring 015 (version A) Section Number Section instructor Last/First Name (PRINT) / Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space

More information

AP Physics Free Response Practice Kinematics ANSWERS 1982B1 2

AP Physics Free Response Practice Kinematics ANSWERS 1982B1 2 AP Physics Free Response Practice Kinematics ANSWERS 198B1 a. For the first seconds, while acceleration is constant, d = ½ at Substituting the given values d = 10 meters, t = seconds gives a = 5 m/s b.

More information

Remember... Average rate of change slope of a secant (between two points)

Remember... Average rate of change slope of a secant (between two points) 3.7 Rates of Change in the Natural and Social Sciences Remember... Average rate of change slope of a secant (between two points) Instantaneous rate of change slope of a tangent derivative We will assume

More information

STAAR Science Tutorial 21 TEK 6.8D: Graphing Motion

STAAR Science Tutorial 21 TEK 6.8D: Graphing Motion Distance (meters) Name: _ Teacher: Pd. Date: STAAR Science Tutorial 21 TEK 6.8D: Graphing Motion TEK 6.8D: Measure and graph changes in motion. Graphing Speed on a Distance Graph Speed is defined as the

More information

KINEMATICS. File:The Horse in Motion.jpg - Wikimedia Foundation. Monday, June 17, 13

KINEMATICS. File:The Horse in Motion.jpg - Wikimedia Foundation. Monday, June 17, 13 KINEMATICS File:The Horse in Motion.jpg - Wikimedia Foundation 1 WHERE ARE YOU? Typical Cartesian Coordinate System usually only the X and Y axis meters File:3D coordinate system.svg - Wikimedia Foundation

More information

Page 1 / 15. Motion Unit Test. Name: Motion ONLY, no forces. Question 1 (1 point) Examine the graphs below:

Page 1 / 15. Motion Unit Test. Name: Motion ONLY, no forces. Question 1 (1 point) Examine the graphs below: Motion Unit Test Motion ONLY, no forces Name: Question 1 (1 point) Examine the graphs below: Which of the four graphs shows the runner with the fastest speed? A. Graph A B. Graph B C. Graph C D. Graph

More information

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres Chapter 2 Motion Defining Motion Motion is a continuous change in position can be described by measuring the rate of change of position

More information

Pre-Test for One-Dimensional Motion

Pre-Test for One-Dimensional Motion Pre-Test for One-Dimensional Motion 1.) Let's say that during a thunderstorm you measure the time lag between the flash and the thunderclap to be 3 seconds. If the speed of sound is about 340 m/s, which

More information

PHYS 103 (GENERAL PHYSICS) LECTURE NO. 3 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED

PHYS 103 (GENERAL PHYSICS) LECTURE NO. 3 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED First Slide King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) LECTURE NO. 3 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED . Instantaneous Velocity

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 10. Home Page. Title Page. Page 1 of 37.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 10. Home Page. Title Page. Page 1 of 37. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics I Fall 2015 Lecture 10 Page 1 of 37 Midterm I summary 100 90 80 70 60 50 40 30 20 39 43 56 28 11 5 3 0 1 Average: 82.00 Page

More information

MEI Conference Preparing to teach motion graphs. Sharon Tripconey.

MEI Conference Preparing to teach motion graphs. Sharon Tripconey. MEI Conference 2016 Preparing to teach motion graphs Sharon Tripconey sharon.tripconey@mei.org.uk 1 of 5 Preparing to teach motion graphs June 2016 MEI Kinematics content extracts for reformed Mathematics

More information

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel Acceleration When the velocity of an object changes, we say that the object is accelerating. This acceleration can take one of three forms: 1. Speeding Up occurs when the object s velocity and acceleration

More information

http://geocities.com/kenahn7/ Today in this class Chap.2, Sec.1-7 Motion along a straight line 1. Position and displacement 2. 3. Acceleration Example: Motion with a constant acceleration Position and

More information

What does the lab partner observe during the instant the student pushes off?

What does the lab partner observe during the instant the student pushes off? Motion Unit Review State Test Questions 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer.

More information

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school.

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school. Position-versus-Time Graphs Below is a motion diagram, made at 1 frame per minute, of a student walking to school. A motion diagram is one way to represent the student s motion. Another way is to make

More information

Math 1431 DAY 14. Be considerate of others in class. Respect your friends and do not distract anyone during the lecture.

Math 1431 DAY 14. Be considerate of others in class. Respect your friends and do not distract anyone during the lecture. Math 1431 DAY 14 BUBBLE IN PS ID VERY CAREFULLY! If you make a bubbling mistake, your scantron will not be saved in the system and you will not get credit for it even if you turned it in. Be considerate

More information

Motion in one dimension

Motion in one dimension Work Sheet - 1 1. Define rest and motion. 2. Define distance and displacement. Write their S.I unit. 3. Distinguish between distance and displacement. Write five points of differences. Work Sheet - 2 1.

More information

Chapter 2. Motion in One Dimension

Chapter 2. Motion in One Dimension Chapter 2 Motion in One Dimension Types of Motion Translational An example is a car traveling on a highway. Rotational An example is the Earth s spin on its axis. Vibrational An example is the back-and-forth

More information

Displacement, Velocity & Acceleration

Displacement, Velocity & Acceleration Displacement, Velocity & Acceleration Honors/AP Physics Mr. Velazquez Rm. 254 1 Velocity vs. Speed Speed and velocity can both be defined as a change in position or displacement over time. However, speed

More information

Course Name : Physics I Course # PHY 107

Course Name : Physics I Course # PHY 107 Course Name : Physics I Course # PHY 107 Notes-3 : Motion in One Dimensions Abu Mohammad Khan Department of Mathematics and Physics North South University http://abukhan.weebly.com Copyright: It is unlawful

More information

average speed instantaneous origin resultant average velocity position particle model scalar

average speed instantaneous origin resultant average velocity position particle model scalar REPRESENTING MOTION Vocabulary Review Write the term that correctly completes the statement. Use each term once. average speed instantaneous origin resultant average velocity position particle model scalar

More information

Math 1431 DAY 14. Be considerate of others in class. Respect your friends and do not distract anyone during the lecture.

Math 1431 DAY 14. Be considerate of others in class. Respect your friends and do not distract anyone during the lecture. Math 1431 DAY 14 BUBBLE IN PS ID VERY CAREFULLY! If you make a bubbling mistake, your scantron will not be saved in the system and you will not get credit for it even if you turned it in. Be considerate

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s rotation

More information

DEFINITE INTEGRALS - AREA UNDER A CURVE

DEFINITE INTEGRALS - AREA UNDER A CURVE Mathematics Revision Guides Definite Integrals, Area Under a Curve Page of M.K. HOME TUITION Mathematics Revision Guides Level: A-Level Year / AS DEFINITE INTEGRALS - AREA UNDER A CURVE Version :. Date:

More information

KINEMATICS/ TRAVEL GRAPHS/ CONVERSION GRAPHS

KINEMATICS/ TRAVEL GRAPHS/ CONVERSION GRAPHS KINEMATICS/ TRAVEL GRAPHS/ CONVERSION GRAPHS 1.1 KINEMATICS / TRAVEL GRAPHS: DISTANCE TIME GRAPHS: The gradient of a distance time graph gives the instantaneous speed of a moving object. DISTANCE DISTANCE

More information

( ) 4 and 20, find the value. v c is equal to this average CALCULUS WORKSHEET 1 ON PARTICLE MOTION

( ) 4 and 20, find the value. v c is equal to this average CALCULUS WORKSHEET 1 ON PARTICLE MOTION CALCULUS WORKSHEET 1 ON PARTICLE MOTION Work these on notebook paper. Use your calculator only on part (f) of problems 1. Do not use your calculator on the other problems. Write your justifications in

More information

Q ues tions s hould be c ompleted before the following lec tures : Q 1-7 : W 9 /8 ; Q : F 9 /1 0 ; Q : M 9 /1 3

Q ues tions s hould be c ompleted before the following lec tures : Q 1-7 : W 9 /8 ; Q : F 9 /1 0 ; Q : M 9 /1 3 Student Name: Reading quiz 01, Fall 10 Q ues tions s hould be c ompleted before the following lec tures : Q 1-7 : W 9 /8 ; Q 8-1 4 : F 9 /1 0 ; Q 1 5-2 2 : M 9 /1 3 Question 1 To convert 5.0 mm to meters,

More information

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart speeds up toward the origin. What do the position and velocity

More information

Name: Total Points: Physics 201. Midterm 1

Name: Total Points: Physics 201. Midterm 1 Physics 201 Midterm 1 QUESTION 1 [25 points] An object moves in 1 dimension It starts at rest and uniformly accelerates at 5m/s 2 for 2s It then moves with constant velocity for 4s It then uniformly accelerates

More information

Forces and Motion in One Dimension. Chapter 3

Forces and Motion in One Dimension. Chapter 3 Forces and Motion in One Dimension Chapter 3 Constant velocity on an x-versus-t graph Velocity and Position In general, the average velocity is the slope of the line segment that connects the positions

More information

The Magic Chart Honors Physics

The Magic Chart Honors Physics The Magic Chart Honors Physics Magic Chart Equations v f = v i + a t x = v i t + 1/2 a t 2 x = ½ (v i + v f ) t v 2 f = v 2 i + 2a x x = v f t - 1/2 a t 2 x Who Cares Quantity v f a t V i THE WHO CARES

More information

Chapter 2 Section 2: Acceleration

Chapter 2 Section 2: Acceleration Chapter 2 Section 2: Acceleration Motion Review Speed is the rate that an object s distance changes Distance is how far an object has travelled Speed = distance/time Velocity is rate that an object s displacement

More information

Sections 2.7, 2.8 Rates of Change Part III Rates of Change in the Natural and Social Sciences

Sections 2.7, 2.8 Rates of Change Part III Rates of Change in the Natural and Social Sciences Math 180 wwwtimetodarecom Sections 7, 8 Rates of Change Part III Rates of Change in the Natural and Social Sciences Physics s If s= f ( t) is the position function of a particle that is moving in a straight

More information

11.3 Acceleration. What Is Acceleration? How are changes in velocity described?

11.3 Acceleration. What Is Acceleration? How are changes in velocity described? What Is Acceleration? How are changes in velocity described? What Is Acceleration? Changes in Speed In science, acceleration applies to Acceleration can be caused by Deceleration is DOK question Predict

More information

Kinematics of. Motion. 8 l Theory of Machines

Kinematics of. Motion. 8 l Theory of Machines 8 l Theory of Machines Features 1. 1ntroduction.. Plane Motion. 3. Rectilinear Motion. 4. Curvilinear Motion. 5. Linear Displacement. 6. Linear Velocity. 7. Linear Acceleration. 8. Equations of Linear

More information

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12.1-12.2) Today s Objectives: Students will be able to find the kinematic quantities (position, displacement, velocity, and acceleration)

More information

Position-versus-Time Graphs

Position-versus-Time Graphs Position-versus-Time Graphs Below is a motion diagram, made at 1 frame per minute, of a student walking to school. A motion diagram is one way to represent the student s motion. Another way is to make

More information

2 Particle dynamics. The particle is called free body if it is no in interaction with any other body or field.

2 Particle dynamics. The particle is called free body if it is no in interaction with any other body or field. Mechanics and Thermodynamics GEIT5 Particle dynamics. Basic concepts The aim of dynamics is to find the cause of motion and knowing the cause to give description of motion. The cause is always some interaction.

More information

CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS

CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS Today s Objectives: Students will be able to: 1. Describe the motion of a particle traveling along a curved path. 2. Relate kinematic quantities in

More information

Position-Time Graphs

Position-Time Graphs Position-Time Graphs Suppose that a man is jogging at a constant velocity of 5.0 m / s. A data table representing the man s motion is shown below: If we plot this data on a graph, we get: 0 0 1.0 5.0 2.0

More information

CHAPTER 2 MOTION IN ONE DIMENSION. Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University

CHAPTER 2 MOTION IN ONE DIMENSION. Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University CHAPTER 2 MOTION IN ONE DIMENSION Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University OUTLINE 1. Position, Velocity and Speed 2. Instantaneous Velocity and Speed 3. Motion

More information