One of the most common applications of Calculus involves determining maximum or minimum values.

Size: px
Start display at page:

Download "One of the most common applications of Calculus involves determining maximum or minimum values."

Transcription

1 8 LESSON 5- MAX/MIN APPLICATIONS (OPTIMIZATION) One of the most common applications of Calculus involves determining maimum or minimum values. Procedure:. Choose variables and/or draw a labeled figure.. Write a primar equation. Isolate whatever is to be maimized or minimized.. Rewrite with onl one variable on each side. This ma require a secondar equation. 4. Find the domain. 5. Take the derivative, find critical numbers, make a number line, etc. Eamples: Answer with a complete sentence.. A bo with no lid is to be made from 48 cm of material. If the bo must have a square base, find the dimensions that produce a maimum volume.. The product of two positive numbers is 88. Find the two numbers so that the sum of twice the first plus the second is as small as possible.

2 8 ASSIGNMENT 5- Write sentence answers on -6.. The product of two positive numbers is. Find the two numbers so that the sum of the numbers is as small as possible.. The area of a rectangle is 8 cm. Find the length and width so that the rectangle has a minimum perimeter.. The perimeter of a rectangle is 8 feet. Find the length and width so that the rectangle has a maimum area. 4. Two adjacent rectangular corrals are to be made using 4 feet of fencing. The fence must etend around the outer perimeter and across the middle as shown in the diagram. Find the dimensions so that the total enclosed area is as large as possible. 5. A shelter at a bus stop is to be made with three Pleiglas sides and a Pleiglas top. If the volume of the shelter is 486 cubic feet, find the dimensions that require the least amount of Pleiglas. 6. A bo is made b cutting small squares from each corner of a piece of square material inches on each side and then folding up the flaps. Find the side of the square cutouts that will produce the greatest volume bo. 7. A rectangle is positioned with one verte on the line as shown. Find the point so that the rectangle has a maimum area., 8. Use the graph of f shown to graph f and a graph of f with the starting point (,). f

3 8 9. The volume formula for a cone is find dv dt when r = 6 inches. V dr in r h. If and h r, dt min. An airplane fling at an altitude of miles flies directl over a radar station. When the plane is 5 miles awa from the station, the radar shows the distance s is changing at the rate of miles per hour. What is the plane s speed?. Use the graph of f at the right for these problems. a. Find lim f b. Find lim f c. Find lim f 4 d. Find lim f e. Find lim f..... f. List the discontinuities of f. g. Which of these discontinuities are removable?,. h. Find the absolute maimum of f () on i. Find the absolute minimum of f () on,. j. Find f. k. Find f. l. List all -values where f does not eist. m. List all -values at which f has a local minimum. n. List all -values at which f has a local maimum.

4 84 LESSON 5- MORE MAX/MIN APPLICATIONS Eample: The sum of two nonnegative numbers is. Find both numbers if the sum of twice the first plus the square of the second is a maimum. ASSIGNMENT 5-. The product of two positive numbers is. Find the two numbers so that the sum of the first plus three times the second is as small as possible.. The sum of two nonnegative numbers is 5. Find the two numbers so that the sum of the first plus the square of the second is a minimum.. The sum of two nonnegative numbers is 5. Find the two numbers so that the sum of the first plus the square of the second is a maimum. 4. A rancher plans to fence in three sides of a rectangular pasture with the fourth side being against a rock cliff. He needs to enclose, square meters of pasture. What dimensions would require the least amount of fence material. 5. A bo is to be made b cutting small squares from each corner of a ft b 5 ft rectangular piece of material. Find the size of the square cutouts that would produce a bo with maimum volume. (Your V = equation will not be factorable. You ma use a calculator to solve it.) Show three or more decimal place accurac. 6. Find the volume of the bo in Problem 5. Show or more decimal place accurac.

5 85 7. A rectangle is positioned with two points on the semicircle 6 as shown. Find the point (,) so that the area of the rectangle is a maimum. 8. Find the area of the rectangle in Problem 7., 9. A bo with an open top has a square base. If the volume of the bo is 4 cubic centimeters, what dimensions minimize the amount of material used?. Find the relative etrema and points of inflection and graph f, if f 4 f 4 6 and 4.. Find the relative etrema and concavit and graph g. Find the derivative... f 4. g 5. If f, find f and graph both f and f. 6. Use a graphing adjustment of a parent graph to graph. 7. Use the graph of f shown to graph f and a f possible graph of f.

6 86 LESSON 5- APPROXIMATING WITH THE TANGENT LINE In man instances, finding a value of a function is difficult or impossible. With the use of Calculus techniques, we can approimate the function value b finding a -value on a tangent line to the function. Since this method involves using a linear function (the tangent line function) at a nearb point, it is sometimes called a local linearization approimation. Eamples:. If, is a point on the graph of 4, use the equation of a tangent line passing through the point, to approimate a -coordinate (a) when the -coordinate is.. (b) when the -coordinate is.9.. If f and f, use local linearization to approimate. f, ASSIGNMENT 5-. a. Write an equation of the tangent line shown. b. Use this tangent line equation to f.. approimate c. What is the actual value of f.? f 4,

7 87. Make a large cop of the graph on our own paper. a. Draw the tangent line at the point (,). b. Write an equation of this tangent line. c. Label a point on our tangent line with an -coordinate of.9 as point A. d. Use our equation of the tangent line to approimate f (.9) b finding the -coordinate of our point A.. e. Label a point B on the parabola with an -coordinate of.9. What is the actual value of f (.9)? f. Use the same tangent line to approimate f (.6). How accurate is our approimation? (,) f. Approimate 6 using the equation of a tangent line. You must choose our own equation and point. The graph shown should help. (5,5) 4. The graph of a function f is shown. If f 9, use local linearization to approimate f (.). (5,5) 5. Find the actual value of f (.) from problem 4 or eplain wh it cannot be found. (,) 6. The point (5,) is on the curve the -coordinate when Use a tangent line to approimate 7. The length of one side of a square is found to be 8 inches with a possible measurement error of 6 inch. a. Instead of using the actual area formula ( A s ), approimate the area of the square using a local linearization of the area formula if the length of the side is reall 8 inches (without using a calculator). 6 5 b. Find the approimate area if the side is actuall 7 inches. 6 c. Use our answers from parts a and b to give an approimate range of values for the area of the square. 8. Use a tangent line equation to approimate f (8.) if f (without using a calculator).

8 The point (,) is on the graph of 9. Use the equation of a tangent line to approimate a -coordinate when =... Use a calculator to find an actual -coordinate on the graph of the curve from problem 9 when =.. Show the equation ou are solving.. Given the function a. use the equation of a tangent line to approimate 6 without using a calculator. b. find the actual value of 6?. Find the absolute etrema of the function f on the interval. The second of two positive numbers is the reciprocal of the first. Find the two numbers so that their sum is a minimum. 4. The function f.5,. 4 can be used to model how a disease spreads in an e isolated population of 4 people. represents the time in das since the sickness started and f () represents the number of people who have become sick. Use a calculator to help answer the questions below. a. How man people have become sick b the tenth da? b. How fast was the disease spreading on the tenth da? c. Find the maimum point on f. What does the -coordinate represent? What does the -coordinate represent? Note: Finding a maimum or minimum with a calculator is not allowed on the AP Calculus test. d. How man people have caught the disease when the curve is the steepest? e. Wh would the slope of the curve decrease after a period of time? f. When was the rate of the spread of the disease increasing the fastest? 5. A rancher plans to fence in three sides of a rectangular pasture with the fourth side being against a rock cliff. If he has ards of fencing to use, what is the maimum area he can enclose? 6. Without using a calculator, find vertical asmptotes, relative etrema, and end behavior, and then sketch a graph of f Use graphing adjustments of a parent graph to graph.

9 89 8. Use the intercepts, vertical asmptotes, relative etrema, and end behavior to graph f, if f and f 4. Do not use a calculator Find all points of inflection of 4 4 f 6.. Find all relative etrema points on the graph of. 4. Find 5 6 lim.. Find lim.. Find the c-value guaranteed b the Mean Value Theorem for the function 5,. You ma use a calculator. on the interval

10 9 LESSON 5-4 ANTIDIFFERENTIATION, INDEFINITE INTEGRALS Warm-up Eamples: Differentiate each of the following.. f ( ). f ( ). f ( ) C where C is an constant (number) So what should ou get when ou antidifferentiate? ( ) f ( ) f This problem can be written as d The smbol is called an integral smbol and tells ou to integrate (antidifferentiate) the epression which follows it. That epression is called an integrand. d indicates that ou are integrating with respect to the variable but does not affect the integration process. C is called the constant of integration and must be written as part of our answer when ou are antidifferentiating. Integration Rules: Power Rule: n n d C, n n Constant Rule: If k is an constant, k d k C Scalar Multiple Rule: If k is an constant, k f ( ) d k f ( ) d Sum Rule: (Constants ma be factored out of the integral epression. NEVER factor out a variable.) f ( ) g( ) d f ( ) d g( ) d Eamples: Evaluate (Integrate). 4. d 5. d 6. 4 ( t ) dt

11 9 7. ( 4 ) d 8. d 9. d Note: Put C when ou integrate, but never when ou differentiate. Sometimes an initial condition is given which makes it possible to solve for C. Eample : If f ( ) and f (), find f ( ). d Eample : Evaluate 5 d d If we know the acceleration equation for an object, and if we are given initial conditions for the object s velocit and position, integration allows us to find the velocit and position equations for the object. Remember: Pos. Vel. Acc. (Differentiate), so Acc. Vel. Pos. (Integrate). Eample : The acceleration of a particle at time t is given b a( t) 4t. v() 6 and s() 5. a. Find the velocit equation. vt () b. Find the position equation. st ()

12 9 Eample : Given that on earth, the acceleration of an object due to gravit is approimatel ft / sec (negative indicates downward), develop a. the equation for the velocit of the object. vo initial velocit vt b. the equation for the position of the object. so initial position st Note: The two equations vt t v and 6 for an motion affected onl b the earth s gravit. s t t v t s ma be used ASSIGNMENT 5-4 For Problems -4, rewrite the integrand and then integrate.. d. 4 t dt. ( )( ) d 4. Evaluate (integrate) each integral in Problems ( ) d 6. d 7. ( ) d d d. (t ) dt 5 8. d. 4 8 d. t dt t. d 4. If f ( ) 4 and f (), find f ( ).

13 9 d 5. The derivative of a function is. If the graph of the function contains dt t the point (, ), find the equation of the function. 6. a. Find an equation for the famil of functions whose derivative is. b. Find the particular function from the famil in Part a. whose curve passes through the point (4, ). 7. Find g, ( ) given that: g ( ), g() 5, and g( ). 8. Evaluate d d ( ) d. Hint: This is a derivative of an integral. 9. The acceleration of an object moving along a horizontal path is given b the equation a( t) 6t 4. The object s initial velocit is 5, and its initial position is. a. Find a velocit equation for the object. b. Find the velocit of the object when t. c. Find a position equation for the object. d. Find the object s position when t.. The velocit of an object moving along a vertical path is given b the equation v( t) t, t. a. Find an equation for the object s acceleration. b. Find the acceleration of the object when t 9. c. The object s position at t 9 is. Find an equation for the object s position.. A ball is dropped from a bridge which is 6 feet above a river. How long will it take the ball to hit the water? Use the equation s( t) 6t vot so.. For the first 4 seconds of a race, a sprinter accelerates at a rate of meters per second per second ( m/sec ). He then continues to run at the constant speed that he has attained for the rest of the race. a. Write a piecewise function to epress the sprinter s velocit vt () as a function of time. b. Find v(), v(4), and v (6). c. Write a piecewise function to epress the sprinter s position st () as a function of time. d. How far does the sprinter run during the first 4 seconds of the race? e. How long will it take the sprinter to run m?

14 94 For Problems and 4, the graph of the derivative ( f ) of a function is given. Sketch a possible graph of the function f.. f 4. f f contains the point (, ) 5. List the domain, vertical asmptote(s), hole(s), - and -intercepts, end behavior, and tpe(s) of smmetr for the graph of. Then sketch the graph without using a calculator. 6. If f f ( ), find ( ). 7. Find an equation of a line tangent to the curve 6 5. which is parallel to the line 8. Find the cubic function of the form a b c d which has a relative maimum point at (, ) and a point of inflection at (, ).

15 95 LESSON 5-5 THE GENERAL POWER RULE FOR INTEGRALS AND U-SUBSTITUTION In Lesson -, ou learned to differentiate composite functions b using the General Power Rule for Derivatives (Chain Rule for power functions). u is a function of ). We reverse this process when integrating. d (where u n nu n u d General Power Rule for Integrals: (Informall called the Reverse Chain Rule) n n u u ud C, n n This looks a lot like the simple power rule for integration that ou learned in the last lesson. However, the general power rule requires a hook-on factor u to be present before ou can integrate. It is a crucial part of the Reverse Chain Rule. Eamples:. Differentiate ( 5 ) 4. Now, integrate 5( 5 ) Note: You hooked on the derivative of the inside of the power function in Eample, so ou had to unhook the derivative of the inside in Eample. Eamples: Integrate.. ( ) d 4. ( )( ) t t t t dt 5. 6 d ( ) d

16 96 u-substitution For more complicated integration problems, simple rules for integration might fail, and ou ma have to make some tpe of substitution to be able to integrate. In this course, a common substitution will be to let u = the radicand radicand part of the epression and to change the variable throughout the integral before integrating. You should use this method of substitution (called u-substitution) onl when simpler methods don t work. It should be our last resort. Procedure for u-substitution: (for d problems requiring the method). Let u radicand (part inside the smbol).. Solve for (in terms of u).. Differentiate the equation from Step. 4. Find d. 5. Substitute u-epressions for -epressions in the integral. Note: Most often, d du. Don t forget to substitute for d. 6. Integrate. 7. Substitute back, so that our final answer is again in terms of. Sometimes it is easier to do Step before Step. These two steps are reversible. Eamples: Integrate. 7. d 8. d You now have three strategies for integrating.. Term b term using the rules from page 9.. General Power Rule (Reverse Chain Rule).. u-substitution.

17 97 ASSIGNMENT 5-5 Evaluate (integrate) in Problems ( ) d. d 5. 8 (5t ) dt. 5 ( ) d 6 6. d 4 dv v 7. d 9. ( 4 ) 4 ( ) (4 ) d 8. 5 t 4 t dt. 5 d. (u ) du. d. d 4. d Use u-substitution to evaluate in Problems d 6. d 7. ( ) d 8. 4 If f ( ), f (8), and f (7) 5, find f ( ). 9. d d 4 Evaluate ( ) d.. The velocit of a particle moving along a vertical line is given b the equation t v( t). The particle s position at time zero is 4. a. Find an equation for the particle s acceleration at (). b. Find an equation for the particle s position t (). c. At what time(s) is the particle at rest? d. At what time(s) is the particle moving upward? e. For what value(s) of t does the particle s speed equal the particle s velocit? f. Find the total distance traveled b the particle from t = to t = 9. g. Find the interval(s) of time for which the speed of the particle is increasing.. Find equations for the lines tangent to and normal to the graph of 5 when.

18 98 t. Find the instantaneous rate of change for f ( t) when t. t t. Find the average rate of change for f( t) on [, ]. t 4. Which of the rates of change from Problems and represents: a. the slope of a secant line for the graph of f() t? b. the slope of a tangent line for the graph of f() t? 5. Find the value of c in [, ] such that f() c the average rate of change of t f( t) on [, ]. It is at this t-location that the slopes of what two lines are t the same? (MVT). 6. Differentiate 4 implicitl to find the point(s) where the curve has a. horizontal tangents. b. vertical tangents. 7. (, 7) is a point on the curve of approimate f (.). 8. The graph of f ( ) is shown at right. a. Use the given graph to make f and f number lines. b. Sketch a graph of f which passes through the points (, ) and (, ). f ( ) 5. Use a tangent line to f 9. Use the graph at right to find: a. lim f( ) b. f ( ) c. e. g. lim f( ) lim f( ) lim f( ) 4 d. f () f. f () h. f ( 4). Use the alternate form of the limit definition of the derivative to find f () for f ( ).

19 99 LESSON 5-6 THE FUNDAMENTAL THEOREM OF CALCULUS, DEFINITE INTEGRALS, CALCULATOR INTEGRATION If f is a continuous function on [a, b], then f ( ) d f ( b ) a a f ( b) f ( a) This relationship is known as the Fundamental Theorem of Calculus. Note: The constant C is not necessar, because b b f ( ) d f ( ) C f a ( b ) C f ( a ) C f ( b ) f ( a ) a Notice the differences between the integration process above, which produces definite integrals, and the previous integration process, which produced indefinite integrals (or antiderivatives). Indefinite Integrals b Definite Integrals f ( ) f ( ) C b f ( ) ( ) ( ) ( ) a a No letters or numbers appear attached a and b (called limits of integration) are to the integral smbol. attached to the integral smbol. a and b b are usuall replaced b numbers in actual problems. Integrating produces an epression Integrating produces a value f ( b) f ( a) f ( ) C which represents a famil which is known as the value of the definite of functions (curves) when written integral. as f ( ) C. ( ) d C ( ) d (a famil of parabolas, if written as C () () () ().5 ) (a number value) The value of a definite integral b f ( ) d ma be thought of as a signed area from a the lower limit a (usuall a left side boundar) to the upper limit b (usuall a right-side boundar), and between the curve of f( ) and the -ais. The value ma be positive, negative, or zero. Calculator Integration: A TI-8 or TI-84 calculator can be used to find the value of a definite integral from a to b b using f ( ) d in the calculate menu or fnint in the math menu. The calculate menu shows a graphical representation of the signed area together with the value of the definite integral.

20 Eamples: Use the calculate menu to evaluate the following definite integrals.. ( 6 ) d. 6 ( 6 ) 6 d d The math menu onl provides the value of the definite integral, but that is usuall all that we need. Most importantl, the math menu gives a more accurate answer. fnint is recommended for all problems from now on. Note: Newer operating sstems have a MATHPRINT setting that simplifies this process. Use the math menu to evaluate: d = fnint (abs( 6 ),, 5,5) or if 5 abs( 6 ) is alread entered on our calculator, fnint (,, 5,5) 5. Use the idea of signed area to evaluate d without using a calculator. 6. Set up a definite integral which could be used to find the area of the region bounded b the graph of (shown at right), the -ais, and the vertical lines and. Evaluate without using a calculator d 8. 5 (4 t ) dt 9. 5 d 4. f d (,4) f (4,-4)

21 START PLUS ACCUMULATION METHOD b Since f ( ) d f ( b ) f ( a ), it follows that f ( b) f ( a) f ( ) d. a a This means a function value can be found as a starting value plus a definite integral. Eamples:. If f and f 4,. If an object s velocit is vt t find f without a calculator. and s 8 find s. b ASSIGNMENT 5-6 The graph of the function f consists of line segments and a semicircle as shown. Evaluate the following using geometr formulas.. f f d f d For Problems 5 and 6 sketch a graph for each function, and use the idea of signed areas to evaluate these definite integrals using geometr formulas without using a calculator. 5. f ( ) 6. g( ) a. f ( ) d b. f ( ) d a. g ( ) d b. g( ) d Evaluate the definite integrals in Problems 7-5 without using a calculator ( ) d 8. d 9. ( t ) 4 t dt 4 d. 4 8 d. u u du d * 4. d * 5. d *(Hint: Problems 4 and 5 require u-substitution.)

22 6. If f( ) is an even function (graph smmetric to the -ais) and a. f ( ) d b. f ( ) d c. f ( ) d d. f ( ) d, find f ( ) d 7. If g ( ) is an odd function (graph smmetric to the origin) and a. g ( ) d b. g ( ) d c. g( ) d d. g( ) d 5, find g( ) d g( ) d Use our calculator to evaluate the definite integrals in Problems 8, 9. Epress answers to or more decimal place accurac. 8. d 9. 6 d. Given f, 4 a. use a calculator to find f d. b. if f, find f ft. If an object s acceleration is at t v, v 5 and 5 find 4. sec 4.. ( t) t t represents the position equation for a particle moving along the -ais. a. Find the velocit equation for the particle. vt () b. Find the acceleration equation for the particle. c. Find the velocit of the particle at t. d. Find the speed of the particle at t. e. At what time(s) is the particle s velocit decreasing? f. Find the displacement of the particle on the interval [, 4]. g. Find the total distance traveled from t to t 4. (Show a velocit number line). You ma wish to review Lesson - for Parts f. and g. 4 h. Find v() t dt without using a calculator. Compare our answer to Part f. i. Use our calculator to find 4 v () t dt. Compare our answer to Part g. *You now have two was to find displacement and total distance. Using definite integrals, displacement b v () t dt and total distance b v() t dt a on the interval a [a, b]. Given a choice of methods, alwas do total distance b evaluating a definite integral on our calculator.

23 . Find the area between f( ) and the -ais on the interval [, ]. Show an integral set up, and evaluate using a calculator. 4. f ( ), f ( ), and f ( ) a. Without using a calculator, list the domain, an vertical or horizontal asmptotes, the - and -intercepts, and the tpe of smmetr for the graph of f( ). b. Find the -values of the relative etrema of f( ). c. Find the -values of the points of inflection of f( ). d. Sketch f( ) without using a calculator. Check our sketch with a calculator..

24 4 UNIT 5 SUMMARY Ma/Min Applications: Procedure:. Choose variables and/or draw a labeled figure.. Write a primar equation. Isolate whatever is to be maimized or minimized.. Rewrite with onl one variable on each side. This ma require a secondar equation. 4. Find the domain. 5. Take the derivative, find critical numbers, make a number line, etc. Approimations using a tangent line: Find the equation of a tangent line at a convenient point. Plug in a new -value to find a new -value on the tangent line which is close to a -value on the curve. Antidifferentiation: (Integration) f ( ) d f ( ) C or f ( ) d F( ) C where F( ) f ( ) Indefinite Integrals f ( ) d f ( ) C You might have an initial condition and be able to solve for C. b Definite Integrals f ( ) d f b ( ) f a ( b ) f ( a ) a Start Plus Accumulation f ( b) f ( a) f ( ) d General Power Rule for Integrals (Reverse chain rule for a power function) n n u u ud C, n (Where u is a function of ) n Three Was to Integrate (so far): :. Term b term.. General Power Rule (reverse chain).. u-substitution b Calculator Integration f ( ) d fnint( f ( ),, a, b ) a b a Procedure for u-substitution:. Let u radicand (part inside the smbol).. Solve for.. Differentiate the equation from Step. 4. Find d. 5. Substitute u-epressions for -epressions in the integral. 6. Integrate. 7. Substitute back, so that our final answer is again in terms of. Displacement b v () t dt Total Distance b v() t a a dt Integrals involving absolute value: draw a graph, use geometr.

25 5 ASSIGNMENT 5-7 REVIEW. Find a and b so that the graph of a b has a relative minimum at (,). 4. The point (,) is on the graph of. Use the equation of a tangent line to approimate the -coordinate when =.9. Use the graph of f shown for problems and 4... Sketch a graph of f 4. Sketch a graph of f which contains the point,. 5. If, find the equation of the tangent line when 6 5 approimate the -coordinate when 5 6. and use it to 6. An interstate driver is traveling 4 miles across a state from south to north without stopping. At noon she notices her speed is 6 miles per hour and her position is at interstate mile marker 4. Note: Interstate mile markers increase from south to north. a. Use this data to write a linear function (local linearization) which could be used to estimate her position as a function of time. Assume t = at noon. b. Approimate her position at : pm. c. Approimate her position at : am. d. What is the domain on which our linear function can be applied?

26 6 Use the graph of a velocit function for an object moving horizontall shown at the right for problems Find the object s acceleration at time 5 seconds. 8. Find the speed of the object at time 6 seconds. 9. On which interval of time is the object moving right?. On which interval(s) of time is the object s velocit increasing? vel. in ft sec time in seconds. On which interval(s) of time is the object s speed increasing?. At what time is the object farthest right?. Without using a calculator, find the domain, the intercepts, the vertical asmptote, the end behavior, the relative etrema, and the points of inflection. Then sketch a 4 graph of f. Hint: f and f. 4. Without using a calculator, find the intercepts, the local etrema, and the points of inflection, and then draw a graph of f. 5. Find the point(s) at which the graph of tangents. 6. Find the point(s) at which the graph of tangents. 4 6 has horizontal 4 6 has vertical 7. Find the maimum and minimum points on the graph of 4 6. Determine if the Mean Value Theorem can be applied to f () on the given interval. If it can be applied, find the c-value. If it cannot be applied, eplain wh not. You ma use a calculator. Answer with three or more decimal place accurac. 8. f on,5, on,, 9. f

27 7. Find the dimensions of the rectangle with maimum area inscribed under the curve as shown. (5,5). A point moves along the curve so that the -coordinate is increasing at the rate of two units per second. At what rate is the -coordinate changing when = 8 units?. Find the absolute etreme values of the function interval,. f on the. If = is a critical number of a function f, and f, does f have a local maimum or a local minimum at =? 4. What is the maimum height (in feet) reached b a ball thrown upward, if the ball s height is given b the position equation st 6t 64t 6? Do not use a calculator. Integrate each of the following. 5. ( ) d 6. t t dt 7. Evaluate the following without a calculator d 9. 5 d. 9 5 d d. If f sin and f. 6.5, find.6 f. v t t 4 t. t. The velocit of a moving object is given b. If the position at t = is given b, find. Find the total distance traveled b the object on the interval,4.

Problems to practice for FINAL. 1. Below is the graph of a function ( ) At which of the marked values ( and ) is: (a) ( ) greatest = (b) ( ) least

Problems to practice for FINAL. 1. Below is the graph of a function ( ) At which of the marked values ( and ) is: (a) ( ) greatest = (b) ( ) least Problems to practice for FINAL. Below is the graph of a function () At which of the marked values ( and ) is: (a) () greatest = (b) () least = (c) () the greatest = (d) () the least = (e) () = = (f) ()

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval................... 0 Section. Rolle s Theorem and the Mean Value Theorem...... 0 Section. Increasing and Decreasing Functions and

More information

Math 121. Practice Questions Chapters 2 and 3 Fall Find the other endpoint of the line segment that has the given endpoint and midpoint.

Math 121. Practice Questions Chapters 2 and 3 Fall Find the other endpoint of the line segment that has the given endpoint and midpoint. Math 11. Practice Questions Chapters and 3 Fall 01 1. Find the other endpoint of the line segment that has the given endpoint and midpoint. Endpoint ( 7, ), Midpoint (, ). Solution: Let (, ) denote the

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 0 Section. Rolle s Theorem and the Mean Value Theorem. 07 Section. Increasing and Decreasing Functions and the First

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. Section. Rolle s Theorem and the Mean Value Theorem. 7 Section. Increasing and Decreasing Functions and the First Derivative

More information

Quick Review 4.1 (For help, go to Sections 1.2, 2.1, 3.5, and 3.6.)

Quick Review 4.1 (For help, go to Sections 1.2, 2.1, 3.5, and 3.6.) Section 4. Etreme Values of Functions 93 EXPLORATION Finding Etreme Values Let f,.. Determine graphicall the etreme values of f and where the occur. Find f at these values of.. Graph f and f or NDER f,,

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 78 Section. Rolle s Theorem and the Mean Value Theorem. 8 Section. Increasing and Decreasing Functions and the First

More information

5.5 Worksheet - Linearization

5.5 Worksheet - Linearization AP Calculus 4.5 Worksheet 5.5 Worksheet - Linearization All work must be shown in this course for full credit. Unsupported answers ma receive NO credit. 1. Consider the function = sin. a) Find the equation

More information

4.2 Mean Value Theorem Calculus

4.2 Mean Value Theorem Calculus 4. MEAN VALUE THEOREM The Mean Value Theorem is considered b some to be the most important theorem in all of calculus. It is used to prove man of the theorems in calculus that we use in this course as

More information

Chapter 6 Overview: Applications of Derivatives

Chapter 6 Overview: Applications of Derivatives Chapter 6 Overview: Applications of Derivatives There are two main contets for derivatives: graphing and motion. In this chapter, we will consider the graphical applications of the derivative. Much of

More information

lim 2 x lim lim sin 3 (9) l)

lim 2 x lim lim sin 3 (9) l) MAC FINAL EXAM REVIEW. Find each of the following its if it eists, a) ( 5). (7) b). c). ( 5 ) d). () (/) e) (/) f) (-) sin g) () h) 5 5 5. DNE i) (/) j) (-/) 7 8 k) m) ( ) (9) l) n) sin sin( ) 7 o) DNE

More information

Skills Practice Skills Practice for Lesson 1.1

Skills Practice Skills Practice for Lesson 1.1 Skills Practice Skills Practice for Lesson. Name Date Lots and Projectiles Introduction to Quadratic Functions Vocabular Give an eample of each term.. quadratic function 9 0. vertical motion equation s

More information

The Fundamental Theorem of Calculus Part 3

The Fundamental Theorem of Calculus Part 3 The Fundamental Theorem of Calculus Part FTC Part Worksheet 5: Basic Rules, Initial Value Problems, Rewriting Integrands A. It s time to find anti-derivatives algebraically. Instead of saying the anti-derivative

More information

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)?

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)? 5 Integration 5. Antiderivatives and Indefinite Integration Suppose that f() = 5 4. Can we find a function F () whose derivative is f()? Definition. A function F is an antiderivative of f on an interval

More information

AP Calculus Review Assignment Answer Sheet 1. Name: Date: Per. Harton Spring Break Packet 2015

AP Calculus Review Assignment Answer Sheet 1. Name: Date: Per. Harton Spring Break Packet 2015 AP Calculus Review Assignment Answer Sheet 1 Name: Date: Per. Harton Spring Break Packet 015 This is an AP Calc Review packet. As we get closer to the eam, it is time to start reviewing old concepts. Use

More information

206 Calculus and Structures

206 Calculus and Structures 06 Calculus and Structures CHAPTER 4 CURVE SKETCHING AND MAX-MIN II Calculus and Structures 07 Copright Chapter 4 CURVE SKETCHING AND MAX-MIN II 4. INTRODUCTION In Chapter, we developed a procedure for

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012 The Second Fundamental Theorem of Calculus Functions Defined by Integrals Given the functions, f(t), below, use F( ) f ( t) dt to find F() and F () in terms of.. f(t) = 4t t. f(t) = cos t Given the functions,

More information

In #1-5, find the indicated limits. For each one, if it does not exist, tell why not. Show all necessary work.

In #1-5, find the indicated limits. For each one, if it does not exist, tell why not. Show all necessary work. Calculus I Eam File Fall 7 Test # In #-5, find the indicated limits. For each one, if it does not eist, tell why not. Show all necessary work. lim sin.) lim.) 3.) lim 3 3-5 4 cos 4.) lim 5.) lim sin 6.)

More information

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13 Contents Limits Derivatives 3. Difference Quotients......................................... 3. Average Rate of Change...................................... 4.3 Derivative Rules...........................................

More information

Law of Sines, Law of Cosines, Heron s Formula:

Law of Sines, Law of Cosines, Heron s Formula: PreAP Math Analsis nd Semester Review Law of Sines, Law of Cosines, Heron s Formula:. Determine how man solutions the triangle has and eplain our reasoning. (FIND YOUR FLOW CHART) a. A = 4, a = 4 ards,

More information

= x. Algebra II Notes Quadratic Functions Unit Graphing Quadratic Functions. Math Background

= x. Algebra II Notes Quadratic Functions Unit Graphing Quadratic Functions. Math Background Algebra II Notes Quadratic Functions Unit 3.1 3. Graphing Quadratic Functions Math Background Previousl, ou Identified and graphed linear functions Applied transformations to parent functions Graphed quadratic

More information

Section 3.3 Graphs of Polynomial Functions

Section 3.3 Graphs of Polynomial Functions 3.3 Graphs of Polynomial Functions 179 Section 3.3 Graphs of Polynomial Functions In the previous section we eplored the short run behavior of quadratics, a special case of polynomials. In this section

More information

Calculus 1st Semester Final Review

Calculus 1st Semester Final Review Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ), c /, > 0 Find the limit: lim 6+

More information

3.1-Quadratic Functions & Inequalities

3.1-Quadratic Functions & Inequalities 3.1-Quadratic Functions & Inequalities Quadratic Functions: Quadratic functions are polnomial functions of the form also be written in the form f ( ) a( h) k. f ( ) a b c. A quadratic function ma Verte

More information

Unit 10 - Graphing Quadratic Functions

Unit 10 - Graphing Quadratic Functions Unit - Graphing Quadratic Functions PREREQUISITE SKILLS: students should be able to add, subtract and multipl polnomials students should be able to factor polnomials students should be able to identif

More information

Technical Calculus I Homework. Instructions

Technical Calculus I Homework. Instructions Technical Calculus I Homework Instructions 1. Each assignment is to be done on one or more pieces of regular-sized notebook paper. 2. Your name and the assignment number should appear at the top of the

More information

Study Guide and Intervention

Study Guide and Intervention 6- NAME DATE PERID Stud Guide and Intervention Graphing Quadratic Functions Graph Quadratic Functions Quadratic Function A function defined b an equation of the form f () a b c, where a 0 b Graph of a

More information

Review Exercises for Chapter 2

Review Exercises for Chapter 2 Review Eercises for Chapter 367 Review Eercises for Chapter. f 1 1 f f f lim lim 1 1 1 1 lim 1 1 1 1 lim 1 1 lim lim 1 1 1 1 1 1 1 1 1 4. 8. f f f f lim lim lim lim lim f 4, 1 4, if < if (a) Nonremovable

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

Review Exercises for Chapter 3. Review Exercises for Chapter r v 0 2. v ft sec. x 1 2 x dx f x x 99.4.

Review Exercises for Chapter 3. Review Exercises for Chapter r v 0 2. v ft sec. x 1 2 x dx f x x 99.4. Review Eercises for Chapter 6. r v 0 sin. Let f, 00, d 0.6. v 0 00 ftsec changes from 0 to dr 00 cos d 6 0 d 0 r dr 80 00 6 96 feet 80 cos 0 96 feet 8080 f f fd d f 99. 00 0.6 9.97 00 Using a calculator:

More information

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) =

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) = CLEP Calculus Time 60 Minutes 5 Questions For each question below, choose the best answer from the choices given. 7. lim 5 + 5 is (A) 7 0 (C) 7 0 (D) 7 (E) Noneistent. If f(), then f () (A) (C) (D) (E)

More information

Homework Assignments Math /02 Spring 2015

Homework Assignments Math /02 Spring 2015 Homework Assignments Math 1-01/0 Spring 015 Assignment 1 Due date : Frida, Januar Section 5.1, Page 159: #1-, 10, 11, 1; Section 5., Page 16: Find the slope and -intercept, and then plot the line in problems:

More information

Mat 267 Engineering Calculus III Updated on 9/19/2010

Mat 267 Engineering Calculus III Updated on 9/19/2010 Chapter 11 Partial Derivatives Section 11.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair o real numbers (, ) in a set D a unique real number

More information

Algebra 2 Unit 2 Practice

Algebra 2 Unit 2 Practice Algebra Unit Practice LESSON 7-1 1. Consider a rectangle that has a perimeter of 80 cm. a. Write a function A(l) that represents the area of the rectangle with length l.. A rectangle has a perimeter of

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.

More information

Find the following limits. For each one, if it does not exist, tell why not. Show all necessary work.

Find the following limits. For each one, if it does not exist, tell why not. Show all necessary work. Calculus I Eam File Spring 008 Test #1 Find the following its. For each one, if it does not eist, tell why not. Show all necessary work. 1.) 4.) + 4 0 1.) 0 tan 5.) 1 1 1 1 cos 0 sin 3.) 4 16 3 1 6.) For

More information

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity.

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity. Math Final Eam - Practice Problems. A function f is graphed below. f() 5 4 8 7 5 4 4 5 7 8 4 5 (a) Find f(0), f( ), f(), and f(4) Find the domain and range of f (c) Find the intervals where f () is positive

More information

MATH 150/GRACEY PRACTICE FINAL. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MATH 150/GRACEY PRACTICE FINAL. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MATH 0/GRACEY PRACTICE FINAL Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Choose the graph that represents the given function without using

More information

Name: NOTES 4: APPLICATIONS OF DIFFERENTIATION. Date: Period: Mrs. Nguyen s Initial: WARM UP:

Name: NOTES 4: APPLICATIONS OF DIFFERENTIATION. Date: Period: Mrs. Nguyen s Initial: WARM UP: NOTES 4: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: Mrs. Nguyen s Initial: WARM UP: Assume that f ( ) and g ( ) are differentiable functions: f ( ) f '( ) g ( ) g'( ) - 3 1-5 8-1 -9 7 4 1 0 5

More information

Name Class Date. Solving by Graphing and Algebraically

Name Class Date. Solving by Graphing and Algebraically Name Class Date 16-4 Nonlinear Sstems Going Deeper Essential question: How can ou solve a sstem of equations when one equation is linear and the other is quadratic? To estimate the solution to a sstem

More information

6. Graph each of the following functions. What do you notice? What happens when x = 2 on the graph of b?

6. Graph each of the following functions. What do you notice? What happens when x = 2 on the graph of b? Pre Calculus Worksheet 1. Da 1 1. The relation described b the set of points {(-,5,0,5,,8,,9 ) ( ) ( ) ( )} is NOT a function. Eplain wh. For questions - 4, use the graph at the right.. Eplain wh the graph

More information

?

? NOTES 4: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: WARM UP: Assume that f( ) and g ( ) are differentiable functions: f( ) f '( ) g ( ) g'( ) - 3 1-5 8-1 -9 7 4 1 0 5 9 9-3 1 3-3 6-5 3 8? 1. Let

More information

( ) 7 ( 5x 5 + 3) 9 b) y = x x

( ) 7 ( 5x 5 + 3) 9 b) y = x x New York City College of Technology, CUNY Mathematics Department Fall 0 MAT 75 Final Eam Review Problems Revised by Professor Kostadinov, Fall 0, Fall 0, Fall 00. Evaluate the following its, if they eist:

More information

Math 2413 Final Exam Review 1. Evaluate, giving exact values when possible.

Math 2413 Final Exam Review 1. Evaluate, giving exact values when possible. Math 4 Final Eam Review. Evaluate, giving eact values when possible. sin cos cos sin y. Evaluate the epression. loglog 5 5ln e. Solve for. 4 6 e 4. Use the given graph of f to answer the following: y f

More information

PRACTICE FINAL EXAM. 3. Solve: 3x 8 < 7. Write your answer using interval notation. Graph your solution on the number line.

PRACTICE FINAL EXAM. 3. Solve: 3x 8 < 7. Write your answer using interval notation. Graph your solution on the number line. MAC 1105 PRACTICE FINAL EXAM College Algebra *Note: this eam is provided as practice onl. It was based on a book previousl used for this course. You should not onl stud these problems in preparing for

More information

( ) 9 b) y = x x c) y = (sin x) 7 x d) y = ( x ) cos x

( ) 9 b) y = x x c) y = (sin x) 7 x d) y = ( x ) cos x NYC College of Technology, CUNY Mathematics Department Spring 05 MAT 75 Final Eam Review Problems Revised by Professor Africk Spring 05, Prof. Kostadinov, Fall 0, Fall 0, Fall 0, Fall 0, Fall 00 # Evaluate

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question Midterm Review 0 Precalculu Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question ) A graph of a function g is shown below. Find g(0). (-, ) (-, 0) - -

More information

AP Calculus AB/BC ilearnmath.net

AP Calculus AB/BC ilearnmath.net CALCULUS AB AP CHAPTER 1 TEST Don t write on the test materials. Put all answers on a separate sheet of paper. Numbers 1-8: Calculator, 5 minutes. Choose the letter that best completes the statement or

More information

Final Exam Review / AP Calculus AB

Final Exam Review / AP Calculus AB Chapter : Final Eam Review / AP Calculus AB Use the graph to find each limit. 1) lim f(), lim f(), and lim π - π + π f 5 4 1 y - - -1 - - -4-5 ) lim f(), - lim f(), and + lim f 8 6 4 y -4 - - -1-1 4 5-4

More information

Answers to Some Sample Problems

Answers to Some Sample Problems Answers to Some Sample Problems. Use rules of differentiation to evaluate the derivatives of the following functions of : cos( 3 ) ln(5 7 sin(3)) 3 5 +9 8 3 e 3 h 3 e i sin( 3 )3 +[ ln ] cos( 3 ) [ln(5)

More information

Writing Quadratic Functions in Standard Form

Writing Quadratic Functions in Standard Form Chapter Summar Ke Terms standard form (general form) of a quadratic function (.1) parabola (.1) leading coefficient (.) second differences (.) vertical motion model (.3) zeros (.3) interval (.3) open interval

More information

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential CHAPTER : Partial Derivatives.1 Definition of a Partial Derivative. Increments and Differential.3 Chain Rules.4 Local Etrema.5 Absolute Etrema 1 Chapter : Partial Derivatives.1 Definition of a Partial

More information

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions. Which of the following integrals correctly corresponds to the area of the shaded region in the figure to the right? (A) (B) (C) (D) (E)

More information

Review of elements of Calculus (functions in one variable)

Review of elements of Calculus (functions in one variable) Review of elements of Calculus (functions in one variable) Mainly adapted from the lectures of prof Greg Kelly Hanford High School, Richland Washington http://online.math.uh.edu/houstonact/ https://sites.google.com/site/gkellymath/home/calculuspowerpoints

More information

Math 130: PracTest 3. Answers Online Friday

Math 130: PracTest 3. Answers Online Friday Math 130: PracTest 3 Answers Online Frida 1 Find the absolute etreme values of the following functions on the given intervals Which theorems justif our work? Make sure ou eplain what ou are doing a) 1

More information

Section 2.3 Quadratic Functions and Models

Section 2.3 Quadratic Functions and Models Section.3 Quadratic Functions and Models Quadratic Function A function f is a quadratic function if f ( ) a b c Verte of a Parabola The verte of the graph of f( ) is V or b v a V or b y yv f a Verte Point

More information

Math 75B Practice Problems for Midterm II Solutions Ch. 16, 17, 12 (E), , 2.8 (S)

Math 75B Practice Problems for Midterm II Solutions Ch. 16, 17, 12 (E), , 2.8 (S) Math 75B Practice Problems for Midterm II Solutions Ch. 6, 7, 2 (E),.-.5, 2.8 (S) DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual

More information

Lesson 9.1 Using the Distance Formula

Lesson 9.1 Using the Distance Formula Lesson. Using the Distance Formula. Find the eact distance between each pair of points. a. (0, 0) and (, ) b. (0, 0) and (7, ) c. (, 8) and (, ) d. (, ) and (, 7) e. (, 7) and (8, ) f. (8, ) and (, 0)

More information

Review of Exponent Rules

Review of Exponent Rules Page Review of Eponent Rules Math : Unit Radical and Rational Functions Rule : Multipling Powers With the Same Base Multipl Coefficients, Add Eponents. h h h. ( )( ). (6 )(6 ). (m n )(m n ). ( 8ab)( a

More information

Chapter 9 Notes Alg. 1H 9-A1 (Lesson 9-3) Solving Quadratic Equations by Finding the Square Root and Completing the Square

Chapter 9 Notes Alg. 1H 9-A1 (Lesson 9-3) Solving Quadratic Equations by Finding the Square Root and Completing the Square Chapter Notes Alg. H -A (Lesson -) Solving Quadratic Equations b Finding the Square Root and Completing the Square p. *Calculator Find the Square Root: take the square root of. E: Solve b finding square

More information

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic

More information

lim x c) lim 7. Using the guidelines discussed in class (domain, intercepts, symmetry, asymptotes, and sign analysis to

lim x c) lim 7. Using the guidelines discussed in class (domain, intercepts, symmetry, asymptotes, and sign analysis to Math 7 REVIEW Part I: Problems Using the precise definition of the it, show that [Find the that works for any arbitrarily chosen positive and show that it works] Determine the that will most likely work

More information

Properties of Derivatives

Properties of Derivatives 6 CHAPTER Properties of Derivatives To investigate derivatives using first principles, we will look at the slope of f ( ) = at the point P (,9 ). Let Q1, Q, Q, Q4, be a sequence of points on the curve

More information

Calculus BC AP/Dual Fall Semester Review Sheet REVISED 1 Name Date. 3) Explain why f(x) = x 2 7x 8 is a guarantee zero in between [ 3, 0] g) lim x

Calculus BC AP/Dual Fall Semester Review Sheet REVISED 1 Name Date. 3) Explain why f(x) = x 2 7x 8 is a guarantee zero in between [ 3, 0] g) lim x Calculus BC AP/Dual Fall Semester Review Sheet REVISED Name Date Eam Date and Time: Read and answer all questions accordingly. All work and problems must be done on your own paper and work must be shown.

More information

Math 231 Final Exam Review

Math 231 Final Exam Review Math Final Eam Review Find the equation of the line tangent to the curve 4y y at the point (, ) Find the slope of the normal line to y ) ( e at the point (,) dy Find d if cos( y) y 4 y 4 Find the eact

More information

WeBWorK assignment 1. b. Find the slope of the line passing through the points (10,1) and (0,2). 4.(1 pt) Find the equation of the line passing

WeBWorK assignment 1. b. Find the slope of the line passing through the points (10,1) and (0,2). 4.(1 pt) Find the equation of the line passing WeBWorK assignment Thought of the day: It s not that I m so smart; it s just that I stay with problems longer. Albert Einstein.( pt) a. Find the slope of the line passing through the points (8,4) and (,8).

More information

Math 0210 Common Final Review Questions (2 5 i)(2 5 i )

Math 0210 Common Final Review Questions (2 5 i)(2 5 i ) Math 0 Common Final Review Questions In problems 1 6, perform the indicated operations and simplif if necessar. 1. ( 8)(4) ( )(9) 4 7 4 6( ). 18 6 8. ( i) ( 1 4 i ) 4. (8 i ). ( 9 i)( 7 i) 6. ( i)( i )

More information

Math 1431 Final Exam Review. 1. Find the following limits (if they exist): lim. lim. lim. lim. sin. lim. cos. lim. lim. lim. n n.

Math 1431 Final Exam Review. 1. Find the following limits (if they exist): lim. lim. lim. lim. sin. lim. cos. lim. lim. lim. n n. . Find the following its (if they eist: sin 7 a. 0 9 5 b. 0 tan( 8 c. 4 d. e. f. sin h0 h h cos h0 h h Math 4 Final Eam Review g. h. i. j. k. cos 0 n nn e 0 n arctan( 0 4 l. 0 sin(4 m. cot 0 = n. = o.

More information

MATH 1325 Business Calculus Guided Notes

MATH 1325 Business Calculus Guided Notes MATH 135 Business Calculus Guided Notes LSC North Harris By Isabella Fisher Section.1 Functions and Theirs Graphs A is a rule that assigns to each element in one and only one element in. Set A Set B Set

More information

Nonlinear Systems. No solution One solution Two solutions. Solve the system by graphing. Check your answer.

Nonlinear Systems. No solution One solution Two solutions. Solve the system by graphing. Check your answer. 8-10 Nonlinear Sstems CC.9-1.A.REI.7 Solve a simple sstem consisting of a linear equation and a quadratic equation in two variables algebraicall and graphicall. Objective Solve sstems of equations in two

More information

College Algebra ~ Review for Test 2 Sections

College Algebra ~ Review for Test 2 Sections College Algebra ~ Review for Test Sections. -. Find a point-slope form for the equation of the line satisfing the conditions. ) a) Slope -, passing through (7, ) b) Passing through (-, -8) and (-, ) Write

More information

APPM 1345, Fall 2013: Exam 1 September 25, 2013

APPM 1345, Fall 2013: Exam 1 September 25, 2013 APPM 1345, Fall 2013: Eam 1 September 25, 2013 Instructions: Please show all of our work and make our methods and reasoning clear. Answers out of the blue with no supporting work will receive no credit.

More information

TRANSFORMATIONS OF f(x) = x Example 1

TRANSFORMATIONS OF f(x) = x Example 1 TRANSFORMATIONS OF f() = 2 2.1.1 2.1.2 Students investigate the general equation for a famil of quadratic functions, discovering was to shift and change the graphs. Additionall, the learn how to graph

More information

Chapter 4 Applications of Derivatives. Section 4.1 Extreme Values of Functions (pp ) Section Quick Review 4.1

Chapter 4 Applications of Derivatives. Section 4.1 Extreme Values of Functions (pp ) Section Quick Review 4.1 Section. 6 8. Continued (e) vt () t > 0 t > 6 t > 8. (a) d d e u e u du where u d (b) d d d d e + e e e e e e + e e + e (c) y(). (d) m e e y (). 7 y. 7( ) +. y 7. + 0. 68 0. 8 m. 7 y0. 8( ) +. y 0. 8+.

More information

Derivatives 2: The Derivative at a Point

Derivatives 2: The Derivative at a Point Derivatives 2: The Derivative at a Point 69 Derivatives 2: The Derivative at a Point Model 1: Review of Velocit In the previous activit we eplored position functions (distance versus time) and learned

More information

WeBWorK demonstration assignment

WeBWorK demonstration assignment WeBWorK demonstration assignment The main purpose of this WeBWorK set is to familiarize yourself with WeBWorK. Here are some hints on how to use WeBWorK effectively: After first logging into WeBWorK change

More information

Advanced Algebra 2 Final Review Packet KG Page 1 of Find the slope of the line passing through (3, -1) and (6, 4).

Advanced Algebra 2 Final Review Packet KG Page 1 of Find the slope of the line passing through (3, -1) and (6, 4). Advanced Algebra Final Review Packet KG 0 Page of 8. Evaluate (7 ) 0 when and. 7 7. Solve the equation.. Solve the equation.. Solve the equation. 6. An awards dinner costs $ plus $ for each person making

More information

LESSON #48 - INTEGER EXPONENTS COMMON CORE ALGEBRA II

LESSON #48 - INTEGER EXPONENTS COMMON CORE ALGEBRA II LESSON #8 - INTEGER EXPONENTS COMMON CORE ALGEBRA II We just finished our review of linear functions. Linear functions are those that grow b equal differences for equal intervals. In this unit we will

More information

3 Additional Applications of the Derivative

3 Additional Applications of the Derivative 3 Additional Applications of the Derivative 3.1 Increasing and Decreasing Functions; Relative Etrema 3.2 Concavit and Points of Inflection 3.4 Optimization Homework Problem Sets 3.1 (1, 3, 5-9, 11, 15,

More information

1 x 3 3x. x 1 2x 1. 2x 1 2x 1. 2x 1 2x 1. x 2 +4x 1 j. lim. x3 +2x x 5. x2 9

1 x 3 3x. x 1 2x 1. 2x 1 2x 1. 2x 1 2x 1. x 2 +4x 1 j. lim. x3 +2x x 5. x2 9 MATHEMATICS 57 Final Eamination Review Problems. Let f 5. Find each of the following. a. fa+b b. f f. Find the domain of each function. a. f b. g +. The graph of f + is the same as the graph of g ecept

More information

1.5. Analyzing Graphs of Functions. The Graph of a Function. What you should learn. Why you should learn it. 54 Chapter 1 Functions and Their Graphs

1.5. Analyzing Graphs of Functions. The Graph of a Function. What you should learn. Why you should learn it. 54 Chapter 1 Functions and Their Graphs 0_005.qd /7/05 8: AM Page 5 5 Chapter Functions and Their Graphs.5 Analzing Graphs of Functions What ou should learn Use the Vertical Line Test for functions. Find the zeros of functions. Determine intervals

More information

Multiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous.

Multiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous. Multiple Choice. Circle the best answer. No work needed. No partial credit available. + +. Evaluate lim + (a (b (c (d 0 (e None of the above.. Evaluate lim (a (b (c (d 0 (e + + None of the above.. Find

More information

Methods of Integration

Methods of Integration U96-b)! Use the substitution u = - to evaluate U95-b)! 4 Methods of Integration d. Evaluate 9 d using the substitution u = + 9. UNIT MATHEMATICS (HSC) METHODS OF INTEGRATION CSSA «8» U94-b)! Use the substitution

More information

AP Calculus AB/IB Math SL2 Unit 1: Limits and Continuity. Name:

AP Calculus AB/IB Math SL2 Unit 1: Limits and Continuity. Name: AP Calculus AB/IB Math SL Unit : Limits and Continuity Name: Block: Date:. A bungee jumper dives from a tower at time t = 0. Her height h (in feet) at time t (in seconds) is given by the graph below. In

More information

1. Find A and B so that f x Axe Bx. has a local minimum of 6 when. x 2.

1. Find A and B so that f x Axe Bx. has a local minimum of 6 when. x 2. . Find A and B so that f Ae B has a local minimum of 6 when.. The graph below is the graph of f, the derivative of f; The domain of the derivative is 5 6. Note there is a cusp when =, a horizontal tangent

More information

Find the volume of the solid generated by revolving the shaded region about the given axis. Use the disc/washer method 1) About the x-axis

Find the volume of the solid generated by revolving the shaded region about the given axis. Use the disc/washer method 1) About the x-axis Final eam practice for Math 6 Disclaimer: The actual eam is different Find the volume of the solid generated b revolving the shaded region about the given ais. Use the disc/washer method ) About the -ais

More information

Tangent Line Approximations. y f c f c x c. y f c f c x c. Find the tangent line approximation of. f x 1 sin x

Tangent Line Approximations. y f c f c x c. y f c f c x c. Find the tangent line approximation of. f x 1 sin x SECTION 9 Differentials 5 Section 9 EXPLORATION Tangent Line Approimation Use a graphing utilit to graph f In the same viewing window, graph the tangent line to the graph of f at the point, Zoom in twice

More information

Characteristics of Quadratic Functions

Characteristics of Quadratic Functions . Characteristics of Quadratic Functions Essential Question What tpe of smmetr does the graph of f() = a( h) + k have and how can ou describe this smmetr? Parabolas and Smmetr Work with a partner. a. Complete

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 1325 Test 3 Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the location and value of each relative etremum for the function. 1)

More information

+ 2 on the interval [-1,3]

+ 2 on the interval [-1,3] Section.1 Etrema on an Interval 1. Understand the definition of etrema of a function on an interval.. Understand the definition of relative etrema of a function on an open interval.. Find etrema on a closed

More information

WW Prob Lib1 Math course-section, semester year

WW Prob Lib1 Math course-section, semester year Young-Seon Lee WW Prob Lib Math course-section, semester year WeBWorK assignment due /4/03 at :00 PM..( pt) Give the rational number whose decimal form is: 0 7333333 Answer:.( pt) Solve the following inequality:

More information

Applications of Derivatives

Applications of Derivatives 58_Ch04_pp86-60.qd /3/06 :35 PM Page 86 Chapter 4 Applications of Derivatives A n automobile s gas mileage is a function of man variables, including road surface, tire tpe, velocit, fuel octane rating,

More information

Curriculum Framework Alignment and Rationales for Answers

Curriculum Framework Alignment and Rationales for Answers The multiple-choice section on each eam is designed for broad coverage of the course content. Multiple-choice questions are discrete, as opposed to appearing in question sets, and the questions do not

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polnomial and Rational Functions Figure -mm film, once the standard for capturing photographic images, has been made largel obsolete b digital photograph. (credit film : modification of work b Horia Varlan;

More information

WORKSHEET 1 SOLUTION Chapter 2 Differentiation

WORKSHEET 1 SOLUTION Chapter 2 Differentiation United Arab Emirates University College of Sciences Department of Mathematical Sciences WORKSHEET SOLUTION Chapter Differentiation Calculus I for Engineering MATH SECTION CRN : :5 on Sunday & Tuesday Due

More information

1.1 Laws of exponents Conversion between exponents and logarithms Logarithm laws Exponential and logarithmic equations 10

1.1 Laws of exponents Conversion between exponents and logarithms Logarithm laws Exponential and logarithmic equations 10 CNTENTS Algebra Chapter Chapter Chapter Eponents and logarithms. Laws of eponents. Conversion between eponents and logarithms 6. Logarithm laws 8. Eponential and logarithmic equations 0 Sequences and series.

More information

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f()

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f() 4.1 & 4. Student Notes Using the First and Second Derivatives Definition A function f has an absolute maximum (or global maximum) at c if f ( c) f ( x) for all x in D, where D is the domain of f. The number

More information

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots.

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots. Name: Quadratic Functions Objective: To be able to graph a quadratic function and identif the verte and the roots. Period: Quadratic Function Function of degree. Usuall in the form: We are now going to

More information

Lesson Goals. Unit 4 Polynomial/Rational Functions Quadratic Functions (Chap 0.3) Family of Quadratic Functions. Parabolas

Lesson Goals. Unit 4 Polynomial/Rational Functions Quadratic Functions (Chap 0.3) Family of Quadratic Functions. Parabolas Unit 4 Polnomial/Rational Functions Quadratic Functions (Chap 0.3) William (Bill) Finch Lesson Goals When ou have completed this lesson ou will: Graph and analze the graphs of quadratic functions. Solve

More information

College Algebra ~ Review for Test 2 Sections

College Algebra ~ Review for Test 2 Sections College Algebra ~ Review for Test Sections. -. Use the given graphs of = a + b to solve the inequalit. Write the solution set in interval notation. ) - + 9 8 7 6 (, ) - - - - 6 7 8 - Solve the inequalit

More information