( ) 4 and 20, find the value. v c is equal to this average CALCULUS WORKSHEET 1 ON PARTICLE MOTION

Size: px
Start display at page:

Download "( ) 4 and 20, find the value. v c is equal to this average CALCULUS WORKSHEET 1 ON PARTICLE MOTION"

Transcription

1 CALCULUS WORKSHEET 1 ON PARTICLE MOTION Work these on notebook paper. Use your calculator only on part (f) of problems 1. Do not use your calculator on the other problems. Write your justifications in a sentence. 1. A particle moves along a horizontal line so that its position at any time is given by st = t 1t + 36 tt, 0, where s is measured in meters and t in seconds. ( ) 3 (a) Find the instantaneous velocity at time t and at t = 3 seconds. (b) When is the particle at rest? Moving to the right? Moving to the left? Justify your answers. (c) Find the displacement of the particle after the first 8 seconds. (d) Find the total distance traveled by the particle during the first 8 seconds. (e) Find the acceleration of the particle at time t and at t = 3 seconds. (f) Graph the position, velocity, and acceleration functions for 0 t 8. (g) When is the particle speeding up? Slowing down? Justify your answers.. The maximum acceleration attained on the interval 0 t 3 by the particle whose velocity is given 3 by vt ( ) = t 3t + 1t+ 4 is (A) 9 (B) 1 (C) 14 (D) 1 (E) The figure on the right shows the position s of a particle moving along a horizontal line. (a) When is the particle moving to the left? moving to the right? standing still? Justify your answer. v 1.5, v.5, v 4, and v 5, find (b) For each of ( ) ( ) ( ) ( ) the value or explain why it does not exist. (c) Graph the particle s velocity. (d) Graph the particle s speed. 4. (005) A car is traveling on a straight road. For 0 t 4 vt, seconds, the car s velocity ( ) in meters per second, is modeled by the piecewise-linear function defined by the graph on the right. 4 and 0, find the value (a) For each of v ( ) v ( ) or explain why it does not exist. Indicate units of measure. a t be the car s acceleration at time t, in (b) Let ( ) meters per second per second. For 0 < t < 4, a t. write a piecewise-defined function for ( ) (c) Find the average rate of change of v over the interval 8 t 0. Does the Mean Value v c is equal to this average Theorem guarantee a value of c, for 8 < c < 0, such that ( ) rate of change? Why or why not? TURN->>>

2 5. (Modification of 009 Form B, Problem 6) The velocity of a particle moving along the x-axis is modeled by a differentiable function v, where the position x is measured in meters, and time t is measured in seconds. Selected values of v( t ) are given in the table above. (a) Use data from the table to estimate the acceleration of the particle at t = 36 seconds. Show the computations that lead to your answer. Indicate units of measure. (b) For 0 t 40, must the particle change direction in any of the subintervals indicated by the data in table? If so, identify the subintervals and explain your reasoning. If not, explain why not. (c) Based on the values in the table, what is the smallest number of instances at which the velocity v( t) could equal 9m/sec on the interval 0 < t < 40? Justify your answer.

3 Answers to Worksheet 1 on Particle Motion 1. (a) 3t 4t+ 36, 9m / sec (b) At rest at t = because vt ( ) = 0 there. Moving right for [0, ) and ( 6, ) because ( ) Moving left for (, 6) because vt ( ) < 0. (c) 3 meters (d) 96 meters (e) 6t 4, 6m / sec (f) Graph. D (g) Speeding up on (, 4) because vel. and acc. are both neg. there and on ( ) vt > 0. 6, because vel. and acc. are both pos. there. Slowing down on [0. ) because vel. is pos. and acc. is neg. and on (4, 6) because vel. is neg. and acc. is pos. 3. (a) Moving left on (, 3) and (5, 6) because vt ( ) < 0. Moving right on (0, 1) because ( ) Standing still on (1, ) and (3, 5) because vt ( ) = 0 there. (b) 0, - 4, 0, dne because graph of s has a sharp turn there (c) and (d) Graphs 4. (005 AB 5) 4 (a) v ( ) does not exist because the graph of ( ) vt has a sharp turn at t = 4. 5 v ( 0) = m / sec. 5, 0 < t < 4 ( b) a( t) = 0, 4 < t < 16 5, 16 < t < 4 5 (c) Ave. rate of change = m / sec. No, the MVT does not apply for 8 < c < 0 because 6 vt is not differentiable at t = 16. the graph of ( ) 5. (009 Form B, Problem 6) 11 m (a) 8 sec vt > 0. (b) The particle changes direction on (8, 0) because v( ) v( ) changes direction on (3, 40) because v( 3) = 4 and v( 40) = 7. m (c) vt ( ) must equal 9 at least two times on (0, 40). Since vt ( ) is differentiable, it must be sec continuous. v( 8) = 5, v( 0) = 10, and 9 lies between 5 and 10 so ( ) 8 = 5 and 0 = 10. The particle also for some t between 8 and 0. Similarly, since v( ) v( ) 10 and 8 so vt ( ) must equal 9 for some t between 0 and 5 by the IVT> vt must equal 9 0 = 10, 5 = 8, and 9 lies between

4 CALCULUS WORKSHEET ON PARTICLE MOTION Work these on notebook paper. Use your calculator on problems 1-5, and give decimal answers correct to three decimal places. Write your justifications in a sentence. 1. A particle moves along a horizontal line so that its position at any time t 0 is given by st = t + 7t 14t+ 8, where s is measured in meters and t in seconds. ( ) 3 (a) Find the instantaneous velocity at any time t and when t =. (b) Find the acceleration of the particle at any time t and when t =. (c) When is the particle at rest? When is moving to the right? To the left? Justify your answers. (d) Find the displacement of the particle during the first two seconds. (e) Find the total distance traveled by the particle during the first two seconds. (f) Are the answers to (d) and (e) the same? Explain. (g) When is the particle speeding up? Slowing down? Justify your answers.. The position of a particle at time t seconds, t 0, is given by st ( ) = t sin t, 0 t 3, where t is measured in seconds and s is measured in meters. Find the particle s acceleration each time the velocity is zero. 3. A particle s velocity at time t seconds, 0 vt = cos t + t, 0 t, where t, is given by ( ) ( ) t is measured in seconds and v is measured in meters/second. Find the velocity of the particle each time the acceleration is zero. 4. (004) A particle moves along the y-axis so that its velocity at time t 0 is given by 1 t vt = 1 tan e. ( ) ( ) (a) Find the acceleration of the particle at time t =. (b) Is the speed of the particle increasing or decreasing at time t =? Give a reason for your answer. (c) Find the time t 0 at which the particle reaches its highest point. Justify your answer. 5. (Modification of 005 Form B, Problem 3) A particle moves along the x-axis so that its velocity at time t, for 0 t 5, is given by ( ) ln ( 3 3) v t = t t+. (a) Find the acceleration of the particle at time t = 4. (b) Find all times t in the open interval 0< t < 5 at which the particle changes direction. During which time intervals, for 0 t 5, does the particle travel to the left? Justify your answer. vt on 1.5 t 3.. (c) Find the average rate of change of ( ) TURN->>>

5 6. (Modification of 008, Problem 4) A particle moves along the x-axis so that its velocity at time t, for 0 t 6, is given by a differentiable function v whose graph is shown above. The velocity is 0 at t = 0, t = 3, and t = 5, and the graph has horizontal tangents at t = 1 and t = 4. (a) On the interval 3< t < 4, is the speed of the particle increasing or decreasing? Give a reason for your answer. (b) On the interval < t < 3, is the speed of the particle increasing or decreasing? Give a reason for your answer. (c) During what intervals, if any, is the acceleration of the particle negative? Justify

6 Answers to Worksheet on Particle Motion 1. (a) 3t + 14t = 14, m/sec (b) 6t + 14, m/sec (c) At rest at t = and t = 3.15 because vt ( ) = 0 there. Moving left for [0, 1.451) and ( 3.15, ) because vt ( ) < 0. Moving right for (1.451, 3,15) because vt ( ) > 0. (d) 8 m (e) 9.6 m (f) No, the displacement and distance are not the same because the particle changed direction at t = (g) Slowing down on (0, 1.451) and (.333, 3.15) because vel. and acc. have opposite signs. Speeding up on (1.451,.333) and ( 3.15, ) because vel. and acc. have the same sign.. a ( ) =.435m / sec (a) m sec, m sec (b) Speed is increasing at t = because vt ( ) and ( ) (c) vt ( ) = 0 when t = This is the only critical number. ( ) and vt ( ) < 0 for ( ) 5. (a) at are both negative. vt > 0 for (0, 0.443) 0.443, so the particle reaches its highest point at t = vt changes from positive to negative (b) The particle changes direction at t = 1 and at t = because ( ) or vice versa there. The particle travels to the left on (, 3) because vt ( ) < 0 there. (c) (008) (a) On (3, 4) vt ( ) > 0 and vt ( ) is increasing so v ( t) a( t) 0. on (3, 4). (b) On (, 3), vt ( ) < 0 and vt ( ) is increasing so v ( t) a( t) 0. = > Therefore, the speed is increasing = > Therefore, the speed is decreasing on (, 3). (c) The acceleration is negative on (0, 1) and (4, 6) because the velocity is decreasing there.

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): f t dt

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): f t dt CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS d d d d t dt 6 cos t dt Second Fundamental Theorem of Calculus: d f tdt d a d d 4 t dt d d a f t dt d d 6 cos t dt Second Fundamental

More information

PARTICLE MOTION. Section 3.7A Calculus BC AP/Dual, Revised /30/2018 1:20 AM 3.7A: Particle Motion 1

PARTICLE MOTION. Section 3.7A Calculus BC AP/Dual, Revised /30/2018 1:20 AM 3.7A: Particle Motion 1 PARTICLE MOTION Section 3.7A Calculus BC AP/Dual, Revised 2017 viet.dang@humbleisd.net 7/30/2018 1:20 AM 3.7A: Particle Motion 1 WHEN YOU SEE THINK When you see Think Initially t = 0 At rest v t = 0 At

More information

The Fundamental Theorem of Calculus Part 3

The Fundamental Theorem of Calculus Part 3 The Fundamental Theorem of Calculus Part FTC Part Worksheet 5: Basic Rules, Initial Value Problems, Rewriting Integrands A. It s time to find anti-derivatives algebraically. Instead of saying the anti-derivative

More information

PARTICLE MOTION: DAY 2

PARTICLE MOTION: DAY 2 PARTICLE MOTION: DAY 2 Section 3.6A Calculus AP/Dual, Revised 2018 viet.dang@humbleisd.net 7/30/2018 1:24 AM 3.6A: Particle Motion Day 2 1 WHEN YOU SEE THINK When you see Think Initially t = 0 At rest

More information

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x()

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x() Typically, if a particle is moving along the x-axis at any time, t, x() t represents the position of the particle; along the y-axis, yt () is often used; along another straight line, st () is often used.

More information

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x()

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x() Typically, if a particle is moving along the x-axis at any time, t, x() t represents the position of the particle; along the y-axis, yt () is often used; along another straight line, st () is often used.

More information

( ) for t 0. Rectilinear motion CW. ( ) = t sin t ( Calculator)

( ) for t 0. Rectilinear motion CW. ( ) = t sin t ( Calculator) Rectilinear motion CW 1997 ( Calculator) 1) A particle moves along the x-axis so that its velocity at any time t is given by v(t) = 3t 2 2t 1. The position x(t) is 5 for t = 2. a) Write a polynomial expression

More information

When does the function assume this value?

When does the function assume this value? Calculus Write your questions and thoughts here! 9.3 Average Value Name: Recall: Average Rate of Change: Mean Value Theorem (MVT) for Derivatives: Notes Average Value of a Function: 1 1. Find the average

More information

x 3x 1 if x 3 On problems 8 9, use the definition of continuity to find the values of k and/or m that will make the function continuous everywhere.

x 3x 1 if x 3 On problems 8 9, use the definition of continuity to find the values of k and/or m that will make the function continuous everywhere. CALCULUS AB WORKSHEET ON CONTINUITY AND INTERMEDIATE VALUE THEOREM Work the following on notebook paper. On problems 1 4, sketch the graph of a function f that satisfies the stated conditions. 1. f has

More information

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4 Limits and Continuity t+ 1. lim t - t + 4. lim x x x x + - 9-18 x-. lim x 0 4-x- x 4. sinq lim - q q 5. Find the horizontal asymptote (s) of 7x-18 f ( x) = x+ 8 Summer Packet AP Calculus BC Page 4 6. x

More information

Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value

Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value AP Calculus Unit 6 Basic Integration & Applications Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value b (1) v( t) dt p( b) p( a), where v(t) represents the velocity and

More information

cos 5x dx e dt dx 20. CALCULUS AB WORKSHEET ON SECOND FUNDAMENTAL THEOREM AND REVIEW Work the following on notebook paper. No calculator.

cos 5x dx e dt dx 20. CALCULUS AB WORKSHEET ON SECOND FUNDAMENTAL THEOREM AND REVIEW Work the following on notebook paper. No calculator. WORKSHEET ON SECOND FUNDAMENTAL THEOREM AND REVIEW Work the following on notebook paper. No calculator. Find the derivative. Do not leave negative eponents or comple fractions in our answers. 4. 8 4 f

More information

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment Unit 6 (1-Dimensional Motion) Practice Assessment Choose the best answer to the following questions. Indicate the confidence in your answer by writing C (Confident), S (So-so), or G (Guessed) next to the

More information

Motion with Integrals Worksheet 4: What you need to know about Motion along the x-axis (Part 2)

Motion with Integrals Worksheet 4: What you need to know about Motion along the x-axis (Part 2) Motion with Integrals Worksheet 4: What you need to know about Motion along the x-axis (Part 2) 1. Speed is the absolute value of. 2. If the velocity and acceleration have the sign (either both positive

More information

5.5 Worksheet - Linearization

5.5 Worksheet - Linearization AP Calculus 4.5 Worksheet 5.5 Worksheet - Linearization All work must be shown in this course for full credit. Unsupported answers ma receive NO credit. 1. Consider the function = sin. a) Find the equation

More information

Student Study Session. Theorems

Student Study Session. Theorems Students should be able to apply and have a geometric understanding of the following: Intermediate Value Theorem Mean Value Theorem for derivatives Extreme Value Theorem Name Formal Statement Restatement

More information

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) Curriculum Module: Calculus: Motion Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight.

More information

1 Exam 1 Spring 2007.

1 Exam 1 Spring 2007. Exam Spring 2007.. An object is moving along a line. At each time t, its velocity v(t is given by v(t = t 2 2 t 3. Find the total distance traveled by the object from time t = to time t = 5. 2. Use the

More information

Work the following on notebook paper. You may use your calculator to find

Work the following on notebook paper. You may use your calculator to find CALCULUS WORKSHEET ON 3.1 Work the following on notebook paper. You may use your calculator to find f values. 1. For each of the labeled points, state whether the function whose graph is shown has an absolute

More information

AP Calculus. Particle Motion. Student Handout

AP Calculus. Particle Motion. Student Handout AP Calculus Particle Motion Student Handout 016-017 EDITION Use the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss Copyright 016

More information

Name Date Period. Worksheet 1.5 Continuity on Intervals & IVT. Show all work. No Calculator (unless stated otherwise) Short Answer

Name Date Period. Worksheet 1.5 Continuity on Intervals & IVT. Show all work. No Calculator (unless stated otherwise) Short Answer Name Date Period Worksheet 1.5 Continuity on Intervals & IVT Show all work. No Calculator (unless stated otherwise) Short Answer 1. A piece of the graph of (a) Sketch a graph of f ( x). x, x 1 f( x) =

More information

AP CALCULUS AB/CALCULUS BC 2015 SCORING GUIDELINES

AP CALCULUS AB/CALCULUS BC 2015 SCORING GUIDELINES AP CALCULUS AB/CALCULUS BC 15 SCORING GUIDELINES Question 3 t (minutes) vt ( ) (meters per minute) 1 4 4 4 15 Johanna jogs along a straight path. For t 4, Johanna s velocity is given by a differentiable

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

MATH CALCULUS I 4.1: Area and Distance

MATH CALCULUS I 4.1: Area and Distance MATH 12002 - CALCULUS I 4.1: Area and Distance Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 8 The Area and Distance Problems

More information

The University of Sydney Math1003 Integral Calculus and Modelling. Semester 2 Exercises and Solutions for Week

The University of Sydney Math1003 Integral Calculus and Modelling. Semester 2 Exercises and Solutions for Week The University of Sydney Math3 Integral Calculus and Modelling Semester 2 Exercises and Solutions for Week 2 2 Assumed Knowledge Sigma notation for sums. The ideas of a sequence of numbers and of the limit

More information

Chapter 5 Review. 1. [No Calculator] Evaluate using the FTOC (the evaluation part) 2. [No Calculator] Evaluate using geometry

Chapter 5 Review. 1. [No Calculator] Evaluate using the FTOC (the evaluation part) 2. [No Calculator] Evaluate using geometry AP Calculus Chapter Review Name: Block:. [No Calculator] Evaluate using the FTOC (the evaluation part) a) 7 8 4 7 d b) 9 4 7 d. [No Calculator] Evaluate using geometry a) d c) 6 8 d. [No Calculator] Evaluate

More information

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas CALCULUS KINEMATICS CALCULUS KINEMATICS IN SCALAR FORM Question (**) A particle P is moving on the x axis and its acceleration a ms, t seconds after a given instant, is given by a = 6t 8, t 0. The particle

More information

AP Calculus Exam Format and Calculator Tips:

AP Calculus Exam Format and Calculator Tips: AP Calculus Exam Format and Calculator Tips: Exam Format: The exam is 3 hours and 15 minutes long and has two sections multiple choice and free response. A graphing calculator is required for parts of

More information

AP Calculus AB Chapter 1 Limits

AP Calculus AB Chapter 1 Limits AP Calculus AB Chapter Limits SY: 206 207 Mr. Kunihiro . Limits Numerical & Graphical Show all of your work on ANOTHER SHEET of FOLDER PAPER. In Exercises and 2, a stone is tossed vertically into the air

More information

an expression, in terms of t, for the distance of the particle from O at time [3]

an expression, in terms of t, for the distance of the particle from O at time [3] HORIZON EDUCATION SINGAPORE Additional Mathematics Practice Questions: Kinematics Set 1 1 A particle moves in a straight line so that t seconds after passing through O, its velocity v cm s -1, is given

More information

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f()

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f() 4.1 & 4. Student Notes Using the First and Second Derivatives Definition A function f has an absolute maximum (or global maximum) at c if f ( c) f ( x) for all x in D, where D is the domain of f. The number

More information

Particle Motion Problems

Particle Motion Problems Particle Motion Problems Particle motion problems deal with particles that are moving along the x or y axis. Thus, we are speaking of horizontal or vertical movement. The position, velocity, or acceleration

More information

Unit #6 Basic Integration and Applications Homework Packet

Unit #6 Basic Integration and Applications Homework Packet Unit #6 Basic Integration and Applications Homework Packet For problems, find the indefinite integrals below.. x 3 3. x 3x 3. x x 3x 4. 3 / x x 5. x 6. 3x x3 x 3 x w w 7. y 3 y dy 8. dw Daily Lessons and

More information

Speed how fast an object is moving (also, the magnitude of the velocity) scalar

Speed how fast an object is moving (also, the magnitude of the velocity) scalar Mechanics Recall Mechanics Kinematics Dynamics Kinematics The description of motion without reference to forces. Terminology Distance total length of a journey scalar Time instant when an event occurs

More information

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS AP Calculus 5. Areas and Distances Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) Exercise : Calculate the area between the x-axis and the graph of y = 3 2x.

More information

Course Name : Physics I Course # PHY 107. Note - 3 : Motion in One Dimension

Course Name : Physics I Course # PHY 107. Note - 3 : Motion in One Dimension Course Name : Physics I Course # PHY 107 Note - 3 : Motion in One Dimension Abu Mohammad Khan Department of Mathematics and Physics North South University https://abukhan.weebly.com Copyright: It is unlawful

More information

Part 1: Integration problems from exams

Part 1: Integration problems from exams . Find each of the following. ( (a) 4t 4 t + t + (a ) (b ) Part : Integration problems from 4-5 eams ) ( sec tan sin + + e e ). (a) Let f() = e. On the graph of f pictured below, draw the approimating

More information

y t is not explicitly given. Both x and y are measured in meters, and t is measured in seconds. It is known

y t is not explicitly given. Both x and y are measured in meters, and t is measured in seconds. It is known A particle is moving along a curve so that its position at time t is x t, y t, where x t t 4t 8 and y t is not explicitly given. Both x and y are measured in meters, and t is measured in seconds. It is

More information

K. Function Analysis. ). This is commonly called the first derivative test. f ( x) is concave down for values of k such that f " ( k) < 0.

K. Function Analysis. ). This is commonly called the first derivative test. f ( x) is concave down for values of k such that f  ( k) < 0. K. Function Analysis What you are finding: You have a function f ( ). You want to find intervals where f ( ) is increasing and decreasing, concave up and concave down. You also want to find values of where

More information

Motion Graphs Practice

Motion Graphs Practice Name Motion Graphs Practice d vs. t Graphs d vs. t Graphs d vs. t Graphs 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. 3. The

More information

AP CALCULUS AB SECTION I, Part A Time 55 Minutes Number of questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM

AP CALCULUS AB SECTION I, Part A Time 55 Minutes Number of questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM AP CALCULUS AB SECTION I, Part A Time 55 Minutes Number of questions 28 Time Began: Time Ended: A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM Directions: Solve each of the following problems, using

More information

1998 AP Calculus AB: Section I, Part A

1998 AP Calculus AB: Section I, Part A 998 AP Calculus AB: 55 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number.. What is the -coordinate

More information

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel Acceleration When the velocity of an object changes, we say that the object is accelerating. This acceleration can take one of three forms: 1. Speeding Up occurs when the object s velocity and acceleration

More information

IB Math SL Year 2 Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited

IB Math SL Year 2 Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited Learning Goals: How do you apply integrals to real-world scenarios? Recall: Linear Motion When an object is moving, a ball in the air

More information

Motion Graphs Refer to the following information for the next four questions.

Motion Graphs Refer to the following information for the next four questions. Motion Graphs Refer to the following information for the next four questions. 1. Match the description provided about the behavior of a cart along a linear track to its best graphical representation. Remember

More information

AP Calculus BC Summer Assignment (June)

AP Calculus BC Summer Assignment (June) AP Calculus BC Summer Assignment (June) Solve each problem on a separate sheet of paper as if they are open ended AP problems. This means you must include all justifications necessary as on the AP AB exam.

More information

sin x (B) sin x 1 (C) sin x + 1

sin x (B) sin x 1 (C) sin x + 1 ANSWER KEY Packet # AP Calculus AB Eam Multiple Choice Questions Answers are on the last page. NO CALCULATOR MAY BE USED IN THIS PART OF THE EXAMINATION. On the AP Eam, you will have minutes to answer

More information

1998 Calculus AB Scoring Guidelines

1998 Calculus AB Scoring Guidelines 41 Velocity (feet per second) v(t) 9 8 7 6 5 4 1 O 1998 Calculus AB Scoring Guidelines 5 1 15 5 5 4 45 5 Time (seconds) t t v(t) (seconds) (feet per second) 5 1 1 15 55 5 7 78 5 81 4 75 45 6 5 7. The graph

More information

Clayton State University Department of Natural Sciences. Physics 1111 Quiz 2

Clayton State University Department of Natural Sciences. Physics 1111 Quiz 2 Clayton State University September 8, 2005 Name SOLUTION 1. A new car manufacturer advertises that their car can go "from zero to sixty in 8 s". This is a description of a. Average speed. b. Instantaneous

More information

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

4.2 Mean Value Theorem Calculus

4.2 Mean Value Theorem Calculus 4. MEAN VALUE THEOREM The Mean Value Theorem is considered b some to be the most important theorem in all of calculus. It is used to prove man of the theorems in calculus that we use in this course as

More information

NO CALCULATORS: 1. Find A) 1 B) 0 C) D) 2. Find the points of discontinuity of the function y of discontinuity.

NO CALCULATORS: 1. Find A) 1 B) 0 C) D) 2. Find the points of discontinuity of the function y of discontinuity. AP CALCULUS BC NO CALCULATORS: MIDTERM REVIEW 1. Find lim 7x 6x x 7 x 9. 1 B) 0 C) D). Find the points of discontinuity of the function y of discontinuity. x 9x 0. For each discontinuity identify the type

More information

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period:

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period: AP Calculus (BC) Chapter 10 Test No Calculator Section Name: Date: Period: Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The graph in the xy-plane represented

More information

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2 AB CALCULUS Page 1 of 6 NAME DATE 1. Evaluate each it: AB CALCULUS Show all work on separate paper. x 3 x 9 x 5x + 6 x 0 5x 3sin x x 7 x 3 x 3 5x (d) 5x 3 x +1 x x 4 (e) x x 9 3x 4 6x (f) h 0 sin( π 6

More information

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t Math 111 - Eam 1a 1) Evaluate the following limits: 7 3 1 4 36 a) lim b) lim 5 1 3 6 + 4 c) lim tan( 3 ) + d) lim ( ) 100 1+ h 1 h 0 h ) Calculate the derivatives of the following. DON'T SIMPLIFY! a) y

More information

Which car/s is/are undergoing an acceleration?

Which car/s is/are undergoing an acceleration? Which car/s is/are undergoing an acceleration? Which car experiences the greatest acceleration? Match a Graph Consider the position-time graphs below. Each one of the 3 lines on the position-time graph

More information

Sections Practice AP Calculus AB Name

Sections Practice AP Calculus AB Name Sections 4.1-4.5 Practice AP Calculus AB Name Be sure to show work, giving written explanations when requested. Answers should be written exactly or rounded to the nearest thousandth. When the calculator

More information

1998 AP Calculus AB: Section I, Part A

1998 AP Calculus AB: Section I, Part A 55 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number.. What is the -coordinate of the point

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

m2413f 4. Suppose that and . Find the following limit b. 10 c. 3 d Determine the limit (if it exists). 2. Find the lmit. a. 1 b. 0 c. d.

m2413f 4. Suppose that and . Find the following limit b. 10 c. 3 d Determine the limit (if it exists). 2. Find the lmit. a. 1 b. 0 c. d. m2413f Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find an equation of the line that passes through the point and has the slope. 4. Suppose that and

More information

Graphical Analysis Part III. Motion Graphs. Basic Equations. Velocity is Constant. acceleration is zero. and. becomes

Graphical Analysis Part III. Motion Graphs. Basic Equations. Velocity is Constant. acceleration is zero. and. becomes Graphical Analysis Part III Motion Graphs Basic Equations d = vt+ 0 1 at v = v 0 + at Velocity is Constant acceleration is zero and becomes 1 d = v 0 t+ at d = vt 1 Velocity is Constant the slope of d

More information

AP Calculus Prep Session Handout. Table Problems

AP Calculus Prep Session Handout. Table Problems AP Calculus Prep Session Handout The AP Calculus Exams include multiple choice and free response questions in which the stem of the question includes a table of numerical information from which the students

More information

AP CALCULUS AB 2004 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2004 SCORING GUIDELINES (Form B) AP CALCULUS AB 004 SCORING GUIDELINES (Form B) Question 4 The figure above shows the graph of f, the derivative of the function f, on the closed interval 1 x 5. The graph of f has horizontal tangent lines

More information

Remember... Average rate of change slope of a secant (between two points)

Remember... Average rate of change slope of a secant (between two points) 3.7 Rates of Change in the Natural and Social Sciences Remember... Average rate of change slope of a secant (between two points) Instantaneous rate of change slope of a tangent derivative We will assume

More information

ANOTHER FIVE QUESTIONS:

ANOTHER FIVE QUESTIONS: No peaking!!!!! See if you can do the following: f 5 tan 6 sin 7 cos 8 sin 9 cos 5 e e ln ln @ @ Epress sin Power Series Epansion: d as a Power Series: Estimate sin Estimate MACLAURIN SERIES ANOTHER FIVE

More information

Theorems (IVT, EVT, and MVT)

Theorems (IVT, EVT, and MVT) Theorems (IVT, EVT, and MVT) Students should be able to apply and have a geometric understanding of the following: Intermediate Value Theorem Mean Value Theorem for derivatives Extreme Value Theorem Multiple

More information

Vectors in Physics. Topics to review:

Vectors in Physics. Topics to review: Vectors in Physics Topics to review: Scalars Versus Vectors The Components of a Vector Adding and Subtracting Vectors Unit Vectors Position, Displacement, Velocity, and Acceleration Vectors Relative Motion

More information

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity 3 Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity Distance An important part of describing the motion of an object is to describe how far it has moved, which is distance. The SI unit

More information

NO CALCULATORS: 1. Find A) 1 B) 0 C) D) 2. Find the points of discontinuity of the function y of discontinuity.

NO CALCULATORS: 1. Find A) 1 B) 0 C) D) 2. Find the points of discontinuity of the function y of discontinuity. AP CALCULUS BC NO CALCULATORS: MIDTERM REVIEW. Find lim 7 7 9. B) C) D). Find the points of discontinuit of the function of discontinuit. 9. For each discontinuit identif the tpe A. Removable discontinuit

More information

2007 AP Calculus AB Free-Response Questions Section II, Part A (45 minutes) # of questions: 3 A graphing calculator may be used for this part

2007 AP Calculus AB Free-Response Questions Section II, Part A (45 minutes) # of questions: 3 A graphing calculator may be used for this part 2007 AP Calculus AB Free-Response Questions Section II, Part A (45 minutes) # of questions: 3 A graphing calculator may be used for this part 1. Let R be the region in the first and second quadrants bounded

More information

Calculus with the Graphing Calculator

Calculus with the Graphing Calculator Calculus with the Graphing Calculator Using a graphing calculator on the AP Calculus exam Students are expected to know how to use their graphing calculators on the AP Calculus exams proficiently to accomplish

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show all your work on the standard response

More information

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t).

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Example 1: For s( t) t t 3, show its position on the

More information

Definitions. Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion.

Definitions. Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion. Lecture 2 Definitions Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion. Dynamics: The study of the forces that cause motion. Chapter Outline Consider

More information

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below.

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. Kinematics 1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. After 25 seconds Joseph has run 200 m. Which of the following is correct at 25 seconds? Instantaneous

More information

Mean Value Theorem. is continuous at every point of the closed interval,

Mean Value Theorem. is continuous at every point of the closed interval, Mean Value Theorem The Mean Value Theorem connects the average rate of change (slope of the secant between two points [a and b]) with the instantaneous rate of change (slope of tangent at some point c).

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

Unit 1 Parent Guide: Kinematics

Unit 1 Parent Guide: Kinematics Unit 1 Parent Guide: Kinematics Kinematics is the study of the motion of objects. Scientists can represent this information in the following ways: written and verbal descriptions, mathematically (with

More information

Remember... Average rate of change slope of a secant (between two points)

Remember... Average rate of change slope of a secant (between two points) 3.7 Rates of Change in the Natural and Social Sciences Remember... Average rate of change slope of a secant (between two points) Instantaneous rate of change slope of a tangent derivative We will assume

More information

Calculus AB 2014 Scoring Guidelines

Calculus AB 2014 Scoring Guidelines P Calculus B 014 Scoring Guidelines 014 The College Board. College Board, dvanced Placement Program, P, P Central, and the acorn logo are registered trademarks of the College Board. P Central is the official

More information

Answer Key for AP Calculus AB Practice Exam, Section I

Answer Key for AP Calculus AB Practice Exam, Section I Answer Key for AP Calculus AB Practice Exam, Section I Multiple-Choice Questions Question # Key B B 3 A 4 E C 6 D 7 E 8 C 9 E A A C 3 D 4 A A 6 B 7 A 8 B 9 C D E B 3 A 4 A E 6 A 7 A 8 A 76 E 77 A 78 D

More information

Parametric Functions and Vector Functions (BC Only)

Parametric Functions and Vector Functions (BC Only) Parametric Functions and Vector Functions (BC Only) Parametric Functions Parametric functions are another way of viewing functions. This time, the values of x and y are both dependent on another independent

More information

Review Sheet for Second Midterm Mathematics 1300, Calculus 1

Review Sheet for Second Midterm Mathematics 1300, Calculus 1 Review Sheet for Second Midterm Mathematics 300, Calculus. For what values of is the graph of y = 5 5 both increasing and concave up? >. 2. Where does the tangent line to y = 2 through (0, ) intersect

More information

LECTURE 2. Mechanics is constituted by two main part: Kinematics and Dynamics

LECTURE 2. Mechanics is constituted by two main part: Kinematics and Dynamics LECTURE 2 KINEMATICS, YNAMICS AN STATIC Mechanics is constituted by two main part: Kinematics and ynamics -Kinematics is that part of mechanics that describes the movement of objects without paying attention

More information

APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS

APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS PROBLEM SET #1 Related Rates ***Calculators Allowed*** 1. An oil tanker spills oil that spreads in a circular pattern whose radius increases at the rate of

More information

Distance And Velocity

Distance And Velocity Unit #8 - The Integral Some problems and solutions selected or adapted from Hughes-Hallett Calculus. Distance And Velocity. The graph below shows the velocity, v, of an object (in meters/sec). Estimate

More information

3.4 Solutions.notebook March 24, Horizontal Tangents

3.4 Solutions.notebook March 24, Horizontal Tangents Note Fix From 3.3 Horizontal Tangents Just for fun, sketch y = sin x and then sketch its derivative! What do you notice? More on this later 3.4 Velocity and Other Rates of Change A typical graph of the

More information

Logarithmic Differentiation (Sec. 3.6)

Logarithmic Differentiation (Sec. 3.6) Logarithmic Differentiation (Sec. 3.6) Logarithmic Differentiation Use logarithmic differentiation if you are taking the derivative of a function whose formula has a lot of MULTIPLICATION, DIVISION, and/or

More information

Choose the correct answer:

Choose the correct answer: Choose the correct answer: 1. An object moves at a constant speed of 6 m/s. This means that the object (a) Decreases its speed by 6 m/s every second (b) Doesn t move (c) Has a positive acceleration (d)

More information

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions. Which of the following integrals correctly corresponds to the area of the shaded region in the figure to the right? (A) (B) (C) (D) (E)

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

AB 1: Find lim. x a.

AB 1: Find lim. x a. AB 1: Find lim x a f ( x) AB 1 Answer: Step 1: Find f ( a). If you get a zero in the denominator, Step 2: Factor numerator and denominator of f ( x). Do any cancellations and go back to Step 1. If you

More information

Mathematics Scope & Sequence Calculus AB

Mathematics Scope & Sequence Calculus AB Mathematics Scope & Sequence 2015-16 Calculus AB Revised: March 2015 First Six Weeks (29 ) Limits and Continuity Limits of (including onesided limits) An intuitive understanding of the limiting process

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information

1. Determine the limit (if it exists). + lim A) B) C) D) E) Determine the limit (if it exists).

1. Determine the limit (if it exists). + lim A) B) C) D) E) Determine the limit (if it exists). Please do not write on. Calc AB Semester 1 Exam Review 1. Determine the limit (if it exists). 1 1 + lim x 3 6 x 3 x + 3 A).1 B).8 C).157778 D).7778 E).137778. Determine the limit (if it exists). 1 1cos

More information

Section 4.2: The Mean Value Theorem

Section 4.2: The Mean Value Theorem Section 4.2: The Mean Value Theorem Before we continue with the problem of describing graphs using calculus we shall briefly pause to examine some interesting applications of the derivative. In previous

More information

VELOCITY. If you have a graph of position and you take the derivative, what would the derivative represent? Position. Time

VELOCITY. If you have a graph of position and you take the derivative, what would the derivative represent? Position. Time VELOCITY If you have a graph of position and you take the derivative, what would the derivative represent? Position Time Average rate of Change What is the average rate of change of temperature over the

More information

Chapter 2. Motion along a straight line. We find moving objects all around us. The study of motion is called kinematics.

Chapter 2. Motion along a straight line. We find moving objects all around us. The study of motion is called kinematics. Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information

AP CALCULUS AB 2001 SCORING GUIDELINES. Question 3

AP CALCULUS AB 2001 SCORING GUIDELINES. Question 3 AP CALCULUS AB SCORING GUIDELINES Question A car is traveling on a straight road with velocity ft/sec at time t =. For > t > 8 seconds, the car s acceleration at (), in ft/sec, is the piecewise linear

More information

One of the most common applications of Calculus involves determining maximum or minimum values.

One of the most common applications of Calculus involves determining maximum or minimum values. 8 LESSON 5- MAX/MIN APPLICATIONS (OPTIMIZATION) One of the most common applications of Calculus involves determining maimum or minimum values. Procedure:. Choose variables and/or draw a labeled figure..

More information