One of the most common applications of Calculus involves determining maximum or minimum values.


 Antonia Harrell
 1 years ago
 Views:
Transcription
1 8 LESSON 5 MAX/MIN APPLICATIONS (OPTIMIZATION) One of the most common applications of Calculus involves determining maimum or minimum values. Procedure:. Choose variables and/or draw a labeled figure.. Write a primar equation. Isolate whatever is to be maimized or minimized.. Rewrite with onl one variable on each side. This ma require a secondar equation. 4. Find the domain. 5. Take the derivative, find critical numbers, make a number line, etc. Eamples: Answer with a complete sentence.. A bo with no lid is to be made from 48 cm of material. If the bo must have a square base, find the dimensions that produce a maimum volume.. The product of two positive numbers is 88. Find the two numbers so that the sum of twice the first plus the second is as small as possible.
2 8 ASSIGNMENT 5 Write sentence answers on 6.. The product of two positive numbers is. Find the two numbers so that the sum of the numbers is as small as possible.. The area of a rectangle is 8 cm. Find the length and width so that the rectangle has a minimum perimeter.. The perimeter of a rectangle is 8 feet. Find the length and width so that the rectangle has a maimum area. 4. Two adjacent rectangular corrals are to be made using 4 feet of fencing. The fence must etend around the outer perimeter and across the middle as shown in the diagram. Find the dimensions so that the total enclosed area is as large as possible. 5. A shelter at a bus stop is to be made with three Pleiglas sides and a Pleiglas top. If the volume of the shelter is 486 cubic feet, find the dimensions that require the least amount of Pleiglas. 6. A bo is made b cutting small squares from each corner of a piece of square material inches on each side and then folding up the flaps. Find the side of the square cutouts that will produce the greatest volume bo. 7. A rectangle is positioned with one verte on the line as shown. Find the point so that the rectangle has a maimum area., 8. Use the graph of f shown to graph f and a graph of f with the starting point (,). f
3 8 9. The volume formula for a cone is find dv dt when r = 6 inches. V dr in r h. If and h r, dt min. An airplane fling at an altitude of miles flies directl over a radar station. When the plane is 5 miles awa from the station, the radar shows the distance s is changing at the rate of miles per hour. What is the plane s speed?. Use the graph of f at the right for these problems. a. Find lim f b. Find lim f c. Find lim f 4 d. Find lim f e. Find lim f..... f. List the discontinuities of f. g. Which of these discontinuities are removable?,. h. Find the absolute maimum of f () on i. Find the absolute minimum of f () on,. j. Find f. k. Find f. l. List all values where f does not eist. m. List all values at which f has a local minimum. n. List all values at which f has a local maimum.
4 84 LESSON 5 MORE MAX/MIN APPLICATIONS Eample: The sum of two nonnegative numbers is. Find both numbers if the sum of twice the first plus the square of the second is a maimum. ASSIGNMENT 5. The product of two positive numbers is. Find the two numbers so that the sum of the first plus three times the second is as small as possible.. The sum of two nonnegative numbers is 5. Find the two numbers so that the sum of the first plus the square of the second is a minimum.. The sum of two nonnegative numbers is 5. Find the two numbers so that the sum of the first plus the square of the second is a maimum. 4. A rancher plans to fence in three sides of a rectangular pasture with the fourth side being against a rock cliff. He needs to enclose, square meters of pasture. What dimensions would require the least amount of fence material. 5. A bo is to be made b cutting small squares from each corner of a ft b 5 ft rectangular piece of material. Find the size of the square cutouts that would produce a bo with maimum volume. (Your V = equation will not be factorable. You ma use a calculator to solve it.) Show three or more decimal place accurac. 6. Find the volume of the bo in Problem 5. Show or more decimal place accurac.
5 85 7. A rectangle is positioned with two points on the semicircle 6 as shown. Find the point (,) so that the area of the rectangle is a maimum. 8. Find the area of the rectangle in Problem 7., 9. A bo with an open top has a square base. If the volume of the bo is 4 cubic centimeters, what dimensions minimize the amount of material used?. Find the relative etrema and points of inflection and graph f, if f 4 f 4 6 and 4.. Find the relative etrema and concavit and graph g. Find the derivative... f 4. g 5. If f, find f and graph both f and f. 6. Use a graphing adjustment of a parent graph to graph. 7. Use the graph of f shown to graph f and a f possible graph of f.
6 86 LESSON 5 APPROXIMATING WITH THE TANGENT LINE In man instances, finding a value of a function is difficult or impossible. With the use of Calculus techniques, we can approimate the function value b finding a value on a tangent line to the function. Since this method involves using a linear function (the tangent line function) at a nearb point, it is sometimes called a local linearization approimation. Eamples:. If, is a point on the graph of 4, use the equation of a tangent line passing through the point, to approimate a coordinate (a) when the coordinate is.. (b) when the coordinate is.9.. If f and f, use local linearization to approimate. f, ASSIGNMENT 5. a. Write an equation of the tangent line shown. b. Use this tangent line equation to f.. approimate c. What is the actual value of f.? f 4,
7 87. Make a large cop of the graph on our own paper. a. Draw the tangent line at the point (,). b. Write an equation of this tangent line. c. Label a point on our tangent line with an coordinate of.9 as point A. d. Use our equation of the tangent line to approimate f (.9) b finding the coordinate of our point A.. e. Label a point B on the parabola with an coordinate of.9. What is the actual value of f (.9)? f. Use the same tangent line to approimate f (.6). How accurate is our approimation? (,) f. Approimate 6 using the equation of a tangent line. You must choose our own equation and point. The graph shown should help. (5,5) 4. The graph of a function f is shown. If f 9, use local linearization to approimate f (.). (5,5) 5. Find the actual value of f (.) from problem 4 or eplain wh it cannot be found. (,) 6. The point (5,) is on the curve the coordinate when Use a tangent line to approimate 7. The length of one side of a square is found to be 8 inches with a possible measurement error of 6 inch. a. Instead of using the actual area formula ( A s ), approimate the area of the square using a local linearization of the area formula if the length of the side is reall 8 inches (without using a calculator). 6 5 b. Find the approimate area if the side is actuall 7 inches. 6 c. Use our answers from parts a and b to give an approimate range of values for the area of the square. 8. Use a tangent line equation to approimate f (8.) if f (without using a calculator).
8 The point (,) is on the graph of 9. Use the equation of a tangent line to approimate a coordinate when =... Use a calculator to find an actual coordinate on the graph of the curve from problem 9 when =.. Show the equation ou are solving.. Given the function a. use the equation of a tangent line to approimate 6 without using a calculator. b. find the actual value of 6?. Find the absolute etrema of the function f on the interval. The second of two positive numbers is the reciprocal of the first. Find the two numbers so that their sum is a minimum. 4. The function f.5,. 4 can be used to model how a disease spreads in an e isolated population of 4 people. represents the time in das since the sickness started and f () represents the number of people who have become sick. Use a calculator to help answer the questions below. a. How man people have become sick b the tenth da? b. How fast was the disease spreading on the tenth da? c. Find the maimum point on f. What does the coordinate represent? What does the coordinate represent? Note: Finding a maimum or minimum with a calculator is not allowed on the AP Calculus test. d. How man people have caught the disease when the curve is the steepest? e. Wh would the slope of the curve decrease after a period of time? f. When was the rate of the spread of the disease increasing the fastest? 5. A rancher plans to fence in three sides of a rectangular pasture with the fourth side being against a rock cliff. If he has ards of fencing to use, what is the maimum area he can enclose? 6. Without using a calculator, find vertical asmptotes, relative etrema, and end behavior, and then sketch a graph of f Use graphing adjustments of a parent graph to graph.
9 89 8. Use the intercepts, vertical asmptotes, relative etrema, and end behavior to graph f, if f and f 4. Do not use a calculator Find all points of inflection of 4 4 f 6.. Find all relative etrema points on the graph of. 4. Find 5 6 lim.. Find lim.. Find the cvalue guaranteed b the Mean Value Theorem for the function 5,. You ma use a calculator. on the interval
10 9 LESSON 54 ANTIDIFFERENTIATION, INDEFINITE INTEGRALS Warmup Eamples: Differentiate each of the following.. f ( ). f ( ). f ( ) C where C is an constant (number) So what should ou get when ou antidifferentiate? ( ) f ( ) f This problem can be written as d The smbol is called an integral smbol and tells ou to integrate (antidifferentiate) the epression which follows it. That epression is called an integrand. d indicates that ou are integrating with respect to the variable but does not affect the integration process. C is called the constant of integration and must be written as part of our answer when ou are antidifferentiating. Integration Rules: Power Rule: n n d C, n n Constant Rule: If k is an constant, k d k C Scalar Multiple Rule: If k is an constant, k f ( ) d k f ( ) d Sum Rule: (Constants ma be factored out of the integral epression. NEVER factor out a variable.) f ( ) g( ) d f ( ) d g( ) d Eamples: Evaluate (Integrate). 4. d 5. d 6. 4 ( t ) dt
11 9 7. ( 4 ) d 8. d 9. d Note: Put C when ou integrate, but never when ou differentiate. Sometimes an initial condition is given which makes it possible to solve for C. Eample : If f ( ) and f (), find f ( ). d Eample : Evaluate 5 d d If we know the acceleration equation for an object, and if we are given initial conditions for the object s velocit and position, integration allows us to find the velocit and position equations for the object. Remember: Pos. Vel. Acc. (Differentiate), so Acc. Vel. Pos. (Integrate). Eample : The acceleration of a particle at time t is given b a( t) 4t. v() 6 and s() 5. a. Find the velocit equation. vt () b. Find the position equation. st ()
12 9 Eample : Given that on earth, the acceleration of an object due to gravit is approimatel ft / sec (negative indicates downward), develop a. the equation for the velocit of the object. vo initial velocit vt b. the equation for the position of the object. so initial position st Note: The two equations vt t v and 6 for an motion affected onl b the earth s gravit. s t t v t s ma be used ASSIGNMENT 54 For Problems 4, rewrite the integrand and then integrate.. d. 4 t dt. ( )( ) d 4. Evaluate (integrate) each integral in Problems ( ) d 6. d 7. ( ) d d d. (t ) dt 5 8. d. 4 8 d. t dt t. d 4. If f ( ) 4 and f (), find f ( ).
13 9 d 5. The derivative of a function is. If the graph of the function contains dt t the point (, ), find the equation of the function. 6. a. Find an equation for the famil of functions whose derivative is. b. Find the particular function from the famil in Part a. whose curve passes through the point (4, ). 7. Find g, ( ) given that: g ( ), g() 5, and g( ). 8. Evaluate d d ( ) d. Hint: This is a derivative of an integral. 9. The acceleration of an object moving along a horizontal path is given b the equation a( t) 6t 4. The object s initial velocit is 5, and its initial position is. a. Find a velocit equation for the object. b. Find the velocit of the object when t. c. Find a position equation for the object. d. Find the object s position when t.. The velocit of an object moving along a vertical path is given b the equation v( t) t, t. a. Find an equation for the object s acceleration. b. Find the acceleration of the object when t 9. c. The object s position at t 9 is. Find an equation for the object s position.. A ball is dropped from a bridge which is 6 feet above a river. How long will it take the ball to hit the water? Use the equation s( t) 6t vot so.. For the first 4 seconds of a race, a sprinter accelerates at a rate of meters per second per second ( m/sec ). He then continues to run at the constant speed that he has attained for the rest of the race. a. Write a piecewise function to epress the sprinter s velocit vt () as a function of time. b. Find v(), v(4), and v (6). c. Write a piecewise function to epress the sprinter s position st () as a function of time. d. How far does the sprinter run during the first 4 seconds of the race? e. How long will it take the sprinter to run m?
14 94 For Problems and 4, the graph of the derivative ( f ) of a function is given. Sketch a possible graph of the function f.. f 4. f f contains the point (, ) 5. List the domain, vertical asmptote(s), hole(s),  and intercepts, end behavior, and tpe(s) of smmetr for the graph of. Then sketch the graph without using a calculator. 6. If f f ( ), find ( ). 7. Find an equation of a line tangent to the curve 6 5. which is parallel to the line 8. Find the cubic function of the form a b c d which has a relative maimum point at (, ) and a point of inflection at (, ).
15 95 LESSON 55 THE GENERAL POWER RULE FOR INTEGRALS AND USUBSTITUTION In Lesson , ou learned to differentiate composite functions b using the General Power Rule for Derivatives (Chain Rule for power functions). u is a function of ). We reverse this process when integrating. d (where u n nu n u d General Power Rule for Integrals: (Informall called the Reverse Chain Rule) n n u u ud C, n n This looks a lot like the simple power rule for integration that ou learned in the last lesson. However, the general power rule requires a hookon factor u to be present before ou can integrate. It is a crucial part of the Reverse Chain Rule. Eamples:. Differentiate ( 5 ) 4. Now, integrate 5( 5 ) Note: You hooked on the derivative of the inside of the power function in Eample, so ou had to unhook the derivative of the inside in Eample. Eamples: Integrate.. ( ) d 4. ( )( ) t t t t dt 5. 6 d ( ) d
16 96 usubstitution For more complicated integration problems, simple rules for integration might fail, and ou ma have to make some tpe of substitution to be able to integrate. In this course, a common substitution will be to let u = the radicand radicand part of the epression and to change the variable throughout the integral before integrating. You should use this method of substitution (called usubstitution) onl when simpler methods don t work. It should be our last resort. Procedure for usubstitution: (for d problems requiring the method). Let u radicand (part inside the smbol).. Solve for (in terms of u).. Differentiate the equation from Step. 4. Find d. 5. Substitute uepressions for epressions in the integral. Note: Most often, d du. Don t forget to substitute for d. 6. Integrate. 7. Substitute back, so that our final answer is again in terms of. Sometimes it is easier to do Step before Step. These two steps are reversible. Eamples: Integrate. 7. d 8. d You now have three strategies for integrating.. Term b term using the rules from page 9.. General Power Rule (Reverse Chain Rule).. usubstitution.
17 97 ASSIGNMENT 55 Evaluate (integrate) in Problems ( ) d. d 5. 8 (5t ) dt. 5 ( ) d 6 6. d 4 dv v 7. d 9. ( 4 ) 4 ( ) (4 ) d 8. 5 t 4 t dt. 5 d. (u ) du. d. d 4. d Use usubstitution to evaluate in Problems d 6. d 7. ( ) d 8. 4 If f ( ), f (8), and f (7) 5, find f ( ). 9. d d 4 Evaluate ( ) d.. The velocit of a particle moving along a vertical line is given b the equation t v( t). The particle s position at time zero is 4. a. Find an equation for the particle s acceleration at (). b. Find an equation for the particle s position t (). c. At what time(s) is the particle at rest? d. At what time(s) is the particle moving upward? e. For what value(s) of t does the particle s speed equal the particle s velocit? f. Find the total distance traveled b the particle from t = to t = 9. g. Find the interval(s) of time for which the speed of the particle is increasing.. Find equations for the lines tangent to and normal to the graph of 5 when.
18 98 t. Find the instantaneous rate of change for f ( t) when t. t t. Find the average rate of change for f( t) on [, ]. t 4. Which of the rates of change from Problems and represents: a. the slope of a secant line for the graph of f() t? b. the slope of a tangent line for the graph of f() t? 5. Find the value of c in [, ] such that f() c the average rate of change of t f( t) on [, ]. It is at this tlocation that the slopes of what two lines are t the same? (MVT). 6. Differentiate 4 implicitl to find the point(s) where the curve has a. horizontal tangents. b. vertical tangents. 7. (, 7) is a point on the curve of approimate f (.). 8. The graph of f ( ) is shown at right. a. Use the given graph to make f and f number lines. b. Sketch a graph of f which passes through the points (, ) and (, ). f ( ) 5. Use a tangent line to f 9. Use the graph at right to find: a. lim f( ) b. f ( ) c. e. g. lim f( ) lim f( ) lim f( ) 4 d. f () f. f () h. f ( 4). Use the alternate form of the limit definition of the derivative to find f () for f ( ).
19 99 LESSON 56 THE FUNDAMENTAL THEOREM OF CALCULUS, DEFINITE INTEGRALS, CALCULATOR INTEGRATION If f is a continuous function on [a, b], then f ( ) d f ( b ) a a f ( b) f ( a) This relationship is known as the Fundamental Theorem of Calculus. Note: The constant C is not necessar, because b b f ( ) d f ( ) C f a ( b ) C f ( a ) C f ( b ) f ( a ) a Notice the differences between the integration process above, which produces definite integrals, and the previous integration process, which produced indefinite integrals (or antiderivatives). Indefinite Integrals b Definite Integrals f ( ) f ( ) C b f ( ) ( ) ( ) ( ) a a No letters or numbers appear attached a and b (called limits of integration) are to the integral smbol. attached to the integral smbol. a and b b are usuall replaced b numbers in actual problems. Integrating produces an epression Integrating produces a value f ( b) f ( a) f ( ) C which represents a famil which is known as the value of the definite of functions (curves) when written integral. as f ( ) C. ( ) d C ( ) d (a famil of parabolas, if written as C () () () ().5 ) (a number value) The value of a definite integral b f ( ) d ma be thought of as a signed area from a the lower limit a (usuall a left side boundar) to the upper limit b (usuall a rightside boundar), and between the curve of f( ) and the ais. The value ma be positive, negative, or zero. Calculator Integration: A TI8 or TI84 calculator can be used to find the value of a definite integral from a to b b using f ( ) d in the calculate menu or fnint in the math menu. The calculate menu shows a graphical representation of the signed area together with the value of the definite integral.
20 Eamples: Use the calculate menu to evaluate the following definite integrals.. ( 6 ) d. 6 ( 6 ) 6 d d The math menu onl provides the value of the definite integral, but that is usuall all that we need. Most importantl, the math menu gives a more accurate answer. fnint is recommended for all problems from now on. Note: Newer operating sstems have a MATHPRINT setting that simplifies this process. Use the math menu to evaluate: d = fnint (abs( 6 ),, 5,5) or if 5 abs( 6 ) is alread entered on our calculator, fnint (,, 5,5) 5. Use the idea of signed area to evaluate d without using a calculator. 6. Set up a definite integral which could be used to find the area of the region bounded b the graph of (shown at right), the ais, and the vertical lines and. Evaluate without using a calculator d 8. 5 (4 t ) dt 9. 5 d 4. f d (,4) f (4,4)
21 START PLUS ACCUMULATION METHOD b Since f ( ) d f ( b ) f ( a ), it follows that f ( b) f ( a) f ( ) d. a a This means a function value can be found as a starting value plus a definite integral. Eamples:. If f and f 4,. If an object s velocit is vt t find f without a calculator. and s 8 find s. b ASSIGNMENT 56 The graph of the function f consists of line segments and a semicircle as shown. Evaluate the following using geometr formulas.. f f d f d For Problems 5 and 6 sketch a graph for each function, and use the idea of signed areas to evaluate these definite integrals using geometr formulas without using a calculator. 5. f ( ) 6. g( ) a. f ( ) d b. f ( ) d a. g ( ) d b. g( ) d Evaluate the definite integrals in Problems 75 without using a calculator ( ) d 8. d 9. ( t ) 4 t dt 4 d. 4 8 d. u u du d * 4. d * 5. d *(Hint: Problems 4 and 5 require usubstitution.)
22 6. If f( ) is an even function (graph smmetric to the ais) and a. f ( ) d b. f ( ) d c. f ( ) d d. f ( ) d, find f ( ) d 7. If g ( ) is an odd function (graph smmetric to the origin) and a. g ( ) d b. g ( ) d c. g( ) d d. g( ) d 5, find g( ) d g( ) d Use our calculator to evaluate the definite integrals in Problems 8, 9. Epress answers to or more decimal place accurac. 8. d 9. 6 d. Given f, 4 a. use a calculator to find f d. b. if f, find f ft. If an object s acceleration is at t v, v 5 and 5 find 4. sec 4.. ( t) t t represents the position equation for a particle moving along the ais. a. Find the velocit equation for the particle. vt () b. Find the acceleration equation for the particle. c. Find the velocit of the particle at t. d. Find the speed of the particle at t. e. At what time(s) is the particle s velocit decreasing? f. Find the displacement of the particle on the interval [, 4]. g. Find the total distance traveled from t to t 4. (Show a velocit number line). You ma wish to review Lesson  for Parts f. and g. 4 h. Find v() t dt without using a calculator. Compare our answer to Part f. i. Use our calculator to find 4 v () t dt. Compare our answer to Part g. *You now have two was to find displacement and total distance. Using definite integrals, displacement b v () t dt and total distance b v() t dt a on the interval a [a, b]. Given a choice of methods, alwas do total distance b evaluating a definite integral on our calculator.
23 . Find the area between f( ) and the ais on the interval [, ]. Show an integral set up, and evaluate using a calculator. 4. f ( ), f ( ), and f ( ) a. Without using a calculator, list the domain, an vertical or horizontal asmptotes, the  and intercepts, and the tpe of smmetr for the graph of f( ). b. Find the values of the relative etrema of f( ). c. Find the values of the points of inflection of f( ). d. Sketch f( ) without using a calculator. Check our sketch with a calculator..
24 4 UNIT 5 SUMMARY Ma/Min Applications: Procedure:. Choose variables and/or draw a labeled figure.. Write a primar equation. Isolate whatever is to be maimized or minimized.. Rewrite with onl one variable on each side. This ma require a secondar equation. 4. Find the domain. 5. Take the derivative, find critical numbers, make a number line, etc. Approimations using a tangent line: Find the equation of a tangent line at a convenient point. Plug in a new value to find a new value on the tangent line which is close to a value on the curve. Antidifferentiation: (Integration) f ( ) d f ( ) C or f ( ) d F( ) C where F( ) f ( ) Indefinite Integrals f ( ) d f ( ) C You might have an initial condition and be able to solve for C. b Definite Integrals f ( ) d f b ( ) f a ( b ) f ( a ) a Start Plus Accumulation f ( b) f ( a) f ( ) d General Power Rule for Integrals (Reverse chain rule for a power function) n n u u ud C, n (Where u is a function of ) n Three Was to Integrate (so far): :. Term b term.. General Power Rule (reverse chain).. usubstitution b Calculator Integration f ( ) d fnint( f ( ),, a, b ) a b a Procedure for usubstitution:. Let u radicand (part inside the smbol).. Solve for.. Differentiate the equation from Step. 4. Find d. 5. Substitute uepressions for epressions in the integral. 6. Integrate. 7. Substitute back, so that our final answer is again in terms of. Displacement b v () t dt Total Distance b v() t a a dt Integrals involving absolute value: draw a graph, use geometr.
25 5 ASSIGNMENT 57 REVIEW. Find a and b so that the graph of a b has a relative minimum at (,). 4. The point (,) is on the graph of. Use the equation of a tangent line to approimate the coordinate when =.9. Use the graph of f shown for problems and 4... Sketch a graph of f 4. Sketch a graph of f which contains the point,. 5. If, find the equation of the tangent line when 6 5 approimate the coordinate when 5 6. and use it to 6. An interstate driver is traveling 4 miles across a state from south to north without stopping. At noon she notices her speed is 6 miles per hour and her position is at interstate mile marker 4. Note: Interstate mile markers increase from south to north. a. Use this data to write a linear function (local linearization) which could be used to estimate her position as a function of time. Assume t = at noon. b. Approimate her position at : pm. c. Approimate her position at : am. d. What is the domain on which our linear function can be applied?
26 6 Use the graph of a velocit function for an object moving horizontall shown at the right for problems Find the object s acceleration at time 5 seconds. 8. Find the speed of the object at time 6 seconds. 9. On which interval of time is the object moving right?. On which interval(s) of time is the object s velocit increasing? vel. in ft sec time in seconds. On which interval(s) of time is the object s speed increasing?. At what time is the object farthest right?. Without using a calculator, find the domain, the intercepts, the vertical asmptote, the end behavior, the relative etrema, and the points of inflection. Then sketch a 4 graph of f. Hint: f and f. 4. Without using a calculator, find the intercepts, the local etrema, and the points of inflection, and then draw a graph of f. 5. Find the point(s) at which the graph of tangents. 6. Find the point(s) at which the graph of tangents. 4 6 has horizontal 4 6 has vertical 7. Find the maimum and minimum points on the graph of 4 6. Determine if the Mean Value Theorem can be applied to f () on the given interval. If it can be applied, find the cvalue. If it cannot be applied, eplain wh not. You ma use a calculator. Answer with three or more decimal place accurac. 8. f on,5, on,, 9. f
27 7. Find the dimensions of the rectangle with maimum area inscribed under the curve as shown. (5,5). A point moves along the curve so that the coordinate is increasing at the rate of two units per second. At what rate is the coordinate changing when = 8 units?. Find the absolute etreme values of the function interval,. f on the. If = is a critical number of a function f, and f, does f have a local maimum or a local minimum at =? 4. What is the maimum height (in feet) reached b a ball thrown upward, if the ball s height is given b the position equation st 6t 64t 6? Do not use a calculator. Integrate each of the following. 5. ( ) d 6. t t dt 7. Evaluate the following without a calculator d 9. 5 d. 9 5 d d. If f sin and f. 6.5, find.6 f. v t t 4 t. t. The velocit of a moving object is given b. If the position at t = is given b, find. Find the total distance traveled b the object on the interval,4.
Problems to practice for FINAL. 1. Below is the graph of a function ( ) At which of the marked values ( and ) is: (a) ( ) greatest = (b) ( ) least
Problems to practice for FINAL. Below is the graph of a function () At which of the marked values ( and ) is: (a) () greatest = (b) () least = (c) () the greatest = (d) () the least = (e) () = = (f) ()
More informationCHAPTER 3 Applications of Differentiation
CHAPTER Applications of Differentiation Section. Etrema on an Interval................... 0 Section. Rolle s Theorem and the Mean Value Theorem...... 0 Section. Increasing and Decreasing Functions and
More informationMath 121. Practice Questions Chapters 2 and 3 Fall Find the other endpoint of the line segment that has the given endpoint and midpoint.
Math 11. Practice Questions Chapters and 3 Fall 01 1. Find the other endpoint of the line segment that has the given endpoint and midpoint. Endpoint ( 7, ), Midpoint (, ). Solution: Let (, ) denote the
More informationCHAPTER 3 Applications of Differentiation
CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 0 Section. Rolle s Theorem and the Mean Value Theorem. 07 Section. Increasing and Decreasing Functions and the First
More informationCHAPTER 3 Applications of Differentiation
CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. Section. Rolle s Theorem and the Mean Value Theorem. 7 Section. Increasing and Decreasing Functions and the First Derivative
More informationQuick Review 4.1 (For help, go to Sections 1.2, 2.1, 3.5, and 3.6.)
Section 4. Etreme Values of Functions 93 EXPLORATION Finding Etreme Values Let f,.. Determine graphicall the etreme values of f and where the occur. Find f at these values of.. Graph f and f or NDER f,,
More informationCHAPTER 3 Applications of Differentiation
CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 78 Section. Rolle s Theorem and the Mean Value Theorem. 8 Section. Increasing and Decreasing Functions and the First
More information5.5 Worksheet  Linearization
AP Calculus 4.5 Worksheet 5.5 Worksheet  Linearization All work must be shown in this course for full credit. Unsupported answers ma receive NO credit. 1. Consider the function = sin. a) Find the equation
More information4.2 Mean Value Theorem Calculus
4. MEAN VALUE THEOREM The Mean Value Theorem is considered b some to be the most important theorem in all of calculus. It is used to prove man of the theorems in calculus that we use in this course as
More informationChapter 6 Overview: Applications of Derivatives
Chapter 6 Overview: Applications of Derivatives There are two main contets for derivatives: graphing and motion. In this chapter, we will consider the graphical applications of the derivative. Much of
More informationlim 2 x lim lim sin 3 (9) l)
MAC FINAL EXAM REVIEW. Find each of the following its if it eists, a) ( 5). (7) b). c). ( 5 ) d). () (/) e) (/) f) () sin g) () h) 5 5 5. DNE i) (/) j) (/) 7 8 k) m) ( ) (9) l) n) sin sin( ) 7 o) DNE
More informationThe Fundamental Theorem of Calculus Part 3
The Fundamental Theorem of Calculus Part FTC Part Worksheet 5: Basic Rules, Initial Value Problems, Rewriting Integrands A. It s time to find antiderivatives algebraically. Instead of saying the antiderivative
More informationIntegration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)?
5 Integration 5. Antiderivatives and Indefinite Integration Suppose that f() = 5 4. Can we find a function F () whose derivative is f()? Definition. A function F is an antiderivative of f on an interval
More informationAP Calculus Review Assignment Answer Sheet 1. Name: Date: Per. Harton Spring Break Packet 2015
AP Calculus Review Assignment Answer Sheet 1 Name: Date: Per. Harton Spring Break Packet 015 This is an AP Calc Review packet. As we get closer to the eam, it is time to start reviewing old concepts. Use
More informationDaily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012
The Second Fundamental Theorem of Calculus Functions Defined by Integrals Given the functions, f(t), below, use F( ) f ( t) dt to find F() and F () in terms of.. f(t) = 4t t. f(t) = cos t Given the functions,
More informationIn #15, find the indicated limits. For each one, if it does not exist, tell why not. Show all necessary work.
Calculus I Eam File Fall 7 Test # In #5, find the indicated limits. For each one, if it does not eist, tell why not. Show all necessary work. lim sin.) lim.) 3.) lim 3 35 4 cos 4.) lim 5.) lim sin 6.)
More information3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13
Contents Limits Derivatives 3. Difference Quotients......................................... 3. Average Rate of Change...................................... 4.3 Derivative Rules...........................................
More informationLaw of Sines, Law of Cosines, Heron s Formula:
PreAP Math Analsis nd Semester Review Law of Sines, Law of Cosines, Heron s Formula:. Determine how man solutions the triangle has and eplain our reasoning. (FIND YOUR FLOW CHART) a. A = 4, a = 4 ards,
More information206 Calculus and Structures
06 Calculus and Structures CHAPTER 4 CURVE SKETCHING AND MAXMIN II Calculus and Structures 07 Copright Chapter 4 CURVE SKETCHING AND MAXMIN II 4. INTRODUCTION In Chapter, we developed a procedure for
More informationSkills Practice Skills Practice for Lesson 1.1
Skills Practice Skills Practice for Lesson. Name Date Lots and Projectiles Introduction to Quadratic Functions Vocabular Give an eample of each term.. quadratic function 9 0. vertical motion equation s
More information3.1Quadratic Functions & Inequalities
3.1Quadratic Functions & Inequalities Quadratic Functions: Quadratic functions are polnomial functions of the form also be written in the form f ( ) a( h) k. f ( ) a b c. A quadratic function ma Verte
More informationTechnical Calculus I Homework. Instructions
Technical Calculus I Homework Instructions 1. Each assignment is to be done on one or more pieces of regularsized notebook paper. 2. Your name and the assignment number should appear at the top of the
More informationStudy Guide and Intervention
6 NAME DATE PERID Stud Guide and Intervention Graphing Quadratic Functions Graph Quadratic Functions Quadratic Function A function defined b an equation of the form f () a b c, where a 0 b Graph of a
More informationReview Exercises for Chapter 2
Review Eercises for Chapter 367 Review Eercises for Chapter. f 1 1 f f f lim lim 1 1 1 1 lim 1 1 1 1 lim 1 1 lim lim 1 1 1 1 1 1 1 1 1 4. 8. f f f f lim lim lim lim lim f 4, 1 4, if < if (a) Nonremovable
More information= x. Algebra II Notes Quadratic Functions Unit Graphing Quadratic Functions. Math Background
Algebra II Notes Quadratic Functions Unit 3.1 3. Graphing Quadratic Functions Math Background Previousl, ou Identified and graphed linear functions Applied transformations to parent functions Graphed quadratic
More informationReview Exercises for Chapter 3. Review Exercises for Chapter r v 0 2. v ft sec. x 1 2 x dx f x x 99.4.
Review Eercises for Chapter 6. r v 0 sin. Let f, 00, d 0.6. v 0 00 ftsec changes from 0 to dr 00 cos d 6 0 d 0 r dr 80 00 6 96 feet 80 cos 0 96 feet 8080 f f fd d f 99. 00 0.6 9.97 00 Using a calculator:
More informationUnit 10  Graphing Quadratic Functions
Unit  Graphing Quadratic Functions PREREQUISITE SKILLS: students should be able to add, subtract and multipl polnomials students should be able to factor polnomials students should be able to identif
More informationSection 3.3 Graphs of Polynomial Functions
3.3 Graphs of Polynomial Functions 179 Section 3.3 Graphs of Polynomial Functions In the previous section we eplored the short run behavior of quadratics, a special case of polynomials. In this section
More informationCLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) =
CLEP Calculus Time 60 Minutes 5 Questions For each question below, choose the best answer from the choices given. 7. lim 5 + 5 is (A) 7 0 (C) 7 0 (D) 7 (E) Noneistent. If f(), then f () (A) (C) (D) (E)
More informationCalculus 1st Semester Final Review
Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ), c /, > 0 Find the limit: lim 6+
More informationMat 267 Engineering Calculus III Updated on 9/19/2010
Chapter 11 Partial Derivatives Section 11.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair o real numbers (, ) in a set D a unique real number
More informationHomework Assignments Math /02 Spring 2015
Homework Assignments Math 101/0 Spring 015 Assignment 1 Due date : Frida, Januar Section 5.1, Page 159: #1, 10, 11, 1; Section 5., Page 16: Find the slope and intercept, and then plot the line in problems:
More information1.2 Functions and Their Properties PreCalculus
1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given
More informationAPPLICATIONS OF DIFFERENTIATION
4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.
More informationFind the following limits. For each one, if it does not exist, tell why not. Show all necessary work.
Calculus I Eam File Spring 008 Test #1 Find the following its. For each one, if it does not eist, tell why not. Show all necessary work. 1.) 4.) + 4 0 1.) 0 tan 5.) 1 1 1 1 cos 0 sin 3.) 4 16 3 1 6.) For
More information(i) find the points where f(x) is discontinuous, and classify each point of discontinuity.
Math Final Eam  Practice Problems. A function f is graphed below. f() 5 4 8 7 5 4 4 5 7 8 4 5 (a) Find f(0), f( ), f(), and f(4) Find the domain and range of f (c) Find the intervals where f () is positive
More informationAlgebra 2 Unit 2 Practice
Algebra Unit Practice LESSON 71 1. Consider a rectangle that has a perimeter of 80 cm. a. Write a function A(l) that represents the area of the rectangle with length l.. A rectangle has a perimeter of
More informationMATH 150/GRACEY PRACTICE FINAL. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MATH 0/GRACEY PRACTICE FINAL Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Choose the graph that represents the given function without using
More informationName Class Date. Solving by Graphing and Algebraically
Name Class Date 164 Nonlinear Sstems Going Deeper Essential question: How can ou solve a sstem of equations when one equation is linear and the other is quadratic? To estimate the solution to a sstem
More information6. Graph each of the following functions. What do you notice? What happens when x = 2 on the graph of b?
Pre Calculus Worksheet 1. Da 1 1. The relation described b the set of points {(,5,0,5,,8,,9 ) ( ) ( ) ( )} is NOT a function. Eplain wh. For questions  4, use the graph at the right.. Eplain wh the graph
More informationMath 2413 Final Exam Review 1. Evaluate, giving exact values when possible.
Math 4 Final Eam Review. Evaluate, giving eact values when possible. sin cos cos sin y. Evaluate the epression. loglog 5 5ln e. Solve for. 4 6 e 4. Use the given graph of f to answer the following: y f
More informationPRACTICE FINAL EXAM. 3. Solve: 3x 8 < 7. Write your answer using interval notation. Graph your solution on the number line.
MAC 1105 PRACTICE FINAL EXAM College Algebra *Note: this eam is provided as practice onl. It was based on a book previousl used for this course. You should not onl stud these problems in preparing for
More informationAP Calculus AB/BC ilearnmath.net
CALCULUS AB AP CHAPTER 1 TEST Don t write on the test materials. Put all answers on a separate sheet of paper. Numbers 18: Calculator, 5 minutes. Choose the letter that best completes the statement or
More informationFinal Exam Review / AP Calculus AB
Chapter : Final Eam Review / AP Calculus AB Use the graph to find each limit. 1) lim f(), lim f(), and lim π  π + π f 5 4 1 y   1   45 ) lim f(),  lim f(), and + lim f 8 6 4 y 4   11 4 54
More informationCHAPTER 2: Partial Derivatives. 2.2 Increments and Differential
CHAPTER : Partial Derivatives.1 Definition of a Partial Derivative. Increments and Differential.3 Chain Rules.4 Local Etrema.5 Absolute Etrema 1 Chapter : Partial Derivatives.1 Definition of a Partial
More informationAnswers to Some Sample Problems
Answers to Some Sample Problems. Use rules of differentiation to evaluate the derivatives of the following functions of : cos( 3 ) ln(5 7 sin(3)) 3 5 +9 8 3 e 3 h 3 e i sin( 3 )3 +[ ln ] cos( 3 ) [ln(5)
More informationWriting Quadratic Functions in Standard Form
Chapter Summar Ke Terms standard form (general form) of a quadratic function (.1) parabola (.1) leading coefficient (.) second differences (.) vertical motion model (.3) zeros (.3) interval (.3) open interval
More informationWriting Quadratic Functions in Standard Form
Chapter Summar Ke Terms standard form (general form) of a quadratic function (.1) parabola (.1) leading coefficient (.) second differences (.) vertical motion model (.3) zeros (.3) interval (.3) open interval
More informationy=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. MultipleChoice Questions
AP Calculus Chapter 5 Testbank Part I. MultipleChoice Questions. Which of the following integrals correctly corresponds to the area of the shaded region in the figure to the right? (A) (B) (C) (D) (E)
More informationReview of elements of Calculus (functions in one variable)
Review of elements of Calculus (functions in one variable) Mainly adapted from the lectures of prof Greg Kelly Hanford High School, Richland Washington http://online.math.uh.edu/houstonact/ https://sites.google.com/site/gkellymath/home/calculuspowerpoints
More informationMath 130: PracTest 3. Answers Online Friday
Math 130: PracTest 3 Answers Online Frida 1 Find the absolute etreme values of the following functions on the given intervals Which theorems justif our work? Make sure ou eplain what ou are doing a) 1
More informationName: NOTES 4: APPLICATIONS OF DIFFERENTIATION. Date: Period: Mrs. Nguyen s Initial: WARM UP:
NOTES 4: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: Mrs. Nguyen s Initial: WARM UP: Assume that f ( ) and g ( ) are differentiable functions: f ( ) f '( ) g ( ) g'( )  3 15 81 9 7 4 1 0 5
More informationReview of Exponent Rules
Page Review of Eponent Rules Math : Unit Radical and Rational Functions Rule : Multipling Powers With the Same Base Multipl Coefficients, Add Eponents. h h h. ( )( ). (6 )(6 ). (m n )(m n ). ( 8ab)( a
More information?
NOTES 4: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: WARM UP: Assume that f( ) and g ( ) are differentiable functions: f( ) f '( ) g ( ) g'( )  3 15 81 9 7 4 1 0 5 9 93 1 33 65 3 8? 1. Let
More information( ) 7 ( 5x 5 + 3) 9 b) y = x x
New York City College of Technology, CUNY Mathematics Department Fall 0 MAT 75 Final Eam Review Problems Revised by Professor Kostadinov, Fall 0, Fall 0, Fall 00. Evaluate the following its, if they eist:
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question
Midterm Review 0 Precalculu Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question ) A graph of a function g is shown below. Find g(0). (, ) (, 0)  
More informationChapter 9 Notes Alg. 1H 9A1 (Lesson 93) Solving Quadratic Equations by Finding the Square Root and Completing the Square
Chapter Notes Alg. H A (Lesson ) Solving Quadratic Equations b Finding the Square Root and Completing the Square p. *Calculator Find the Square Root: take the square root of. E: Solve b finding square
More information( ) 9 b) y = x x c) y = (sin x) 7 x d) y = ( x ) cos x
NYC College of Technology, CUNY Mathematics Department Spring 05 MAT 75 Final Eam Review Problems Revised by Professor Africk Spring 05, Prof. Kostadinov, Fall 0, Fall 0, Fall 0, Fall 0, Fall 00 # Evaluate
More informationlim x c) lim 7. Using the guidelines discussed in class (domain, intercepts, symmetry, asymptotes, and sign analysis to
Math 7 REVIEW Part I: Problems Using the precise definition of the it, show that [Find the that works for any arbitrarily chosen positive and show that it works] Determine the that will most likely work
More informationCalculus BC AP/Dual Fall Semester Review Sheet REVISED 1 Name Date. 3) Explain why f(x) = x 2 7x 8 is a guarantee zero in between [ 3, 0] g) lim x
Calculus BC AP/Dual Fall Semester Review Sheet REVISED Name Date Eam Date and Time: Read and answer all questions accordingly. All work and problems must be done on your own paper and work must be shown.
More informationProperties of Derivatives
6 CHAPTER Properties of Derivatives To investigate derivatives using first principles, we will look at the slope of f ( ) = at the point P (,9 ). Let Q1, Q, Q, Q4, be a sequence of points on the curve
More informationMath 0210 Common Final Review Questions (2 5 i)(2 5 i )
Math 0 Common Final Review Questions In problems 1 6, perform the indicated operations and simplif if necessar. 1. ( 8)(4) ( )(9) 4 7 4 6( ). 18 6 8. ( i) ( 1 4 i ) 4. (8 i ). ( 9 i)( 7 i) 6. ( i)( i )
More informationMATH 1325 Business Calculus Guided Notes
MATH 135 Business Calculus Guided Notes LSC North Harris By Isabella Fisher Section.1 Functions and Theirs Graphs A is a rule that assigns to each element in one and only one element in. Set A Set B Set
More informationCollege Algebra ~ Review for Test 2 Sections
College Algebra ~ Review for Test Sections. . Find a pointslope form for the equation of the line satisfing the conditions. ) a) Slope , passing through (7, ) b) Passing through (, 8) and (, ) Write
More informationChapter 4 Applications of Derivatives. Section 4.1 Extreme Values of Functions (pp ) Section Quick Review 4.1
Section. 6 8. Continued (e) vt () t > 0 t > 6 t > 8. (a) d d e u e u du where u d (b) d d d d e + e e e e e e + e e + e (c) y(). (d) m e e y (). 7 y. 7( ) +. y 7. + 0. 68 0. 8 m. 7 y0. 8( ) +. y 0. 8+.
More informationAdvanced Algebra 2 Final Review Packet KG Page 1 of Find the slope of the line passing through (3, 1) and (6, 4).
Advanced Algebra Final Review Packet KG 0 Page of 8. Evaluate (7 ) 0 when and. 7 7. Solve the equation.. Solve the equation.. Solve the equation. 6. An awards dinner costs $ plus $ for each person making
More informationLESSON #48  INTEGER EXPONENTS COMMON CORE ALGEBRA II
LESSON #8  INTEGER EXPONENTS COMMON CORE ALGEBRA II We just finished our review of linear functions. Linear functions are those that grow b equal differences for equal intervals. In this unit we will
More information1.5. Analyzing Graphs of Functions. The Graph of a Function. What you should learn. Why you should learn it. 54 Chapter 1 Functions and Their Graphs
0_005.qd /7/05 8: AM Page 5 5 Chapter Functions and Their Graphs.5 Analzing Graphs of Functions What ou should learn Use the Vertical Line Test for functions. Find the zeros of functions. Determine intervals
More informationAPPLICATIONS OF DIFFERENTIATION
4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.
More informationMath 75B Practice Problems for Midterm II Solutions Ch. 16, 17, 12 (E), , 2.8 (S)
Math 75B Practice Problems for Midterm II Solutions Ch. 6, 7, 2 (E),..5, 2.8 (S) DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual
More informationLesson 9.1 Using the Distance Formula
Lesson. Using the Distance Formula. Find the eact distance between each pair of points. a. (0, 0) and (, ) b. (0, 0) and (7, ) c. (, 8) and (, ) d. (, ) and (, 7) e. (, 7) and (8, ) f. (8, ) and (, 0)
More informationSection 2.3 Quadratic Functions and Models
Section.3 Quadratic Functions and Models Quadratic Function A function f is a quadratic function if f ( ) a b c Verte of a Parabola The verte of the graph of f( ) is V or b v a V or b y yv f a Verte Point
More information1 x 3 3x. x 1 2x 1. 2x 1 2x 1. 2x 1 2x 1. x 2 +4x 1 j. lim. x3 +2x x 5. x2 9
MATHEMATICS 57 Final Eamination Review Problems. Let f 5. Find each of the following. a. fa+b b. f f. Find the domain of each function. a. f b. g +. The graph of f + is the same as the graph of g ecept
More informationWeBWorK assignment 1. b. Find the slope of the line passing through the points (10,1) and (0,2). 4.(1 pt) Find the equation of the line passing
WeBWorK assignment Thought of the day: It s not that I m so smart; it s just that I stay with problems longer. Albert Einstein.( pt) a. Find the slope of the line passing through the points (8,4) and (,8).
More informationMultiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous.
Multiple Choice. Circle the best answer. No work needed. No partial credit available. + +. Evaluate lim + (a (b (c (d 0 (e None of the above.. Evaluate lim (a (b (c (d 0 (e + + None of the above.. Find
More informationSTUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs
STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic
More informationTangent Line Approximations. y f c f c x c. y f c f c x c. Find the tangent line approximation of. f x 1 sin x
SECTION 9 Differentials 5 Section 9 EXPLORATION Tangent Line Approimation Use a graphing utilit to graph f In the same viewing window, graph the tangent line to the graph of f at the point, Zoom in twice
More informationNonlinear Systems. No solution One solution Two solutions. Solve the system by graphing. Check your answer.
810 Nonlinear Sstems CC.91.A.REI.7 Solve a simple sstem consisting of a linear equation and a quadratic equation in two variables algebraicall and graphicall. Objective Solve sstems of equations in two
More informationFind the volume of the solid generated by revolving the shaded region about the given axis. Use the disc/washer method 1) About the xaxis
Final eam practice for Math 6 Disclaimer: The actual eam is different Find the volume of the solid generated b revolving the shaded region about the given ais. Use the disc/washer method ) About the ais
More informationMath 231 Final Exam Review
Math Final Eam Review Find the equation of the line tangent to the curve 4y y at the point (, ) Find the slope of the normal line to y ) ( e at the point (,) dy Find d if cos( y) y 4 y 4 Find the eact
More informationAPPM 1345, Fall 2013: Exam 1 September 25, 2013
APPM 1345, Fall 2013: Eam 1 September 25, 2013 Instructions: Please show all of our work and make our methods and reasoning clear. Answers out of the blue with no supporting work will receive no credit.
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Math 1325 Test 3 Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the location and value of each relative etremum for the function. 1)
More informationPolynomial and Rational Functions
Polnomial and Rational Functions Figure mm film, once the standard for capturing photographic images, has been made largel obsolete b digital photograph. (credit film : modification of work b Horia Varlan;
More informationMath 1431 Final Exam Review. 1. Find the following limits (if they exist): lim. lim. lim. lim. sin. lim. cos. lim. lim. lim. n n.
. Find the following its (if they eist: sin 7 a. 0 9 5 b. 0 tan( 8 c. 4 d. e. f. sin h0 h h cos h0 h h Math 4 Final Eam Review g. h. i. j. k. cos 0 n nn e 0 n arctan( 0 4 l. 0 sin(4 m. cot 0 = n. = o.
More information+ 2 on the interval [1,3]
Section.1 Etrema on an Interval 1. Understand the definition of etrema of a function on an interval.. Understand the definition of relative etrema of a function on an open interval.. Find etrema on a closed
More informationWW Prob Lib1 Math coursesection, semester year
YoungSeon Lee WW Prob Lib Math coursesection, semester year WeBWorK assignment due /4/03 at :00 PM..( pt) Give the rational number whose decimal form is: 0 7333333 Answer:.( pt) Solve the following inequality:
More informationApplications of Derivatives
58_Ch04_pp8660.qd /3/06 :35 PM Page 86 Chapter 4 Applications of Derivatives A n automobile s gas mileage is a function of man variables, including road surface, tire tpe, velocit, fuel octane rating,
More informationTRANSFORMATIONS OF f(x) = x Example 1
TRANSFORMATIONS OF f() = 2 2.1.1 2.1.2 Students investigate the general equation for a famil of quadratic functions, discovering was to shift and change the graphs. Additionall, the learn how to graph
More informationCurriculum Framework Alignment and Rationales for Answers
The multiplechoice section on each eam is designed for broad coverage of the course content. Multiplechoice questions are discrete, as opposed to appearing in question sets, and the questions do not
More informationWeBWorK demonstration assignment
WeBWorK demonstration assignment The main purpose of this WeBWorK set is to familiarize yourself with WeBWorK. Here are some hints on how to use WeBWorK effectively: After first logging into WeBWorK change
More informationWORKSHEET 1 SOLUTION Chapter 2 Differentiation
United Arab Emirates University College of Sciences Department of Mathematical Sciences WORKSHEET SOLUTION Chapter Differentiation Calculus I for Engineering MATH SECTION CRN : :5 on Sunday & Tuesday Due
More information1.1 Laws of exponents Conversion between exponents and logarithms Logarithm laws Exponential and logarithmic equations 10
CNTENTS Algebra Chapter Chapter Chapter Eponents and logarithms. Laws of eponents. Conversion between eponents and logarithms 6. Logarithm laws 8. Eponential and logarithmic equations 0 Sequences and series.
More informationQuadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots.
Name: Quadratic Functions Objective: To be able to graph a quadratic function and identif the verte and the roots. Period: Quadratic Function Function of degree. Usuall in the form: We are now going to
More informationLesson Goals. Unit 4 Polynomial/Rational Functions Quadratic Functions (Chap 0.3) Family of Quadratic Functions. Parabolas
Unit 4 Polnomial/Rational Functions Quadratic Functions (Chap 0.3) William (Bill) Finch Lesson Goals When ou have completed this lesson ou will: Graph and analze the graphs of quadratic functions. Solve
More informationCollege Algebra ~ Review for Test 2 Sections
College Algebra ~ Review for Test Sections. . Use the given graphs of = a + b to solve the inequalit. Write the solution set in interval notation. )  + 9 8 7 6 (, )     6 7 8  Solve the inequalit
More information3 Additional Applications of the Derivative
3 Additional Applications of the Derivative 3.1 Increasing and Decreasing Functions; Relative Etrema 3.2 Concavit and Points of Inflection 3.4 Optimization Homework Problem Sets 3.1 (1, 3, 59, 11, 15,
More informationAP Calculus Prep Session Handout. Integral Defined Functions
AP Calculus Prep Session Handout A continuous, differentiable function can be epressed as a definite integral if it is difficult or impossible to determine the antiderivative of a function using known
More informationAP Calculus FreeResponse Questions 1969present AB
AP Calculus FreeResponse Questions 1969present AB 1969 1. Consider the following functions defined for all x: f 1 (x) = x, f (x) = xcos x, f 3 (x) = 3e x, f 4 (x) = x  x. Answer the following questions
More informationy=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. MultipleChoice Questions
AP Calculus Chapter 5 Testbank Part I. MultipleChoice Questions. Which of the following integrals correctly corresponds to the area of the shaded region in the figure to the right? (A) (B) (C) (D) (E)
More information