Bayesian Data Analysis

Size: px
Start display at page:

Download "Bayesian Data Analysis"

Transcription

1 An Introduction to Bayesian Data Analysis Lecture 1 D. S. Sivia St. John s College Oxford, England April 29, 2012 Some recommended books Outline Introduction (1) Introduction (2) Introduction (3) Basic rules and corollaries Basic rules and corollaries Basic rules and corollaries Parameter estimation Coin example: uniform prior (1) Coin example: uniform prior (2) Coin example: alternative priors (1) Coin example: alternative priors (2) Summarising the inference The Gaussian, or normal, distribution Gaussian approximation for the coin Asymmetric posterior pdfs Multimodal posterior pdfs Limit-setting inference (1) Limit-setting inference (2) Limit-setting inference (3) Gaussian noise and averages (1) Gaussian noise and averages (2) Data with different-sized error-bars The lighthouse problem (1) Lorentzian, or Cauchy, distribution The lighthouse problem (2) Lighthouse example (1) Lighthouse example (2) Moral of the lighthouse story

2 Some recommended books Data analysis: a Bayesian tutorial D. S. Sivia (1996), Oxford University Press; with J. Skilling (2006) Bayesian logical data analysis for the physical sciences P. Gregory (2005), Cambridge University Press Information theory, inference and learning algorithms D.J.C. MacKay (2004), Cambridge University Press Probability theory: the logics of science E.T. Jaynes (2003), Cambridge University Press Bayesian reasoning in data analysis G. D Agostini (2003), World Scientific Publishing IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 2 / 31 Outline The basics Parameter estimation I Parameter estimation II Model selection Assigning probabilities Non-parametric estimation Experimental design Least-squares extensions Nested sampling Quantification IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 3 / 31 2

3 Introduction (1) Deductive logic (pure maths) Inductive logic (science) or plausible reasoning IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 4 / 31 Introduction (2) Bernoulli (1713), Bayes (1763) and Laplace (1812) developed probability theory to reason in situations where we cannot argue with certainty.... bet of 11,000 against 1 that the error of this result is not of its value. [Laplace] IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 5 / 31 3

4 Introduction (3) Probability theory is nothing but common sense reduced to calculation. [Laplace] Cox (1946) showed that any method of plausible reasoning that satisfies simple rules of logical consistency must be equivalent to the use of ordinary probability theory. Bayesian interpretation of probability A probability encodes a state of knowledge. All probabilities are conditional. IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 6 / 31 Basic rules and corollaries Range : 0 prob(x I) 1 Sum rule : prob(x I) + prob ( X I ) = 1 Product rule : prob(x,y I) = prob(x Y,I) prob(y I) Bayes theorem : prob(x Y,I) = prob(y X,I) prob(x I) prob(y I) Marginalisation : prob(x I) = prob(x,y I) + prob ( X,Y I ) IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 7 / 31 4

5 Basic rules and corollaries Range : 0 prob(x I) 1 Sum rule : prob(x I) + prob ( X I ) = 1 Product rule : prob(x,y I) = prob(x Y,I) prob(y I) Bayes theorem : prob(x Y,I) = prob(y X,I) prob(x I) prob(y I) Marginalisation : prob(x I) = M prob(x,y j I) j=1 IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 8 / 31 Basic rules and corollaries Range : 0 prob(x I) 1 Sum rule : prob(x I) + prob ( X I ) = 1 Product rule : prob(x,y I) = prob(x Y,I) prob(y I) Bayes theorem : prob(x Y,I) = prob(y X,I) prob(x I) prob(y I) + Marginalisation : prob(x I) = prob(x,y I) dy IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 9 / 31 5

6 1-Parameter estimation Data D = r heads in n flips. Is this a fair coin? If H is the probability of getting a head, what is the value of H? prob(h D,I) }{{} Posterior prob(d H,I) }{{} Likelihood prob(h I) }{{} Prior (Bayes ) Binomial likelihood: prob(d H,I) = n! r!(n r)! H r (1 H) n r Ignorant prior: prob(h I) = { 1 for 0 H 1 0 otherwise IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 10 / 31 Coin example: uniform prior (1) IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 11 / 31 6

7 Coin example: uniform prior (2) IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 12 / 31 Coin example: alternative priors (1) IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 13 / 31 7

8 Coin example: alternative priors (2) IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 14 / 31 Summarising the inference X = Xo ± σ Let L = log e [ prob(x {data},i) ] Taylor: L(X) = L(Xo) d 2 L dx 2 X o (X Xo) 2 +, where dl dx 0 X o= [ ] ( prob(x {data},i) 1 σ 2π exp (X X o) 2 2σ 2, σ = d2 L dx 2 X o ) 1/2 IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 15 / 31 8

9 The Gaussian, or normal, distribution [ ] prob(x µ,σ) = 1 σ 2π exp (x µ)2 2σ 2 FWHM 2.35σ x = x prob(x µ,σ) dx = µ (mean) (x µ) 2 = (x µ) 2 prob(x µ,σ)dx = σ 2 (variance) IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 16 / 31 Gaussian approximation for the coin prob(h D,I) H r (1 H) n r L = const + r ln(h) + (n r)ln(1 H) dl dh = r H o Ho (n r) (1 Ho) = 0 H o = r n d 2 L dh 2 = r Ho 2 (n r) (1 Ho) 2 = n H o(1 Ho) σ = Ho (1 Ho) n H o For r=9 and n=32, H 0.28 ± 0.08 IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 17 / 31 9

10 Asymmetric posterior pdfs IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 18 / 31 Multimodal posterior pdfs IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 19 / 31 10

11 Limit-setting inference (1) IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 20 / 31 Limit-setting inference (2) IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 21 / 31 11

12 Limit-setting inference (3) IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 22 / 31 Gaussian noise and averages (1) Given N independent measurements of a quantity µ, {d k }, all subject to Gaussian noise σ, what can we say about the value of µ? [ ] Gaussian datum: prob(d k µ,σ,i) = 1 σ 2π exp (d k µ) 2 2σ 2 Independence: prob({d k } µ,σ,i) = N prob(d k µ,σ,i) prob(x,y I) = prob(x Y,I) prob(y I) = prob(x I) prob(y I) } {{ } prob(x I) Prior: prob(µ σ,i) = constant (µ min µ µ max ) IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 23 / 31 12

13 Gaussian noise and averages (2) Bayes: prob(µ {d k },σ,i) prob({d k } µ,σ,i) prob(µ σ,i) L = log e [ prob(µ {dk },σ,i) ] = const 1 2σ 2 N (d k µ) 2 dl dµ = µo N d k µ o σ 2 = 0 µ o = 1 N N d k d 2 L dµ 2 = µo N 1 σ 2 = N σ 2 µ = µ o ± σ N IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 24 / 31 Data with different-sized error-bars If the various measurements were of differing quality, so that each datum d k was associated with its own noise-level σ k, then the preceding analysis needs to be modified as follows. L = log e [ prob(µ {dk,σ k },I) ] = const 1 2 dl dµ = 0 µ o = µo / N N w k d k d 2 ( L N ) 1/2 dµ 2 µ = µ o ± w k µo N (d k µ) 2 σ k 2 w k, where w k = 1 σ k 2 IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 25 / 31 13

14 The lighthouse problem (1) Data: prob(θ k α,β,i) = 1 π But β tan θ k = x k α prob(x k α,β,i) = β π [β 2 + (x k α) 2] IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 26 / 31 Lorentzian, or Cauchy, distribution prob(x α,β) = β π [β 2 + (x α) 2] FWHM = 2β x = x prob(x α,β) dx = α ( ) (x α) 2 = (x α) 2 prob(x α,β) dx (!) IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 27 / 31 14

15 The lighthouse problem (2) N Independence: prob({x k } α,β,i) = prob(x k α,β,i) Prior: prob(α β,i) = constant (α min α α max ) Bayes: prob(α {x k },β,i) prob({x k } α,β,i) prob(α β,i) L = log e [ prob(α {xk },σ,i) ] = const dl dα = 2 αo N x k α o β 2 + (x k α o ) 2 = 0 N log e [ β 2 + (x k α) 2] Can t be solved analytically! IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 28 / 31 Lighthouse example (1) IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 29 / 31 15

16 Lighthouse example (2) IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 30 / 31 Moral of the lighthouse story The sample mean is not always a useful number. ( Infinite variance of Cauchy central limit theorem does not hold ) Let probability theory decide what s best! IN2P3/CNRS School of Statistics (Autrans 2012): Bayesian Lecture 1 31 / 31 16

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 CLASS NOTES Models, Algorithms and Data: Introduction to computing 208 Petros Koumoutsakos, Jens Honore Walther (Last update: June, 208) IMPORTANT DISCLAIMERS. REFERENCES: Much of the material (ideas,

More information

Bayesian Models in Machine Learning

Bayesian Models in Machine Learning Bayesian Models in Machine Learning Lukáš Burget Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017 Frequentist vs. Bayesian Frequentist point of view: Probability is the frequency of

More information

Introduction to Probability and Statistics (Continued)

Introduction to Probability and Statistics (Continued) Introduction to Probability and Statistics (Continued) Prof. icholas Zabaras Center for Informatics and Computational Science https://cics.nd.edu/ University of otre Dame otre Dame, Indiana, USA Email:

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 2. Statistical Schools Adapted from slides by Ben Rubinstein Statistical Schools of Thought Remainder of lecture is to provide

More information

Introduction to Probability and Statistics (Continued)

Introduction to Probability and Statistics (Continued) Introduction to Probability and Statistics (Continued) Prof. icholas Zabaras Center for Informatics and Computational Science https://cics.nd.edu/ University of otre Dame otre Dame, Indiana, USA Email:

More information

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester Physics 403 Parameter Estimation, Correlations, and Error Bars Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Best Estimates and Reliability

More information

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics DS-GA 100 Lecture notes 11 Fall 016 Bayesian statistics In the frequentist paradigm we model the data as realizations from a distribution that depends on deterministic parameters. In contrast, in Bayesian

More information

Machine Learning CMPT 726 Simon Fraser University. Binomial Parameter Estimation

Machine Learning CMPT 726 Simon Fraser University. Binomial Parameter Estimation Machine Learning CMPT 726 Simon Fraser University Binomial Parameter Estimation Outline Maximum Likelihood Estimation Smoothed Frequencies, Laplace Correction. Bayesian Approach. Conjugate Prior. Uniform

More information

Statistics II. Dr Jonathan Carter. Lecture 1: Probability Distribution Functions

Statistics II. Dr Jonathan Carter. Lecture 1: Probability Distribution Functions Statistics II Dr Jonathan Carter Lecture : Probability Distribution Functions Probability distribution functions (pdf s) can interpreted in two ways In the frequentist approach, which is the most common

More information

Bayesian analysis in nuclear physics

Bayesian analysis in nuclear physics Bayesian analysis in nuclear physics Ken Hanson T-16, Nuclear Physics; Theoretical Division Los Alamos National Laboratory Tutorials presented at LANSCE Los Alamos Neutron Scattering Center July 25 August

More information

Data Analysis and Monte Carlo Methods

Data Analysis and Monte Carlo Methods Lecturer: Allen Caldwell, Max Planck Institute for Physics & TUM Recitation Instructor: Oleksander (Alex) Volynets, MPP & TUM General Information: - Lectures will be held in English, Mondays 16-18:00 -

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

(1) Introduction to Bayesian statistics

(1) Introduction to Bayesian statistics Spring, 2018 A motivating example Student 1 will write down a number and then flip a coin If the flip is heads, they will honestly tell student 2 if the number is even or odd If the flip is tails, they

More information

Computational Perception. Bayesian Inference

Computational Perception. Bayesian Inference Computational Perception 15-485/785 January 24, 2008 Bayesian Inference The process of probabilistic inference 1. define model of problem 2. derive posterior distributions and estimators 3. estimate parameters

More information

ECE295, Data Assimila0on and Inverse Problems, Spring 2015

ECE295, Data Assimila0on and Inverse Problems, Spring 2015 ECE295, Data Assimila0on and Inverse Problems, Spring 2015 1 April, Intro; Linear discrete Inverse problems (Aster Ch 1 and 2) Slides 8 April, SVD (Aster ch 2 and 3) Slides 15 April, RegularizaFon (ch

More information

Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2

Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2 Logistics CSE 446: Point Estimation Winter 2012 PS2 out shortly Dan Weld Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2 Last Time Random variables, distributions Marginal, joint & conditional

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

Statistics for Data Analysis a toolkit for the (astro)physicist

Statistics for Data Analysis a toolkit for the (astro)physicist Statistics for Data Analysis a toolkit for the (astro)physicist Likelihood in Astrophysics Denis Bastieri Padova, February 21 st 2018 RECAP The main product of statistical inference is the pdf of the model

More information

COMP 551 Applied Machine Learning Lecture 19: Bayesian Inference

COMP 551 Applied Machine Learning Lecture 19: Bayesian Inference COMP 551 Applied Machine Learning Lecture 19: Bayesian Inference Associate Instructor: (herke.vanhoof@mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551 Unless otherwise noted, all material posted

More information

Introduction to Bayes

Introduction to Bayes Introduction to Bayes Alan Heavens September 3, 2018 ICIC Data Analysis Workshop Alan Heavens Introduction to Bayes September 3, 2018 1 / 35 Overview 1 Inverse Problems 2 The meaning of probability Probability

More information

Point Estimation. Vibhav Gogate The University of Texas at Dallas

Point Estimation. Vibhav Gogate The University of Texas at Dallas Point Estimation Vibhav Gogate The University of Texas at Dallas Some slides courtesy of Carlos Guestrin, Chris Bishop, Dan Weld and Luke Zettlemoyer. Basics: Expectation and Variance Binary Variables

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 11 Maximum Likelihood as Bayesian Inference Maximum A Posteriori Bayesian Gaussian Estimation Why Maximum Likelihood? So far, assumed max (log) likelihood

More information

ECE531 Lecture 13: Sequential Detection of Discrete-Time Signals

ECE531 Lecture 13: Sequential Detection of Discrete-Time Signals ECE531 Lecture 13: Sequential Detection of Discrete-Time Signals D. Richard Brown III Worcester Polytechnic Institute 30-Apr-2009 Worcester Polytechnic Institute D. Richard Brown III 30-Apr-2009 1 / 32

More information

Basics on Probability. Jingrui He 09/11/2007

Basics on Probability. Jingrui He 09/11/2007 Basics on Probability Jingrui He 09/11/2007 Coin Flips You flip a coin Head with probability 0.5 You flip 100 coins How many heads would you expect Coin Flips cont. You flip a coin Head with probability

More information

Introduction to Probabilistic Reasoning

Introduction to Probabilistic Reasoning Introduction to Probabilistic Reasoning inference, forecasting, decision Giulio D Agostini giulio.dagostini@roma.infn.it Dipartimento di Fisica Università di Roma La Sapienza Part 3 Probability is good

More information

Bayesian Inference. STA 121: Regression Analysis Artin Armagan

Bayesian Inference. STA 121: Regression Analysis Artin Armagan Bayesian Inference STA 121: Regression Analysis Artin Armagan Bayes Rule...s! Reverend Thomas Bayes Posterior Prior p(θ y) = p(y θ)p(θ)/p(y) Likelihood - Sampling Distribution Normalizing Constant: p(y

More information

(3) Review of Probability. ST440/540: Applied Bayesian Statistics

(3) Review of Probability. ST440/540: Applied Bayesian Statistics Review of probability The crux of Bayesian statistics is to compute the posterior distribution, i.e., the uncertainty distribution of the parameters (θ) after observing the data (Y) This is the conditional

More information

Introduction to Error Analysis

Introduction to Error Analysis Introduction to Error Analysis Part 1: the Basics Andrei Gritsan based on lectures by Petar Maksimović February 1, 2010 Overview Definitions Reporting results and rounding Accuracy vs precision systematic

More information

ECE531: Principles of Detection and Estimation Course Introduction

ECE531: Principles of Detection and Estimation Course Introduction ECE531: Principles of Detection and Estimation Course Introduction D. Richard Brown III WPI 22-January-2009 WPI D. Richard Brown III 22-January-2009 1 / 37 Lecture 1 Major Topics 1. Web page. 2. Syllabus

More information

Two Lectures: Bayesian Inference in a Nutshell and The Perils & Promise of Statistics With Large Data Sets & Complicated Models

Two Lectures: Bayesian Inference in a Nutshell and The Perils & Promise of Statistics With Large Data Sets & Complicated Models Two Lectures: Bayesian Inference in a Nutshell and The Perils & Promise of Statistics With Large Data Sets & Complicated Models Bayesian-Frequentist Cross-Fertilization Tom Loredo Dept. of Astronomy, Cornell

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Jonathan Marchini Department of Statistics University of Oxford MT 2013 Jonathan Marchini (University of Oxford) BS2a MT 2013 1 / 27 Course arrangements Lectures M.2

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 143 Part IV

More information

INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP

INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP Personal Healthcare Revolution Electronic health records (CFH) Personal genomics (DeCode, Navigenics, 23andMe) X-prize: first $10k human genome technology

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner Fundamentals CS 281A: Statistical Learning Theory Yangqing Jia Based on tutorial slides by Lester Mackey and Ariel Kleiner August, 2011 Outline 1 Probability 2 Statistics 3 Linear Algebra 4 Optimization

More information

Bayesian rules of probability as principles of logic [Cox] Notation: pr(x I) is the probability (or pdf) of x being true given information I

Bayesian rules of probability as principles of logic [Cox] Notation: pr(x I) is the probability (or pdf) of x being true given information I Bayesian rules of probability as principles of logic [Cox] Notation: pr(x I) is the probability (or pdf) of x being true given information I 1 Sum rule: If set {x i } is exhaustive and exclusive, pr(x

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2 Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, 2010 Jeffreys priors Lecturer: Michael I. Jordan Scribe: Timothy Hunter 1 Priors for the multivariate Gaussian Consider a multivariate

More information

CS-E3210 Machine Learning: Basic Principles

CS-E3210 Machine Learning: Basic Principles CS-E3210 Machine Learning: Basic Principles Lecture 4: Regression II slides by Markus Heinonen Department of Computer Science Aalto University, School of Science Autumn (Period I) 2017 1 / 61 Today s introduction

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Introduction to Machine Learning. Lecture 2

Introduction to Machine Learning. Lecture 2 Introduction to Machine Learning Lecturer: Eran Halperin Lecture 2 Fall Semester Scribe: Yishay Mansour Some of the material was not presented in class (and is marked with a side line) and is given for

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 2. MLE, MAP, Bayes classification Barnabás Póczos & Aarti Singh 2014 Spring Administration http://www.cs.cmu.edu/~aarti/class/10701_spring14/index.html Blackboard

More information

ECE521 W17 Tutorial 6. Min Bai and Yuhuai (Tony) Wu

ECE521 W17 Tutorial 6. Min Bai and Yuhuai (Tony) Wu ECE521 W17 Tutorial 6 Min Bai and Yuhuai (Tony) Wu Agenda knn and PCA Bayesian Inference k-means Technique for clustering Unsupervised pattern and grouping discovery Class prediction Outlier detection

More information

The dark energ ASTR509 - y 2 puzzl e 2. Probability ASTR509 Jasper Wal Fal term

The dark energ ASTR509 - y 2 puzzl e 2. Probability ASTR509 Jasper Wal Fal term The ASTR509 dark energy - 2 puzzle 2. Probability ASTR509 Jasper Wall Fall term 2013 1 The Review dark of energy lecture puzzle 1 Science is decision - we must work out how to decide Decision is by comparing

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model (& discussion on the GPLVM tech. report by Prof. N. Lawrence, 06) Andreas Damianou Department of Neuro- and Computer Science,

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 20 Lecture 6 : Bayesian Inference

More information

University of Chicago Graduate School of Business. Business 41901: Probability Final Exam Solutions

University of Chicago Graduate School of Business. Business 41901: Probability Final Exam Solutions Name: University of Chicago Graduate School of Business Business 490: Probability Final Exam Solutions Special Notes:. This is a closed-book exam. You may use an 8 piece of paper for the formulas.. Throughout

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 9: A Bayesian model of concept learning Chris Lucas School of Informatics University of Edinburgh October 16, 218 Reading Rules and Similarity in Concept Learning

More information

(4) One-parameter models - Beta/binomial. ST440/550: Applied Bayesian Statistics

(4) One-parameter models - Beta/binomial. ST440/550: Applied Bayesian Statistics Estimating a proportion using the beta/binomial model A fundamental task in statistics is to estimate a proportion using a series of trials: What is the success probability of a new cancer treatment? What

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

Expectation. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Expectation. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Expectation DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean, variance,

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, What about continuous variables?

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, What about continuous variables? Linear Regression Machine Learning CSE546 Carlos Guestrin University of Washington September 30, 2014 1 What about continuous variables? n Billionaire says: If I am measuring a continuous variable, what

More information

Bayesian RL Seminar. Chris Mansley September 9, 2008

Bayesian RL Seminar. Chris Mansley September 9, 2008 Bayesian RL Seminar Chris Mansley September 9, 2008 Bayes Basic Probability One of the basic principles of probability theory, the chain rule, will allow us to derive most of the background material in

More information

DD Advanced Machine Learning

DD Advanced Machine Learning Modelling Carl Henrik {chek}@csc.kth.se Royal Institute of Technology November 4, 2015 Who do I think you are? Mathematically competent linear algebra multivariate calculus Ok programmers Able to extend

More information

2. A Basic Statistical Toolbox

2. A Basic Statistical Toolbox . A Basic Statistical Toolbo Statistics is a mathematical science pertaining to the collection, analysis, interpretation, and presentation of data. Wikipedia definition Mathematical statistics: concerned

More information

Why Bayesian? Rigorous approach to address statistical estimation problems. The Bayesian philosophy is mature and powerful.

Why Bayesian? Rigorous approach to address statistical estimation problems. The Bayesian philosophy is mature and powerful. Why Bayesian? Rigorous approach to address statistical estimation problems. The Bayesian philosophy is mature and powerful. Even if you aren t Bayesian, you can define an uninformative prior and everything

More information

Lecture 10: Parameter Estimation for ODE Models

Lecture 10: Parameter Estimation for ODE Models Computational Biology Group (CoBI), D-BSSE, ETHZ Lecture 10: Parameter Estimation for ODE Models Prof Dagmar Iber, PhD DPhil BSc Biotechnology 2016/17 December 7, 2016 2 / 93 Contents 1 Review of Previous

More information

Expectation. DS GA 1002 Probability and Statistics for Data Science. Carlos Fernandez-Granda

Expectation. DS GA 1002 Probability and Statistics for Data Science.   Carlos Fernandez-Granda Expectation DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean,

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 8: Frank Keller School of Informatics University of Edinburgh keller@inf.ed.ac.uk Based on slides by Sharon Goldwater October 14, 2016 Frank Keller Computational

More information

Non-parametric Methods

Non-parametric Methods Non-parametric Methods Machine Learning Alireza Ghane Non-Parametric Methods Alireza Ghane / Torsten Möller 1 Outline Machine Learning: What, Why, and How? Curve Fitting: (e.g.) Regression and Model Selection

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 9: Bayesian Estimation Chris Lucas (Slides adapted from Frank Keller s) School of Informatics University of Edinburgh clucas2@inf.ed.ac.uk 17 October, 2017 1 / 28

More information

Physics 403. Segev BenZvi. Choosing Priors and the Principle of Maximum Entropy. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Choosing Priors and the Principle of Maximum Entropy. Department of Physics and Astronomy University of Rochester Physics 403 Choosing Priors and the Principle of Maximum Entropy Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Odds Ratio Occam Factors

More information

CS 540: Machine Learning Lecture 2: Review of Probability & Statistics

CS 540: Machine Learning Lecture 2: Review of Probability & Statistics CS 540: Machine Learning Lecture 2: Review of Probability & Statistics AD January 2008 AD () January 2008 1 / 35 Outline Probability theory (PRML, Section 1.2) Statistics (PRML, Sections 2.1-2.4) AD ()

More information

ECE531 Lecture 4b: Composite Hypothesis Testing

ECE531 Lecture 4b: Composite Hypothesis Testing ECE531 Lecture 4b: Composite Hypothesis Testing D. Richard Brown III Worcester Polytechnic Institute 16-February-2011 Worcester Polytechnic Institute D. Richard Brown III 16-February-2011 1 / 44 Introduction

More information

DATA ANALYSIS A DIALOGUE WITH THE DATA

DATA ANALYSIS A DIALOGUE WITH THE DATA October 7, 005 1:37 Proceedings Trim Size: 9in x 6in lisbon05 DATA ANALYSIS A DIALOGUE WITH THE DATA D. S. SIVIA Rutherford Appleton Laboratory, Chilton, OX11 0QX, England E-mail: dss@isise.rl.ac.uk A

More information

The devil is in the denominator

The devil is in the denominator Chapter 6 The devil is in the denominator 6. Too many coin flips Suppose we flip two coins. Each coin i is either fair (P r(h) = θ i = 0.5) or biased towards heads (P r(h) = θ i = 0.9) however, we cannot

More information

Confidence Intervals Lecture 2

Confidence Intervals Lecture 2 Confidence Intervals Lecture 2 First ICFA Instrumentation School/Workshop At Morelia,, Mexico, November 18-29, 2002 Harrison B. rosper Florida State University Recap of Lecture 1 To interpret a confidence

More information

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course Bayesian Inference Chris Mathys Wellcome Trust Centre for Neuroimaging UCL London SPM Course Thanks to Jean Daunizeau and Jérémie Mattout for previous versions of this talk A spectacular piece of information

More information

Some Asymptotic Bayesian Inference (background to Chapter 2 of Tanner s book)

Some Asymptotic Bayesian Inference (background to Chapter 2 of Tanner s book) Some Asymptotic Bayesian Inference (background to Chapter 2 of Tanner s book) Principal Topics The approach to certainty with increasing evidence. The approach to consensus for several agents, with increasing

More information

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart Machine Learning Bayesian Regression & Classification learning as inference, Bayesian Kernel Ridge regression & Gaussian Processes, Bayesian Kernel Logistic Regression & GP classification, Bayesian Neural

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS Parametric Distributions Basic building blocks: Need to determine given Representation: or? Recall Curve Fitting Binary Variables

More information

Topic 12 Overview of Estimation

Topic 12 Overview of Estimation Topic 12 Overview of Estimation Classical Statistics 1 / 9 Outline Introduction Parameter Estimation Classical Statistics Densities and Likelihoods 2 / 9 Introduction In the simplest possible terms, the

More information

Should all Machine Learning be Bayesian? Should all Bayesian models be non-parametric?

Should all Machine Learning be Bayesian? Should all Bayesian models be non-parametric? Should all Machine Learning be Bayesian? Should all Bayesian models be non-parametric? Zoubin Ghahramani Department of Engineering University of Cambridge, UK zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/

More information

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016 Log Gaussian Cox Processes Chi Group Meeting February 23, 2016 Outline Typical motivating application Introduction to LGCP model Brief overview of inference Applications in my work just getting started

More information

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides Probabilistic modeling The slides are closely adapted from Subhransu Maji s slides Overview So far the models and algorithms you have learned about are relatively disconnected Probabilistic modeling framework

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Lecture 2: Conjugate priors

Lecture 2: Conjugate priors (Spring ʼ) Lecture : Conjugate priors Julia Hockenmaier juliahmr@illinois.edu Siebel Center http://www.cs.uiuc.edu/class/sp/cs98jhm The binomial distribution If p is the probability of heads, the probability

More information

Machine Learning CSE546 Sham Kakade University of Washington. Oct 4, What about continuous variables?

Machine Learning CSE546 Sham Kakade University of Washington. Oct 4, What about continuous variables? Linear Regression Machine Learning CSE546 Sham Kakade University of Washington Oct 4, 2016 1 What about continuous variables? Billionaire says: If I am measuring a continuous variable, what can you do

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier Machine Learning 10-701/15 701/15-781, 781, Spring 2008 Theory of Classification and Nonparametric Classifier Eric Xing Lecture 2, January 16, 2006 Reading: Chap. 2,5 CB and handouts Outline What is theoretically

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Introduction to Probabilistic Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB

More information

Bayesian Methods: Naïve Bayes

Bayesian Methods: Naïve Bayes Bayesian Methods: aïve Bayes icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Last Time Parameter learning Learning the parameter of a simple coin flipping model Prior

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Tobias Neckel, Ionuț-Gabriel Farcaș Lehrstuhl Informatik V Summer Semester 2017 Lecture 2: Repetition of probability theory and statistics Example: coin flip Example

More information

S n = x + X 1 + X X n.

S n = x + X 1 + X X n. 0 Lecture 0 0. Gambler Ruin Problem Let X be a payoff if a coin toss game such that P(X = ) = P(X = ) = /2. Suppose you start with x dollars and play the game n times. Let X,X 2,...,X n be payoffs in each

More information

Lecture 6: Gaussian Mixture Models (GMM)

Lecture 6: Gaussian Mixture Models (GMM) Helsinki Institute for Information Technology Lecture 6: Gaussian Mixture Models (GMM) Pedram Daee 3.11.2015 Outline Gaussian Mixture Models (GMM) Models Model families and parameters Parameter learning

More information

Probability and Estimation. Alan Moses

Probability and Estimation. Alan Moses Probability and Estimation Alan Moses Random variables and probability A random variable is like a variable in algebra (e.g., y=e x ), but where at least part of the variability is taken to be stochastic.

More information

PROBABILITY DISTRIBUTIONS. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

PROBABILITY DISTRIBUTIONS. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception PROBABILITY DISTRIBUTIONS Credits 2 These slides were sourced and/or modified from: Christopher Bishop, Microsoft UK Parametric Distributions 3 Basic building blocks: Need to determine given Representation:

More information

Tools for Parameter Estimation and Propagation of Uncertainty

Tools for Parameter Estimation and Propagation of Uncertainty Tools for Parameter Estimation and Propagation of Uncertainty Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt.edu Outline Models, parameters, parameter estimation,

More information

ECE531: Principles of Detection and Estimation Course Introduction

ECE531: Principles of Detection and Estimation Course Introduction ECE531: Principles of Detection and Estimation Course Introduction D. Richard Brown III WPI 15-January-2013 WPI D. Richard Brown III 15-January-2013 1 / 39 First Lecture: Major Topics 1. Administrative

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

Lecture 11: Probability Distributions and Parameter Estimation

Lecture 11: Probability Distributions and Parameter Estimation Intelligent Data Analysis and Probabilistic Inference Lecture 11: Probability Distributions and Parameter Estimation Recommended reading: Bishop: Chapters 1.2, 2.1 2.3.4, Appendix B Duncan Gillies and

More information

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1 Parameter Estimation William H. Jefferys University of Texas at Austin bill@bayesrules.net Parameter Estimation 7/26/05 1 Elements of Inference Inference problems contain two indispensable elements: Data

More information

Week 9 The Central Limit Theorem and Estimation Concepts

Week 9 The Central Limit Theorem and Estimation Concepts Week 9 and Estimation Concepts Week 9 and Estimation Concepts Week 9 Objectives 1 The Law of Large Numbers and the concept of consistency of averages are introduced. The condition of existence of the population

More information

Readings: K&F: 16.3, 16.4, Graphical Models Carlos Guestrin Carnegie Mellon University October 6 th, 2008

Readings: K&F: 16.3, 16.4, Graphical Models Carlos Guestrin Carnegie Mellon University October 6 th, 2008 Readings: K&F: 16.3, 16.4, 17.3 Bayesian Param. Learning Bayesian Structure Learning Graphical Models 10708 Carlos Guestrin Carnegie Mellon University October 6 th, 2008 10-708 Carlos Guestrin 2006-2008

More information

an introduction to bayesian inference

an introduction to bayesian inference with an application to network analysis http://jakehofman.com january 13, 2010 motivation would like models that: provide predictive and explanatory power are complex enough to describe observed phenomena

More information

Computer vision: models, learning and inference

Computer vision: models, learning and inference Computer vision: models, learning and inference Chapter 2 Introduction to probability Please send errata to s.prince@cs.ucl.ac.uk Random variables A random variable x denotes a quantity that is uncertain

More information

Machine Learning. Probability Basics. Marc Toussaint University of Stuttgart Summer 2014

Machine Learning. Probability Basics. Marc Toussaint University of Stuttgart Summer 2014 Machine Learning Probability Basics Basic definitions: Random variables, joint, conditional, marginal distribution, Bayes theorem & examples; Probability distributions: Binomial, Beta, Multinomial, Dirichlet,

More information

Probabilistic and Bayesian Machine Learning

Probabilistic and Bayesian Machine Learning Probabilistic and Bayesian Machine Learning Lecture 1: Introduction to Probabilistic Modelling Yee Whye Teh ywteh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London Why a

More information