3.4 Solutions.notebook March 24, Horizontal Tangents

Size: px
Start display at page:

Download "3.4 Solutions.notebook March 24, Horizontal Tangents"

Transcription

1 Note Fix From 3.3 Horizontal Tangents Just for fun, sketch y = sin x and then sketch its derivative! What do you notice? More on this later 3.4 Velocity and Other Rates of Change A typical graph of the movement of an object is as follows: s s(t) s = position or displacement (in km's) t = time (in hours) If the slope of a function is the change in position over the change in time, this rate of change will be the average velocity in kms/hour. Please note that the speedometer in a car does not measure average velocity, but instantaneous velocity (the velocity at one moment in time). The formula below, based on the definition of the derivative, would give the instantaneous velocity from the above function at any time, t. Velocity is the first derivative of position. For this version of the slope formula, delta t is the same as h in the regular formula. t

2 (km/hour) If the slope of a function is the change in velocity over the change in time, this rate of change will be the average acceleration in km/hour 2. Acceleration is the first derivative of velocity, and the second derivative of position. If s(t) is the position/displacement of an object: v(t) = s'(t) a(t) = v'(t) = s''(t) {velocity is the first derivative of position} {acceleration is the first derivative of velocity and the second derivative of position.} j(t) = a'(t) = v''(t) = s'''(t) { jerk is the first derivative of acceleration, the second derivative of velocity, and the third derivative of position.} In mathematical terms and for the purpose of this course, velocity can be either positive or negative. Velocity to the right or up is considered positive. Velocity to the left or down is considered to be negative. Speed is the absolute value of velocity.

3 Terminology There are various ways to indicate velocity, acceleration and jerk. If we choose to use the "Leibniz terminology", these quantities can be expressed this way: or or Example: The position of an object can be expressed by the function s(t) = 3t 2 9t + 5, where t is in seconds and s is in meters. a) Find the position of the object at t = 5s. b) Find v(t), and then find the velocity at t = 7s. c) Find the speed at t = 1s. d) Find an expression for the object's acceleration, a(t). e) Find the acceleration at t = 10s.

4 If velocity and acceleration are both positive or negative, then a body is speeding up. V + a + V a Speeding Up If velocity and acceleration are opposite in sign, then a body is slowing down. V + a V a + Slowing Down

5 v velocity (in m/s) t time (in seconds) 1) When is the object (a) moving forward, (b) moving backward? 2) When is acceleration positive? Negative? Zero? 3) When is the object (a) speeding up, and (b) slowing down? 4) When does the particle move at its greatest speed? Example: A softball is launched from the Earth. The position, s(t), of the ball is given by the curve: where t represents the time in seconds since the launch. a) Determine the height of the ball after 8 seconds b) Determine the height of the ball after 17 seconds c) Determine the velocity of the ball after 8 seconds d) Determine the velocity of the ball after 17 seconds e) Determine the acceleration of the ball after 4 seconds

6 Example : Find velocity and acceleration when t = 3 seconds for the given function. S in meters, t in seconds. S = t 3 + 6t 2 1 Example: A baseball is thrown in the air, reaching a height of h = 20t 5t 2, with h in meters and t in seconds. a) Find the velocity function. b) When is the velocity 0? c) When is the ball at its greatest height? d) How long does it take to reach a velocity of 15 m/s? e) When, and with what velocity does the ball hit the ground?

7 Review: Solve the following quadratic inequality. Example: A particle is moving back and forth on a horizontal line. It's movement is defined by the position function S(t) = t 3 12t t 30, where t 0. a) Find the velocity and acceleration functions. b) When is the velocity zero? c) During what time interval is the velocity positive? d) When is the velocity negative?

8 Problem: A dynamite blast propels a heavy rock straight up with a launch velocity of 160 ft/sec. It reaches a height of S = 160t 16t 2 feet after t seconds. a) How high does the rock go? b) What is the velocity of the rock when it is 256 ft above the ground on (i) the way up, and (ii) the way down? Problem: A dynamite blast propels a heavy rock straight up with a launch velocity of 160 ft/sec. It reaches a height of S = 160t 16t 2 feet after t seconds. c) What is the acceleration of the rock at time t? d) When does the rock hit the ground? e) With what velocity does the rock hit the ground?

9 Problem: The area of a circle is a function of its radius. a) Find the instantaneous rate of change in the area, A, with respect to the radius, r. b) Find the instantaneous rate of change in the area, A, when the radius is 4. Economists use rate of change to describe "marginal cost". If the cost of production, C(x) is the cost as it relates to the number of units produced, x, then marginal cost: is the rate of change of cost. Economists regard this as the cost to product 1 more unit when the production is at x items. Example: The cost of producing x washing machines is: Determine the marginal cost when x = 100 washing machines.

10 Example: The cost of producing a certain type of tire is: C(x) = x x 2 a) Determine the marginal cost at a production level of 500 tires b) Determine the actual cost of producing the 501st tire Homefun Page 136 #13,15,18, 9,10,11,19,20,21 Homefun Pages 135: # 1, 3, 8, 25, 27, 28

As you already know by now, when you're finding derivatives, you're finding the slope.

As you already know by now, when you're finding derivatives, you're finding the slope. As you already know by now, when you're finding derivatives, you're finding the slope. Slope is a "rate of change" There are many other "rates of change" out there in the Real World. For example, a doctor

More information

Sections 2.7, 2.8 Rates of Change Part III Rates of Change in the Natural and Social Sciences

Sections 2.7, 2.8 Rates of Change Part III Rates of Change in the Natural and Social Sciences Math 180 wwwtimetodarecom Sections 7, 8 Rates of Change Part III Rates of Change in the Natural and Social Sciences Physics s If s= f ( t) is the position function of a particle that is moving in a straight

More information

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t).

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Example 1: For s( t) t t 3, show its position on the

More information

PARTICLE MOTION: DAY 2

PARTICLE MOTION: DAY 2 PARTICLE MOTION: DAY 2 Section 3.6A Calculus AP/Dual, Revised 2018 viet.dang@humbleisd.net 7/30/2018 1:24 AM 3.6A: Particle Motion Day 2 1 WHEN YOU SEE THINK When you see Think Initially t = 0 At rest

More information

Remember... Average rate of change slope of a secant (between two points)

Remember... Average rate of change slope of a secant (between two points) 3.7 Rates of Change in the Natural and Social Sciences Remember... Average rate of change slope of a secant (between two points) Instantaneous rate of change slope of a tangent derivative We will assume

More information

Chapter 3: Derivatives

Chapter 3: Derivatives Name: Date: Period: AP Calc AB Mr. Mellina Chapter 3: Derivatives Sections: v 2.4 Rates of Change & Tangent Lines v 3.1 Derivative of a Function v 3.2 Differentiability v 3.3 Rules for Differentiation

More information

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once.

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. PART III. KINEMATICS A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. 1. rise (Δy) The vertical separation of any two points on a curve is

More information

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment Unit 6 (1-Dimensional Motion) Practice Assessment Choose the best answer to the following questions. Indicate the confidence in your answer by writing C (Confident), S (So-so), or G (Guessed) next to the

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

3.1 Day 1: The Derivative of a Function

3.1 Day 1: The Derivative of a Function A P Calculus 3.1 Day 1: The Derivative of a Function I CAN DEFINE A DERIVATIVE AND UNDERSTAND ITS NOTATION. Last chapter we learned to find the slope of a tangent line to a point on a graph by using a

More information

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres Chapter 2 Motion Defining Motion Motion is a continuous change in position can be described by measuring the rate of change of position

More information

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): f t dt

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): f t dt CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS d d d d t dt 6 cos t dt Second Fundamental Theorem of Calculus: d f tdt d a d d 4 t dt d d a f t dt d d 6 cos t dt Second Fundamental

More information

If we plot the position of a moving object at increasing time intervals, we get a position time graph. This is sometimes called a distance time graph.

If we plot the position of a moving object at increasing time intervals, we get a position time graph. This is sometimes called a distance time graph. Physics Lecture #2: Position Time Graphs If we plot the position of a moving object at increasing time intervals, we get a position time graph. This is sometimes called a distance time graph. Suppose a

More information

PARTICLE MOTION. Section 3.7A Calculus BC AP/Dual, Revised /30/2018 1:20 AM 3.7A: Particle Motion 1

PARTICLE MOTION. Section 3.7A Calculus BC AP/Dual, Revised /30/2018 1:20 AM 3.7A: Particle Motion 1 PARTICLE MOTION Section 3.7A Calculus BC AP/Dual, Revised 2017 viet.dang@humbleisd.net 7/30/2018 1:20 AM 3.7A: Particle Motion 1 WHEN YOU SEE THINK When you see Think Initially t = 0 At rest v t = 0 At

More information

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f()

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f() 4.1 & 4. Student Notes Using the First and Second Derivatives Definition A function f has an absolute maximum (or global maximum) at c if f ( c) f ( x) for all x in D, where D is the domain of f. The number

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3 A.P. Physics B Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters - 3 * In studying for your test, make sure to study this review sheet along with your quizzes and homework assignments.

More information

Logarithmic Differentiation (Sec. 3.6)

Logarithmic Differentiation (Sec. 3.6) Logarithmic Differentiation (Sec. 3.6) Logarithmic Differentiation Use logarithmic differentiation if you are taking the derivative of a function whose formula has a lot of MULTIPLICATION, DIVISION, and/or

More information

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x()

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x() Typically, if a particle is moving along the x-axis at any time, t, x() t represents the position of the particle; along the y-axis, yt () is often used; along another straight line, st () is often used.

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.4 Worksheet All work must be shown in this course for full credit. Unsupported answers may receive NO credit.. What is a difference quotient?. How do you find the slope of a curve (aka slope

More information

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity 3 Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity Distance An important part of describing the motion of an object is to describe how far it has moved, which is distance. The SI unit

More information

Chapter 3 Derivatives

Chapter 3 Derivatives Chapter Derivatives Section 1 Derivative of a Function What you ll learn about The meaning of differentiable Different ways of denoting the derivative of a function Graphing y = f (x) given the graph of

More information

Physics Test 3: Motion in One Dimension page 1

Physics Test 3: Motion in One Dimension page 1 Name Physics Test 3: Motion in One Dimension page 1 Multiple Choice Read each question and choose the best answer by putting the corresponding letter in the blank to the left. 1. Which of the following

More information

Spring 2015, Math 111 Lab 4: Kinematics of Linear Motion

Spring 2015, Math 111 Lab 4: Kinematics of Linear Motion Spring 2015, Math 111 Lab 4: William and Mary February 24, 2015 Spring 2015, Math 111 Lab 4: Learning Objectives Today, we will be looking at applications of derivatives in the field of kinematics. Learning

More information

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I.

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I. Antiderivatives Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if F x f x for all x I. Theorem If F is an antiderivative of f on I, then every function of

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.

More information

Physics 201 Homework 1

Physics 201 Homework 1 Physics 201 Homework 1 Jan 9, 2013 1. (a) What is the magnitude of the average acceleration of a skier who, starting (a) 1.6 m/s 2 ; (b) 20 meters from rest, reaches a speed of 8.0 m/s when going down

More information

Math 131. Rolle s and Mean Value Theorems Larson Section 3.2

Math 131. Rolle s and Mean Value Theorems Larson Section 3.2 Math 3. Rolle s and Mean Value Theorems Larson Section 3. Many mathematicians refer to the Mean Value theorem as one of the if not the most important theorems in mathematics. Rolle s Theorem. Suppose f

More information

p105 Section 2.2: Basic Differentiation Rules and Rates of Change

p105 Section 2.2: Basic Differentiation Rules and Rates of Change 1 2 3 4 p105 Section 2.2: Basic Differentiation Rules and Rates of Change Find the derivative of a function using the Constant Rule Find the derivative of a function using the Power Rule Find the derivative

More information

E 2320 = 0, to 3-decimals, find the average change in

E 2320 = 0, to 3-decimals, find the average change in Name Date Period Worksheet 2.5 Rates of Change and Particle Motion I Show all work. No calculator unless otherwise stated. Short Answer 1. Let E( x) be the elevation, in feet, of the Mississippi River

More information

Please read for extra test points: Thanks for reviewing the notes you are indeed a true scholar!

Please read for extra test points: Thanks for reviewing the notes you are indeed a true scholar! Please read for extra test points: Thanks for reviewing the notes you are indeed a true scholar! See me any time B4 school tomorrow and mention to me that you have reviewed your integration notes and you

More information

IB Math SL Year 2 Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited

IB Math SL Year 2 Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited Learning Goals: How do you apply integrals to real-world scenarios? Recall: Linear Motion When an object is moving, a ball in the air

More information

Applied Calculus I Practice Final Exam Solution Notes

Applied Calculus I Practice Final Exam Solution Notes AMS 5 (Fall, 2009). Solve for x: 0 3 2x = 3 (.2) x Taking the natural log of both sides, we get Applied Calculus I Practice Final Exam Solution Notes Joe Mitchell ln 0 + 2xln 3 = ln 3 + xln.2 x(2ln 3 ln.2)

More information

Calculus AB a Solutions Thomas Handout Student Questions

Calculus AB a Solutions Thomas Handout Student Questions Give the positions s = f(t) of a body moving on a coordinate line, with s in meters and t in seconds. (a) Find the body's displacement and average velocity for the given time interval. (b) Fine the body's

More information

Pre-Calculus Section 12.4: Tangent Lines and Derivatives 1. Determine the interval on which the function in the graph below is decreasing.

Pre-Calculus Section 12.4: Tangent Lines and Derivatives 1. Determine the interval on which the function in the graph below is decreasing. Pre-Calculus Section 12.4: Tangent Lines and Derivatives 1. Determine the interval on which the function in the graph below is decreasing. Determine the average rate of change for the function between

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

Remember... Average rate of change slope of a secant (between two points)

Remember... Average rate of change slope of a secant (between two points) 3.7 Rates of Change in the Natural and Social Sciences Remember... Average rate of change slope of a secant (between two points) Instantaneous rate of change slope of a tangent derivative We will assume

More information

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval?

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval? Worksheet 9 1. A poorly tuned Geo Metro (really old cheap, slow, car) can accelerate from rest to a speed of 28 m/s in 20 s. a) What is the average acceleration of the car? b) What distance does it travel

More information

Kinematics Multiple-Choice Questions

Kinematics Multiple-Choice Questions Kinematics Multiple-Choice Questions 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle. Which of the following

More information

APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS

APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS PROBLEM SET #1 Related Rates ***Calculators Allowed*** 1. An oil tanker spills oil that spreads in a circular pattern whose radius increases at the rate of

More information

Note: The zero function f(x) = 0 is a polynomial function. It has no degree and no leading coefficient. Sep 15 2:51 PM

Note: The zero function f(x) = 0 is a polynomial function. It has no degree and no leading coefficient. Sep 15 2:51 PM 2.1 Linear and Quadratic Name: Functions and Modeling Objective: Students will be able to recognize and graph linear and quadratic functions, and use these functions to model situations and solve problems.

More information

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0 Summary of motion graphs Object is moving to the right (in positive direction) Object at rest (not moving) Position is constant v (m/s) a (m/s 2 ) v = 0 a = 0 Constant velocity Position increases at constant

More information

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x()

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x() Typically, if a particle is moving along the x-axis at any time, t, x() t represents the position of the particle; along the y-axis, yt () is often used; along another straight line, st () is often used.

More information

Multiple-Choice Questions

Multiple-Choice Questions Multiple-Choice Questions 1. A rock is thrown straight up from the edge of a cliff. The rock reaches the maximum height of 15 m above the edge and then falls down to the bottom of the cliff 35 m below

More information

Chapter 2 Differentiation. 2.1 Tangent Lines and Their Slopes. Calculus: A Complete Course, 8e Chapter 2: Differentiation

Chapter 2 Differentiation. 2.1 Tangent Lines and Their Slopes. Calculus: A Complete Course, 8e Chapter 2: Differentiation Chapter 2 Differentiation 2.1 Tangent Lines and Their Slopes 1) Find the slope of the tangent line to the curve y = 4x x 2 at the point (-1, 0). A) -1 2 C) 6 D) 2 1 E) -2 2) Find the equation of the tangent

More information

Practice Test What two units of measurement are necessary for describing speed?

Practice Test What two units of measurement are necessary for describing speed? Practice Test 1 1. What two units of measurement are necessary for describing speed? 2. What kind of speed is registered by an automobile? 3. What is the average speed in kilometers per hour for a horse

More information

( ) 4 and 20, find the value. v c is equal to this average CALCULUS WORKSHEET 1 ON PARTICLE MOTION

( ) 4 and 20, find the value. v c is equal to this average CALCULUS WORKSHEET 1 ON PARTICLE MOTION CALCULUS WORKSHEET 1 ON PARTICLE MOTION Work these on notebook paper. Use your calculator only on part (f) of problems 1. Do not use your calculator on the other problems. Write your justifications in

More information

Unit 5 ICM/AB Applications of the Derivative Fall Nov 10 Learn Velocity and Acceleration: HW p P ,103 p.

Unit 5 ICM/AB Applications of the Derivative Fall Nov 10 Learn Velocity and Acceleration: HW p P ,103 p. Unit 5 ICM/AB Applications of the Derivative Fall 2016 Nov 4 Learn Optimization, New PS up on Optimization, HW pg. 216 3,5,17,19,21,23,25,27,29,33,39,41,49,50 a,b,54 Nov 7 Continue on HW from Nov 4 and

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

What will you learn?

What will you learn? Section 2.2 Basic Differentiation Rules & Rates of Change Calc What will you learn? Find the derivative using the Constant Rule Find the derivative using the Power Rule Find the derivative using the Constant

More information

Position, Velocity, Acceleration

Position, Velocity, Acceleration 191 CHAPTER 7 Position, Velocity, Acceleration When we talk of acceleration we think of how quickly the velocity is changing. For example, when a stone is dropped its acceleration (due to gravity) is approximately

More information

IB Math SL Year 2 Name: Date: 8-1 Rate of Change and Motion

IB Math SL Year 2 Name: Date: 8-1 Rate of Change and Motion Name: Date: 8-1 Rate of Change and Motion Today s Goals: How can I calculate and interpret constant rate of change? How can I calculate and interpret instantaneous rate of change? How can we use derivatives

More information

Motion Along a Straight Line

Motion Along a Straight Line PHYS 101 Previous Exam Problems CHAPTER Motion Along a Straight Line Position & displacement Average & instantaneous velocity Average & instantaneous acceleration Constant acceleration Free fall Graphical

More information

Applied Calculus I Practice Final Exam

Applied Calculus I Practice Final Exam AMS 151 (Fall, 2009) Applied Calculus I Practice Final Exam Joe Mitchell IN ORDER TO RECEIVE FULL CREDIT, YOU MUST SHOW YOUR WORK AND GIVE YOUR REASONING. NO CREDIT WILL BE GIVEN FOR A NUMERICAL ANSWER

More information

Unit 1 Parent Guide: Kinematics

Unit 1 Parent Guide: Kinematics Unit 1 Parent Guide: Kinematics Kinematics is the study of the motion of objects. Scientists can represent this information in the following ways: written and verbal descriptions, mathematically (with

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101 Fall 2013 (Purcell), Fake Midterm #1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The figure shows the graph of the position x as a

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

1 The Derivative and Differrentiability

1 The Derivative and Differrentiability 1 The Derivative and Differrentiability 1.1 Derivatives and rate of change Exercise 1 Find the equation of the tangent line to f (x) = x 2 at the point (1, 1). Exercise 2 Suppose that a ball is dropped

More information

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

Unit IV Derivatives 20 Hours Finish by Christmas

Unit IV Derivatives 20 Hours Finish by Christmas Unit IV Derivatives 20 Hours Finish by Christmas Calculus There two main streams of Calculus: Differentiation Integration Differentiation is used to find the rate of change of variables relative to one

More information

Unit IV Derivatives 20 Hours Finish by Christmas

Unit IV Derivatives 20 Hours Finish by Christmas Unit IV Derivatives 20 Hours Finish by Christmas Calculus There two main streams of Calculus: Differentiation Integration Differentiation is used to find the rate of change of variables relative to one

More information

Arnie Pizer Rochester Problem Library Fall 2005 WeBWorK assignment LimitsRates0Theory due 01/01/2006 at 02:00am EST.

Arnie Pizer Rochester Problem Library Fall 2005 WeBWorK assignment LimitsRates0Theory due 01/01/2006 at 02:00am EST. Arnie Pizer Rochester Problem Library Fall 005 WeBWorK assignment LimitsRates0Theory due 0/0/006 at 0:00am EST.. ( pt) rochesterlibrary/setlimitsrates0theory/c3sp.pg Enter a T or an F in each answer space

More information

Exam 1 Practice SOLUTIONS Physics 111Q.B

Exam 1 Practice SOLUTIONS Physics 111Q.B Exam 1 Practice SOLUTIONS Physics 111Q.B Instructions This is a collection of practice problems for the first exam. The first exam will consist of 7-10 multiple choice questions followed by 1-3 problems

More information

Calculus I. 1. Limits and Continuity

Calculus I. 1. Limits and Continuity 2301107 Calculus I 1. Limits and Continuity Outline 1.1. Limits 1.1.1 Motivation:Tangent 1.1.2 Limit of a function 1.1.3 Limit laws 1.1.4 Mathematical definition of a it 1.1.5 Infinite it 1.1. Continuity

More information

Mean Value Theorem. is continuous at every point of the closed interval,

Mean Value Theorem. is continuous at every point of the closed interval, Mean Value Theorem The Mean Value Theorem connects the average rate of change (slope of the secant between two points [a and b]) with the instantaneous rate of change (slope of tangent at some point c).

More information

Multiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous.

Multiple Choice. Circle the best answer. No work needed. No partial credit available. is continuous. Multiple Choice. Circle the best answer. No work needed. No partial credit available. + +. Evaluate lim + (a (b (c (d 0 (e None of the above.. Evaluate lim (a (b (c (d 0 (e + + None of the above.. Find

More information

Chapter 2. Kinematic Equations. Problem 1. Kinematic Equations, specific. Motion in One Dimension

Chapter 2. Kinematic Equations. Problem 1. Kinematic Equations, specific. Motion in One Dimension Kinematic Equations Chapter Motion in One Dimension The kinematic equations may be used to solve any problem involving one-dimensional motion with a constant You may need to use two of the equations to

More information

Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a

Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer. C potential difference

More information

Calculus I Homework: The Tangent and Velocity Problems Page 1

Calculus I Homework: The Tangent and Velocity Problems Page 1 Calculus I Homework: The Tangent and Velocity Problems Page 1 Questions Example The point P (1, 1/2) lies on the curve y = x/(1 + x). a) If Q is the point (x, x/(1 + x)), use Mathematica to find the slope

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Contents Chapter 2 Derivatives Motivation to Chapter 2 2 1 Derivatives and Rates of Change 3 1.1 VIDEO - Definitions................................................... 3 1.2 VIDEO - Examples and Applications

More information

Chapter 5: Limits and Derivatives

Chapter 5: Limits and Derivatives Chapter 5: Limits and Derivatives Chapter 5 Overview: Introduction to Limits and Derivatives In a later chapter, maximum and minimum points of a curve will be found both by calculator and algebraically.

More information

VELOCITY. If you have a graph of position and you take the derivative, what would the derivative represent? Position. Time

VELOCITY. If you have a graph of position and you take the derivative, what would the derivative represent? Position. Time VELOCITY If you have a graph of position and you take the derivative, what would the derivative represent? Position Time Average rate of Change What is the average rate of change of temperature over the

More information

Chapter 2: Kinematics

Chapter 2: Kinematics Section 1 Chapter 2: Kinematics To simplify the concept of motion, we will first consider motion that takes place in one direction. To measure motion, you must choose a frame of reference. Frame of reference

More information

2 If ax + bx + c = 0, then x = b) What are the x-intercepts of the graph or the real roots of f(x)? Round to 4 decimal places.

2 If ax + bx + c = 0, then x = b) What are the x-intercepts of the graph or the real roots of f(x)? Round to 4 decimal places. Quadratic Formula - Key Background: So far in this course we have solved quadratic equations by the square root method and the factoring method. Each of these methods has its strengths and limitations.

More information

Chapter 2 Overview: Introduction to Limits and Derivatives

Chapter 2 Overview: Introduction to Limits and Derivatives Chapter 2 Overview: Introduction to Limits and Derivatives In a later chapter, maximum and minimum points of a curve will be found both by calculator and algebraically. While the algebra of this process

More information

Which car/s is/are undergoing an acceleration?

Which car/s is/are undergoing an acceleration? Which car/s is/are undergoing an acceleration? Which car experiences the greatest acceleration? Match a Graph Consider the position-time graphs below. Each one of the 3 lines on the position-time graph

More information

STRAIGHT LINE MOTION TEST

STRAIGHT LINE MOTION TEST STRAIGHT LINE MOTION TEST Name: 1. The number of significant figures in the number 0.030 is a) b) 3 c) d) 5. The number 35.5 rounded to significant figures is a) 35.0 b) 35 c) 35.5 d) 0 3. Five different

More information

Kinematics Multiple- Choice Questions (answers on page 16)

Kinematics Multiple- Choice Questions (answers on page 16) Kinematics Multiple- Choice Questions (answers on page 16) 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

AP Calculus. Applications of Derivatives. Table of Contents

AP Calculus. Applications of Derivatives.   Table of Contents AP Calculus 2015 11 03 www.njctl.org Table of Contents click on the topic to go to that section Related Rates Linear Motion Linear Approximation & Differentials L'Hopital's Rule Horizontal Tangents 1 Related

More information

2.4 Rates of Change and Tangent Lines Pages 87-93

2.4 Rates of Change and Tangent Lines Pages 87-93 2.4 Rates of Change and Tangent Lines Pages 87-93 Average rate of change the amount of change divided by the time it takes. EXAMPLE 1 Finding Average Rate of Change Page 87 Find the average rate of change

More information

Course Name : Physics I Course # PHY 107. Note - 3 : Motion in One Dimension

Course Name : Physics I Course # PHY 107. Note - 3 : Motion in One Dimension Course Name : Physics I Course # PHY 107 Note - 3 : Motion in One Dimension Abu Mohammad Khan Department of Mathematics and Physics North South University https://abukhan.weebly.com Copyright: It is unlawful

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Math3A Exam #02 Solution Fall 2017

Math3A Exam #02 Solution Fall 2017 Math3A Exam #02 Solution Fall 2017 1. Use the limit definition of the derivative to find f (x) given f ( x) x. 3 2. Use the local linear approximation for f x x at x0 8 to approximate 3 8.1 and write your

More information

Math 106 Answers to Test #1 11 Feb 08

Math 106 Answers to Test #1 11 Feb 08 Math 06 Answers to Test # Feb 08.. A projectile is launched vertically. Its height above the ground is given by y = 9t 6t, where y is the height in feet and t is the time since the launch, in seconds.

More information

Kinematics. Vector solutions. Vectors

Kinematics. Vector solutions. Vectors Kinematics Study of motion Accelerated vs unaccelerated motion Translational vs Rotational motion Vector solutions required for problems of 2- directional motion Vector solutions Possible solution sets

More information

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS PHYS 14 Section A1 Mid-Term Examination Spring 006 SOLUTIONS Name Student ID Number Instructor Marc de Montigny Date Monday, May 15, 006 Duration 60 minutes Instructions Items allowed: pen or pencil, calculator

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h 1 / 30 CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, August 21, 2012 2 / 30 INTRODUCTION

More information

Mark scheme Mechanics Year 1 (AS) Unit Test 7: Kinematics 1 (constant acceleration)

Mark scheme Mechanics Year 1 (AS) Unit Test 7: Kinematics 1 (constant acceleration) 1a Figure 1 General shape of the graph is correct. i.e. horizontal line, followed by negative gradient, followed by a positive gradient. Vertical axis labelled correctly. Horizontal axis labelled correctly.

More information

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move).

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move). Chapter 3 Kinematics (A) Distance Vs Displacement 1. Compare distance and displacement in terms of: (a) definition Distance is the total length of travel, irrespective of direction. Displacement is the

More information

Linear Motion 1. Scalars and Vectors. Scalars & Vectors. Scalars: fully described by magnitude (or size) alone. That is, direction is not involved.

Linear Motion 1. Scalars and Vectors. Scalars & Vectors. Scalars: fully described by magnitude (or size) alone. That is, direction is not involved. Linear Motion 1 Aristotle 384 B.C. - 322 B.C. Galileo 1564-1642 Scalars and Vectors The motion of objects can be described by words such as distance, displacement, speed, velocity, and acceleration. Scalars

More information

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel Acceleration When the velocity of an object changes, we say that the object is accelerating. This acceleration can take one of three forms: 1. Speeding Up occurs when the object s velocity and acceleration

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information

Mathematical review trigonometry vectors Motion in one dimension

Mathematical review trigonometry vectors Motion in one dimension Mathematical review trigonometry vectors Motion in one dimension Used to describe the position of a point in space Coordinate system (frame) consists of a fixed reference point called the origin specific

More information

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) Curriculum Module: Calculus: Motion Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight.

More information

MOTION ALONG A STRAIGHT LINE

MOTION ALONG A STRAIGHT LINE MOTION ALONG A STRAIGHT LINE 2 21 IDENTIFY: The average velocity is Let be upward EXECUTE: (a) EVALUATE: For the first 115 s of the flight, When the velocity isn t constant the average velocity depends

More information

PLC Papers Created For:

PLC Papers Created For: PLC Papers Created For: Year 11 Topic Practice Paper: Solving Quadratics (Graphically) Quadratic equations (graphical methods) 1 Grade 6 Objective: Find approximate solutions to quadratic equations using

More information

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION OBJECTIVES After studying the material of this chapter, the student should be able to: state from memory the meaning of the key terms and phrases

More information

Displacement, Velocity, and Acceleration AP style

Displacement, Velocity, and Acceleration AP style Displacement, Velocity, and Acceleration AP style Linear Motion Position- the location of an object relative to a reference point. IF the position is one-dimension only, we often use the letter x to represent

More information

What is a Vector? A vector is a mathematical object which describes magnitude and direction

What is a Vector? A vector is a mathematical object which describes magnitude and direction What is a Vector? A vector is a mathematical object which describes magnitude and direction We frequently use vectors when solving problems in Physics Example: Change in position (displacement) Velocity

More information