Statistics for Data Analysis a toolkit for the (astro)physicist

Size: px
Start display at page:

Download "Statistics for Data Analysis a toolkit for the (astro)physicist"

Transcription

1 Statistics for Data Analysis a toolkit for the (astro)physicist Likelihood in Astrophysics Denis Bastieri Padova, February 21 st 2018

2 RECAP The main product of statistical inference is the pdf of the model parameters given the data, aka posterior probability. Under wide hypotheses, it is proportional to the likelihood. Maximizing the likelihood is then equivalent to finding the most probable value for the parameters of the model that most likely fit collected data. The analysis gets much simpler if the parameters of the model are independent, such that their probabilities could be factorized (much easier for the prior distribution) ( ) P(α β,i) = P(α I) = Π α;α min,α max α max α min Given the huge dynamics of the likelihood, it is better to work with the logarithm: the loglike. 2

3 RECAP If you think that the average of the draws here is a good estimator think again! The average was not as good as the direct computation of the likelihood! 2$ 1.5$ 1$ The average does not have really any sense here Nor the σ as an estimate of the uncertainty! Nevertheless, we can predict reasonably well the output of a draw! 0.5$ 0$ 64$ 128$ 192$ 256$ 320$ 384$ 448$ 512$ 3

4 Revisiting Confidence Intervals If we can obtain the posterior pdf, the maximal probability for the model s parameter will be the one that maximizes the post. pdf: The CI is related to the width of the p.pdf around θ 0. We should rather deal with the log(p.pdf), that is way smoother that the p.pdf itself. Better to expand everything in Taylor s series: ( ) dθ dp θ {data},i L = ln P θ {data},i θ 0 = 0 and ( ) = L(θ 0 ) + dl ( ) dθ 2 θ 0 < 0 d 2 P θ {data},i = 0 dθ θ d 2 L dθ 2 θ 0 (θ θ 0 ) 2 + 4

5 Finding again sigma L = ln P( θ {data},i) L(θ 0 ) Taking into account that the linear term is 0 and truncating after the second order, we obtain: ( ) N exp 1 2 P θ {data},i and by comparison with the normal distribution we see that a good guess for the width could be σ, or: d 2 L dθ 2 θ 0 (θ θ 0 ) 2 d 2 L dθ 2 θ 0 (θ θ 0 ) 2 σ = d2 L dθ 2 θ and θ [ θ 0 σ,θ 0 +σ ] 5

6 A gaussian measurement During the measurement of a quantity, collected data will be affected by gaussian noise, as the errors follow a gaussian distribution. The i-th datum will come out with the probability: P( x i µ,σ,i) = 1 σ 2π exp 1 2 x i µ σ Let us suppose for now that σ is known, so it could be subsumed into I, but we will still leave it out so that the formula could be adapted more easily to the case where σ is not known. 2 6

7 Inferring μ The most probable value of μ can be found by looking at its posterior pdf: Assuming the independence of x i : and with the further assumption of maximum ignorance on μ: P ( µ {x i },σ,i) P ({x i } µ,σ,i) P ( µ σ,i) L(µ,{x i }) = P {x i } µ,σ,i P(µ σ,i) = P(µ I) = ( ) ln P µ {x i },σ,i N i=1 ( ) = P( x i µ,σ,i) 1 (µ max µ min ) µ min µ µ max 0 else = const + lnl = const + P x i µ,σ,i n i=1 ( ) 7

8 Inferring μ as the sample average! Making explicit the gaussian dependence: The maximum likelihood is in correspondence of the stationary points or: and the CI is: lnl = const d(lnl) dµ µ0 = 0 0 = d 2 (lnl) dµ 2 µ 0 = N i=1 1 σ 2 N i=1 N i=1 1 2 x i µ 0 σ 2 x i µ σ 2 µ 0 = 1 N N i=1 x i µ µ 0 σ N,µ + σ 0 N 8

9 No info about σ The i-th datum will come out with the probability: 2 1 P( x i µ,σ,i) = σ 2π exp x 1 i µ 2 σ Being interested to the actual value of the measurement we should integrate out the σ-dependence And a uniform prior could be: constant σ > 0 P(µ,σ I) = 0 else Leveraging event independence the likelihood will be: P ({x i } µ,σ,i) = ( σ 2π ) N exp 1 N ( x 2σ 2 i µ ) 2 i=1 ( ) = dσ P ( µ,σ {x i },I) P µ {x i },I 0 9

10 No info about σ The posterior probability will be described by (s=1/σ): P ( µ {x i },I) ds s N 2 exp s2 N ( x i µ ) i=1 Substituting finally with x = s[ i (x i μ) 2 ] ½, and absorbing into the proportionality relation the definite integral in x: N 1 2 N P ( µ {x i },I) ( x i µ ) 2 i=1 Finding the maximum and the width: d(ln P µ ) = 0 0 = (N 1) (x µ ) i 0 dµ µ 0 d 2 (ln P µ ) dµ 2 µ 0 = µ (x i µ 0 ) 2 0 = 1 N i=1 N(N 1) (x i µ) µ µ 2 0 ± S N, (x i µ) 2 S2 = N 1 N x i 10

11 Signal and background The typical experiment in astrophysics is photon-counting: In a given direction from the sky, in a given energy bin we detect O i photons, partly due to a source (the signal) and partly due to a diffuse component (the background). How to disentangle the two? The index i, could as well run on angular and/or energy bins. Assuming the signal is following a gaussian distribution: 2 x E i = N 0 S exp 1 i µ 2 σ + B N 0 is a constant related to the measurement time, S represent the signal, B the background, x i is the position in terms of energy or direction and E i is the expected number of photons. 11

12 Poisson (or Cash) statistics The probability of observing O i events when we expect E i follows a Poisson distribution. Assuming the independence of events (here more tricky): and a uniform distribution of the models (even more tricky): P(S, B I) = ( ) = E i P O i S, B,I P ({O i } S, B,I) = O i e E i the logarithm of the post.pdf is now: L = ln P S, B {O i },I O i N i=1 E i O i e E i O i constant S 0 B 0 0 else N i=1 ( ) = const + O i ln(e i ) E i [ ] 12

13 Posterior pdf μ = 0, FWHM = data (= 15 bins) Contour plots at 10%, 30%, 50%, 70% and 90%. Row 1: N 0 such as max{e i } = 100 Row 2: T Row2 = T Row1 /10 Truncation! Row 3: 31 data (max E i = 100) Row 4: 7 data (max E i = 100) Correlation! 13

14 Likelihood ratio test The likelihood ratio test is the likelihood of the null hypothesis divided by the alt. hypothesis Λ = sup{l(h 0, {data})}/sup{l(h 1, {data})}. No dependence on P({data} I)! Neyman-Pearson lemma holds: the likelihood ratio test has the highest power at a given Significance Level. Rejects the null hypothesis if it is too small. 14

15 Likelihood ratio Hypotheses may be nested: the one with more parameters can be transformed into the simpler model by imposing a set of constraints. In a way, this simplifies the ratio: P({model 0 } I)/P({model 1 } I)! If they are nested, the Wilks theorem holds: the test statistic TS = 2ln(Λ) is distributed like a χ 2 (dof 1 dof 0 ). Null hypothesis rejected when TS is large! 15

16 Likelihood ratio (example) Let us fit our data with a power-law and with a power-law with exponential cutoff: dn de = A PL E α dn PL PL de = A PLE E α PLE e β PLEE PLE The data should be fitted better with the PLE (otherwise no need for an additional parameter: Occam s razor) and the likelihood should increase. They are nested, since we can set β PLE = 0 and the PLE becomes a PL and the difference in dof is 1. We should compute the two likelihood suprema (for the two hypotheses), their ratio Λ (<1) and the TS = 2ln(Λ), then compare against the statistics of χ 2 (1). 16

17 17

18 How likely is a source? A point-like source should produce some flux, so some of the detected gamma rays should be ascertained to it. If the model of the flux describing the new, hypothetical source is described by n parameters (example: PL = 2 parms, PLE = 3 parms, logp = 3 parms, ), then we could compare the max-likelihood of H 0 (no new source) with H 1 (H 0 + additional source) Λ, converted to a TS value, will follow a χ 2 (n) dist. Quite typically, TS σ 2. 18

19 Unbinned Likelihood Many bins in (E, Ω): the probability of having in ΔT a γ in bin i is low (Gauß à Poisson) If there are n i observed γ in a given bin i, and the model predicts m i γ: p i = m i n i e m i/(n i!) Likelihood: L = exp[ N model ] i mi n i/n i! grows with loglike: lnl = i n i ln(m i ) i ln(n i!) i ln(m i ) correct prediction constant UNBINNED: bins are small! n i = 0 or 1 grows with model counts L unbinned = exp[ N model ] i m i (i: non-empty bins) 19

20 EG_v02: Normalization: / Npred: Flux: e-05 +/ e-05 photons/cm^2/s gtlike output GAL_v02: Value: / Npred: Flux: / e-05 photons/cm^2/s 3c454: Integral: / Index: / LowerLimit: 100 UpperLimit: Npred: ROI distance: TS value: Flux: e-05 +/ e-07 photons/cm^2/s Total number of observed counts: 5330 Total number of model events: log(likelihood): Elapsed CPU time: gtlike creates two output files: 1) results.dat: fit results 2) counts_spectra.fits: the counts in a proper energy binning 20

21 gtlike output Solid lines follows the order as they are listed in the file results.dat: black) ROI fit red) 1 st source (3c454) green) 2 nd source (isotropic) blue) 3 rd source (galactic)... 21

22 RECAP The likelihood is what the experimentalist supplies. Under wide hypotheses, it coincides with the posterior pdf. Maximizing the likelihood will find the set of the parameters of the model that most likely fit the data. The 1 st and 2 nd derivative of the posterior pdf represent, respectively, the best estimate of the parameter and its uncertainty. The likelihood ratio can be used to compare the likelihood of different hypotheses. Leveraging Neyman-Pearson lemma, the likelihood ratio is the most powerful method to reject H 0. Leveraging Wilks theorem, under not-so-strict hypotheses, we are able to compute the significance of the likelihood ratio. 22

Fermi LAT data analysis

Fermi LAT data analysis Fermi LAT data analysis PSR J0633+1746 4 VER J0648+152 0 50 100 150 200 Fermi Gamma-ray Space Telescope Large Area Telescope (LAT) ~20 MeV to >300 GeV FOV: 2.4 sr Credit: NASA E/PO, Sonoma State University,

More information

Statistical Data Analysis Stat 3: p-values, parameter estimation

Statistical Data Analysis Stat 3: p-values, parameter estimation Statistical Data Analysis Stat 3: p-values, parameter estimation London Postgraduate Lectures on Particle Physics; University of London MSci course PH4515 Glen Cowan Physics Department Royal Holloway,

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 11 January 7, 2013 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline How to communicate the statistical uncertainty

More information

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Probability quantifies randomness and uncertainty How do I estimate the normalization and logarithmic slope of a X ray continuum, assuming

More information

Hypothesis testing (cont d)

Hypothesis testing (cont d) Hypothesis testing (cont d) Ulrich Heintz Brown University 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 1 Hypothesis testing Is our hypothesis about the fundamental physics correct? We will not be able

More information

4.5.1 The use of 2 log Λ when θ is scalar

4.5.1 The use of 2 log Λ when θ is scalar 4.5. ASYMPTOTIC FORM OF THE G.L.R.T. 97 4.5.1 The use of 2 log Λ when θ is scalar Suppose we wish to test the hypothesis NH : θ = θ where θ is a given value against the alternative AH : θ θ on the basis

More information

Physics 403. Segev BenZvi. Credible Intervals, Confidence Intervals, and Limits. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Credible Intervals, Confidence Intervals, and Limits. Department of Physics and Astronomy University of Rochester Physics 403 Credible Intervals, Confidence Intervals, and Limits Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Summarizing Parameters with a Range Bayesian

More information

Bayesian Data Analysis

Bayesian Data Analysis An Introduction to Bayesian Data Analysis Lecture 1 D. S. Sivia St. John s College Oxford, England April 29, 2012 Some recommended books........................................................ 2 Outline.......................................................................

More information

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 CLASS NOTES Models, Algorithms and Data: Introduction to computing 208 Petros Koumoutsakos, Jens Honore Walther (Last update: June, 208) IMPORTANT DISCLAIMERS. REFERENCES: Much of the material (ideas,

More information

E. Santovetti lesson 4 Maximum likelihood Interval estimation

E. Santovetti lesson 4 Maximum likelihood Interval estimation E. Santovetti lesson 4 Maximum likelihood Interval estimation 1 Extended Maximum Likelihood Sometimes the number of total events measurements of the experiment n is not fixed, but, for example, is a Poisson

More information

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1,

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1, Economics 520 Lecture Note 9: Hypothesis Testing via the Neyman-Pearson Lemma CB 8., 8.3.-8.3.3 Uniformly Most Powerful Tests and the Neyman-Pearson Lemma Let s return to the hypothesis testing problem

More information

Bayesian Inference in Astronomy & Astrophysics A Short Course

Bayesian Inference in Astronomy & Astrophysics A Short Course Bayesian Inference in Astronomy & Astrophysics A Short Course Tom Loredo Dept. of Astronomy, Cornell University p.1/37 Five Lectures Overview of Bayesian Inference From Gaussians to Periodograms Learning

More information

1 Statistics Aneta Siemiginowska a chapter for X-ray Astronomy Handbook October 2008

1 Statistics Aneta Siemiginowska a chapter for X-ray Astronomy Handbook October 2008 1 Statistics Aneta Siemiginowska a chapter for X-ray Astronomy Handbook October 2008 1.1 Introduction Why do we need statistic? Wall and Jenkins (2003) give a good description of the scientific analysis

More information

Primer on statistics:

Primer on statistics: Primer on statistics: MLE, Confidence Intervals, and Hypothesis Testing ryan.reece@gmail.com http://rreece.github.io/ Insight Data Science - AI Fellows Workshop Feb 16, 018 Outline 1. Maximum likelihood

More information

Parameter Estimation and Fitting to Data

Parameter Estimation and Fitting to Data Parameter Estimation and Fitting to Data Parameter estimation Maximum likelihood Least squares Goodness-of-fit Examples Elton S. Smith, Jefferson Lab 1 Parameter estimation Properties of estimators 3 An

More information

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015 STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots March 8, 2015 The duality between CI and hypothesis testing The duality between CI and hypothesis

More information

FYST17 Lecture 8 Statistics and hypothesis testing. Thanks to T. Petersen, S. Maschiocci, G. Cowan, L. Lyons

FYST17 Lecture 8 Statistics and hypothesis testing. Thanks to T. Petersen, S. Maschiocci, G. Cowan, L. Lyons FYST17 Lecture 8 Statistics and hypothesis testing Thanks to T. Petersen, S. Maschiocci, G. Cowan, L. Lyons 1 Plan for today: Introduction to concepts The Gaussian distribution Likelihood functions Hypothesis

More information

If there exists a threshold k 0 such that. then we can take k = k 0 γ =0 and achieve a test of size α. c 2004 by Mark R. Bell,

If there exists a threshold k 0 such that. then we can take k = k 0 γ =0 and achieve a test of size α. c 2004 by Mark R. Bell, Recall The Neyman-Pearson Lemma Neyman-Pearson Lemma: Let Θ = {θ 0, θ }, and let F θ0 (x) be the cdf of the random vector X under hypothesis and F θ (x) be its cdf under hypothesis. Assume that the cdfs

More information

Lecture 21: October 19

Lecture 21: October 19 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 21: October 19 21.1 Likelihood Ratio Test (LRT) To test composite versus composite hypotheses the general method is to use

More information

Introduction to Bayesian Inference

Introduction to Bayesian Inference Introduction to Bayesian Inference Tom Loredo Dept. of Astronomy, Cornell University http://www.astro.cornell.edu/staff/loredo/bayes/ June 10, 2006 Outline 1 The Big Picture 2 Foundations Axioms, Theorems

More information

Physics 403. Segev BenZvi. Classical Hypothesis Testing: The Likelihood Ratio Test. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Classical Hypothesis Testing: The Likelihood Ratio Test. Department of Physics and Astronomy University of Rochester Physics 403 Classical Hypothesis Testing: The Likelihood Ratio Test Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Bayesian Hypothesis Testing Posterior Odds

More information

Statistical Methods for Particle Physics Lecture 4: discovery, exclusion limits

Statistical Methods for Particle Physics Lecture 4: discovery, exclusion limits Statistical Methods for Particle Physics Lecture 4: discovery, exclusion limits www.pp.rhul.ac.uk/~cowan/stat_aachen.html Graduierten-Kolleg RWTH Aachen 10-14 February 2014 Glen Cowan Physics Department

More information

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring Lecture 8 A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2015 http://www.astro.cornell.edu/~cordes/a6523 Applications: Bayesian inference: overview and examples Introduction

More information

BEST TESTS. Abstract. We will discuss the Neymann-Pearson theorem and certain best test where the power function is optimized.

BEST TESTS. Abstract. We will discuss the Neymann-Pearson theorem and certain best test where the power function is optimized. BEST TESTS Abstract. We will discuss the Neymann-Pearson theorem and certain best test where the power function is optimized. 1. Most powerful test Let {f θ } θ Θ be a family of pdfs. We will consider

More information

Using Bayes Factors for Model Selection in High-Energy Astrophysics

Using Bayes Factors for Model Selection in High-Energy Astrophysics Using Bayes Factors for Model Selection in High-Energy Astrophysics Shandong Zhao Department of Statistic, UCI April, 203 Model Comparison in Astrophysics Nested models (line detection in spectral analysis):

More information

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary ECE 830 Spring 207 Instructor: R. Willett Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we saw that the likelihood

More information

Topic 19 Extensions on the Likelihood Ratio

Topic 19 Extensions on the Likelihood Ratio Topic 19 Extensions on the Likelihood Ratio Two-Sided Tests 1 / 12 Outline Overview Normal Observations Power Analysis 2 / 12 Overview The likelihood ratio test is a popular choice for composite hypothesis

More information

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)?

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)? ECE 830 / CS 76 Spring 06 Instructors: R. Willett & R. Nowak Lecture 3: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we

More information

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester Physics 403 Parameter Estimation, Correlations, and Error Bars Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Best Estimates and Reliability

More information

Introduction to Error Analysis

Introduction to Error Analysis Introduction to Error Analysis Part 1: the Basics Andrei Gritsan based on lectures by Petar Maksimović February 1, 2010 Overview Definitions Reporting results and rounding Accuracy vs precision systematic

More information

Hypothesis Testing: The Generalized Likelihood Ratio Test

Hypothesis Testing: The Generalized Likelihood Ratio Test Hypothesis Testing: The Generalized Likelihood Ratio Test Consider testing the hypotheses H 0 : θ Θ 0 H 1 : θ Θ \ Θ 0 Definition: The Generalized Likelihood Ratio (GLR Let L(θ be a likelihood for a random

More information

Introduction to Bayesian Inference: Supplemental Topics

Introduction to Bayesian Inference: Supplemental Topics Introduction to Bayesian Inference: Supplemental Topics Tom Loredo Dept. of Astronomy, Cornell University http://www.astro.cornell.edu/staff/loredo/bayes/ CASt Summer School 5 June 2014 1/42 Supplemental

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture VIc (19.11.07) Contents: Maximum Likelihood Fit Maximum Likelihood (I) Assume N measurements of a random variable Assume them to be independent and distributed according

More information

LECTURE 10: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING. The last equality is provided so this can look like a more familiar parametric test.

LECTURE 10: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING. The last equality is provided so this can look like a more familiar parametric test. Economics 52 Econometrics Professor N.M. Kiefer LECTURE 1: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING NEYMAN-PEARSON LEMMA: Lesson: Good tests are based on the likelihood ratio. The proof is easy in the

More information

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing STAT 135 Lab 5 Bootstrapping and Hypothesis Testing Rebecca Barter March 2, 2015 The Bootstrap Bootstrap Suppose that we are interested in estimating a parameter θ from some population with members x 1,...,

More information

1/24/2008. Review of Statistical Inference. C.1 A Sample of Data. C.2 An Econometric Model. C.4 Estimating the Population Variance and Other Moments

1/24/2008. Review of Statistical Inference. C.1 A Sample of Data. C.2 An Econometric Model. C.4 Estimating the Population Variance and Other Moments /4/008 Review of Statistical Inference Prepared by Vera Tabakova, East Carolina University C. A Sample of Data C. An Econometric Model C.3 Estimating the Mean of a Population C.4 Estimating the Population

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

Use of the likelihood principle in physics. Statistics II

Use of the likelihood principle in physics. Statistics II Use of the likelihood principle in physics Statistics II 1 2 3 + Bayesians vs Frequentists 4 Why ML does work? hypothesis observation 5 6 7 8 9 10 11 ) 12 13 14 15 16 Fit of Histograms corresponds This

More information

Hypothesis testing:power, test statistic CMS:

Hypothesis testing:power, test statistic CMS: Hypothesis testing:power, test statistic The more sensitive the test, the better it can discriminate between the null and the alternative hypothesis, quantitatively, maximal power In order to achieve this

More information

Hypothesis testing: theory and methods

Hypothesis testing: theory and methods Statistical Methods Warsaw School of Economics November 3, 2017 Statistical hypothesis is the name of any conjecture about unknown parameters of a population distribution. The hypothesis should be verifiable

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Statistics, Data Analysis, and Simulation SS 2013

Statistics, Data Analysis, and Simulation SS 2013 Statistics, Data Analysis, and Simulation SS 2013 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 21, 2013 3. Parameter estimation 1 Consistency:

More information

Lecture 12 November 3

Lecture 12 November 3 STATS 300A: Theory of Statistics Fall 2015 Lecture 12 November 3 Lecturer: Lester Mackey Scribe: Jae Hyuck Park, Christian Fong Warning: These notes may contain factual and/or typographic errors. 12.1

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata Maura Department of Economics and Finance Università Tor Vergata Hypothesis Testing Outline It is a mistake to confound strangeness with mystery Sherlock Holmes A Study in Scarlet Outline 1 The Power Function

More information

Chapter 7. Hypothesis Testing

Chapter 7. Hypothesis Testing Chapter 7. Hypothesis Testing Joonpyo Kim June 24, 2017 Joonpyo Kim Ch7 June 24, 2017 1 / 63 Basic Concepts of Testing Suppose that our interest centers on a random variable X which has density function

More information

Summary of Chapters 7-9

Summary of Chapters 7-9 Summary of Chapters 7-9 Chapter 7. Interval Estimation 7.2. Confidence Intervals for Difference of Two Means Let X 1,, X n and Y 1, Y 2,, Y m be two independent random samples of sizes n and m from two

More information

Detection Theory. Composite tests

Detection Theory. Composite tests Composite tests Chapter 5: Correction Thu I claimed that the above, which is the most general case, was captured by the below Thu Chapter 5: Correction Thu I claimed that the above, which is the most general

More information

32. STATISTICS. 32. Statistics 1

32. STATISTICS. 32. Statistics 1 32. STATISTICS 32. Statistics 1 Revised September 2009 by G. Cowan (RHUL). This chapter gives an overview of statistical methods used in high-energy physics. In statistics, we are interested in using a

More information

Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process

Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process Applied Mathematical Sciences, Vol. 4, 2010, no. 62, 3083-3093 Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process Julia Bondarenko Helmut-Schmidt University Hamburg University

More information

Physics 403. Segev BenZvi. Choosing Priors and the Principle of Maximum Entropy. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Choosing Priors and the Principle of Maximum Entropy. Department of Physics and Astronomy University of Rochester Physics 403 Choosing Priors and the Principle of Maximum Entropy Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Odds Ratio Occam Factors

More information

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions DD2431 Autumn, 2014 1 2 3 Classification with Probability Distributions Estimation Theory Classification in the last lecture we assumed we new: P(y) Prior P(x y) Lielihood x2 x features y {ω 1,..., ω K

More information

Statistical Methods in Particle Physics Lecture 1: Bayesian methods

Statistical Methods in Particle Physics Lecture 1: Bayesian methods Statistical Methods in Particle Physics Lecture 1: Bayesian methods SUSSP65 St Andrews 16 29 August 2009 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Introduction to Bayesian Data Analysis

Introduction to Bayesian Data Analysis Introduction to Bayesian Data Analysis Phil Gregory University of British Columbia March 2010 Hardback (ISBN-10: 052184150X ISBN-13: 9780521841504) Resources and solutions This title has free Mathematica

More information

GOV 2001/ 1002/ E-2001 Section 3 Theories of Inference

GOV 2001/ 1002/ E-2001 Section 3 Theories of Inference GOV 2001/ 1002/ E-2001 Section 3 Theories of Inference Solé Prillaman Harvard University February 11, 2015 1 / 48 LOGISTICS Reading Assignment- Unifying Political Methodology chs 2 and 4. Problem Set 3-

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

Lecture 3. G. Cowan. Lecture 3 page 1. Lectures on Statistical Data Analysis

Lecture 3. G. Cowan. Lecture 3 page 1. Lectures on Statistical Data Analysis Lecture 3 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

Statistical Theory MT 2007 Problems 4: Solution sketches

Statistical Theory MT 2007 Problems 4: Solution sketches Statistical Theory MT 007 Problems 4: Solution sketches 1. Consider a 1-parameter exponential family model with density f(x θ) = f(x)g(θ)exp{cφ(θ)h(x)}, x X. Suppose that the prior distribution has the

More information

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Tim Linden UC - Santa Cruz Representing the Fermi-LAT Collaboration with acknowledgements to: Brandon Anderson, Elliott

More information

Statistics for Particle Physics. Kyle Cranmer. New York University. Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5, 2009

Statistics for Particle Physics. Kyle Cranmer. New York University. Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5, 2009 Statistics for Particle Physics Kyle Cranmer New York University 91 Remaining Lectures Lecture 3:! Compound hypotheses, nuisance parameters, & similar tests! The Neyman-Construction (illustrated)! Inverted

More information

Bayesian Inference for Normal Mean

Bayesian Inference for Normal Mean Al Nosedal. University of Toronto. November 18, 2015 Likelihood of Single Observation The conditional observation distribution of y µ is Normal with mean µ and variance σ 2, which is known. Its density

More information

Statistical Theory MT 2006 Problems 4: Solution sketches

Statistical Theory MT 2006 Problems 4: Solution sketches Statistical Theory MT 006 Problems 4: Solution sketches 1. Suppose that X has a Poisson distribution with unknown mean θ. Determine the conjugate prior, and associate posterior distribution, for θ. Determine

More information

A732: Exercise #7 Maximum Likelihood

A732: Exercise #7 Maximum Likelihood A732: Exercise #7 Maximum Likelihood Due: 29 Novemer 2007 Analytic computation of some one-dimensional maximum likelihood estimators (a) Including the normalization, the exponential distriution function

More information

Lecture 10: Generalized likelihood ratio test

Lecture 10: Generalized likelihood ratio test Stat 200: Introduction to Statistical Inference Autumn 2018/19 Lecture 10: Generalized likelihood ratio test Lecturer: Art B. Owen October 25 Disclaimer: These notes have not been subjected to the usual

More information

ST495: Survival Analysis: Hypothesis testing and confidence intervals

ST495: Survival Analysis: Hypothesis testing and confidence intervals ST495: Survival Analysis: Hypothesis testing and confidence intervals Eric B. Laber Department of Statistics, North Carolina State University April 3, 2014 I remember that one fateful day when Coach took

More information

LAT Automated Science Processing for Gamma-Ray Bursts

LAT Automated Science Processing for Gamma-Ray Bursts SLAC-PUB-12715 LAT Automated Science Processing for Gamma-Ray Bursts James Chiang GLAST Science Support Center SLAC, 2575 Sand Hill Rd, Menlo Park CA 9425 Abstract. The LAT Instrument Science Operations

More information

LECTURE NOTES FYS 4550/FYS EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO

LECTURE NOTES FYS 4550/FYS EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO LECTURE NOTES FYS 4550/FYS9550 - EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I PROBABILITY AND STATISTICS A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO Before embarking on the concept

More information

32. STATISTICS. 32. Statistics 1

32. STATISTICS. 32. Statistics 1 32. STATISTICS 32. Statistics 1 Revised April 1998 by F. James (CERN); February 2000 by R. Cousins (UCLA); October 2001, October 2003, and August 2005 by G. Cowan (RHUL). This chapter gives an overview

More information

HYPOTHESIS TESTING: FREQUENTIST APPROACH.

HYPOTHESIS TESTING: FREQUENTIST APPROACH. HYPOTHESIS TESTING: FREQUENTIST APPROACH. These notes summarize the lectures on (the frequentist approach to) hypothesis testing. You should be familiar with the standard hypothesis testing from previous

More information

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes Neyman-Pearson paradigm. Suppose that a researcher is interested in whether the new drug works. The process of determining whether the outcome of the experiment points to yes or no is called hypothesis

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Recall the Basics of Hypothesis Testing

Recall the Basics of Hypothesis Testing Recall the Basics of Hypothesis Testing The level of significance α, (size of test) is defined as the probability of X falling in w (rejecting H 0 ) when H 0 is true: P(X w H 0 ) = α. H 0 TRUE H 1 TRUE

More information

STAT 135 Lab 2 Confidence Intervals, MLE and the Delta Method

STAT 135 Lab 2 Confidence Intervals, MLE and the Delta Method STAT 135 Lab 2 Confidence Intervals, MLE and the Delta Method Rebecca Barter February 2, 2015 Confidence Intervals Confidence intervals What is a confidence interval? A confidence interval is calculated

More information

32. STATISTICS. 32. Statistics 1

32. STATISTICS. 32. Statistics 1 32. STATISTICS 32. Statistics 1 Revised September 2007 by G. Cowan (RHUL). This chapter gives an overview of statistical methods used in High Energy Physics. In statistics, we are interested in using a

More information

Bayesian Regression (1/31/13)

Bayesian Regression (1/31/13) STA613/CBB540: Statistical methods in computational biology Bayesian Regression (1/31/13) Lecturer: Barbara Engelhardt Scribe: Amanda Lea 1 Bayesian Paradigm Bayesian methods ask: given that I have observed

More information

Testing Restrictions and Comparing Models

Testing Restrictions and Comparing Models Econ. 513, Time Series Econometrics Fall 00 Chris Sims Testing Restrictions and Comparing Models 1. THE PROBLEM We consider here the problem of comparing two parametric models for the data X, defined by

More information

Partitioning the Parameter Space. Topic 18 Composite Hypotheses

Partitioning the Parameter Space. Topic 18 Composite Hypotheses Topic 18 Composite Hypotheses Partitioning the Parameter Space 1 / 10 Outline Partitioning the Parameter Space 2 / 10 Partitioning the Parameter Space Simple hypotheses limit us to a decision between one

More information

SPRING 2007 EXAM C SOLUTIONS

SPRING 2007 EXAM C SOLUTIONS SPRING 007 EXAM C SOLUTIONS Question #1 The data are already shifted (have had the policy limit and the deductible of 50 applied). The two 350 payments are censored. Thus the likelihood function is L =

More information

Practical Statistics part II Composite hypothesis, Nuisance Parameters

Practical Statistics part II Composite hypothesis, Nuisance Parameters Practical Statistics part II Composite hypothesis, Nuisance Parameters W. Verkerke (NIKHEF) Summary of yesterday, plan for today Start with basics, gradually build up to complexity of Statistical tests

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

Hypothesis Testing - Frequentist

Hypothesis Testing - Frequentist Frequentist Hypothesis Testing - Frequentist Compare two hypotheses to see which one better explains the data. Or, alternatively, what is the best way to separate events into two classes, those originating

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

Introduction to Machine Learning. Lecture 2

Introduction to Machine Learning. Lecture 2 Introduction to Machine Learning Lecturer: Eran Halperin Lecture 2 Fall Semester Scribe: Yishay Mansour Some of the material was not presented in class (and is marked with a side line) and is given for

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY PHYSICS DEPARTMENT

MASSACHUSETTS INSTITUTE OF TECHNOLOGY PHYSICS DEPARTMENT G. Clark 7oct96 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY PHYSICS DEPARTMENT 8.13/8.14 Junior Laboratory STATISTICS AND ERROR ESTIMATION The purpose of this note is to explain the application of statistics

More information

Bayes Factors for Discovery

Bayes Factors for Discovery Glen Cowan RHUL Physics 3 April, 22 Bayes Factors for Discovery The fundamental quantity one should use in the Bayesian framework to quantify the significance of a discovery is the posterior probability

More information

Hypothesis Testing. Part I. James J. Heckman University of Chicago. Econ 312 This draft, April 20, 2006

Hypothesis Testing. Part I. James J. Heckman University of Chicago. Econ 312 This draft, April 20, 2006 Hypothesis Testing Part I James J. Heckman University of Chicago Econ 312 This draft, April 20, 2006 1 1 A Brief Review of Hypothesis Testing and Its Uses values and pure significance tests (R.A. Fisher)

More information

DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling

DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling Due: Tuesday, May 10, 2016, at 6pm (Submit via NYU Classes) Instructions: Your answers to the questions below, including

More information

A New Method for Characterizing Unresolved Point Sources: applications to Fermi Gamma-Ray Data

A New Method for Characterizing Unresolved Point Sources: applications to Fermi Gamma-Ray Data A New Method for Characterizing Unresolved Point Sources: applications to Fermi Gamma-Ray Data Ben Safdi Massachusetts Institute of Technology 2015 B.S., S. Lee, M. Lisanti, and B.S., S. Lee, M. Lisanti,

More information

Two Lectures: Bayesian Inference in a Nutshell and The Perils & Promise of Statistics With Large Data Sets & Complicated Models

Two Lectures: Bayesian Inference in a Nutshell and The Perils & Promise of Statistics With Large Data Sets & Complicated Models Two Lectures: Bayesian Inference in a Nutshell and The Perils & Promise of Statistics With Large Data Sets & Complicated Models Bayesian-Frequentist Cross-Fertilization Tom Loredo Dept. of Astronomy, Cornell

More information

Observing TeV Gamma Rays from the Jet Interaction Regions of SS 433 with HAWC

Observing TeV Gamma Rays from the Jet Interaction Regions of SS 433 with HAWC Observing TeV Gamma Rays from the Jet Interaction Regions of SS 433 with HAWC Chang Dong Rho University of Rochester TeVPA 2018 Berlin, Germany 08/28/2018 Overview 2 Microquasars as sources of TeV gamma

More information

Testing Hypotheses in Particle Physics: Plots of p 0 Versus p 1

Testing Hypotheses in Particle Physics: Plots of p 0 Versus p 1 Testing Hypotheses in Particle Physics: Plots of p 0 Versus p 1 Luc Demortier, Louis Lyons Laboratory of Experimental High Energy Physics The Rockefeller University, New York, NY 10065, USA Blackett Laboratory

More information

Statistical Tools and Techniques for Solar Astronomers

Statistical Tools and Techniques for Solar Astronomers Statistical Tools and Techniques for Solar Astronomers Alexander W Blocker Nathan Stein SolarStat 2012 Outline Outline 1 Introduction & Objectives 2 Statistical issues with astronomical data 3 Example:

More information

Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi

Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi B. Cañadas, A. Morselli and V. Vitale on behalf of the Fermi LAT Collaboration Outline Gamma rays from Dark Matter Dark

More information

Line Broadening. φ(ν) = Γ/4π 2 (ν ν 0 ) 2 + (Γ/4π) 2, (3) where now Γ = γ +2ν col includes contributions from both natural broadening and collisions.

Line Broadening. φ(ν) = Γ/4π 2 (ν ν 0 ) 2 + (Γ/4π) 2, (3) where now Γ = γ +2ν col includes contributions from both natural broadening and collisions. Line Broadening Spectral lines are not arbitrarily sharp. There are a variety of mechanisms that give them finite width, and some of those mechanisms contain significant information. We ll consider a few

More information

Bayesian inference. Justin Chumbley ETH and UZH. (Thanks to Jean Denizeau for slides)

Bayesian inference. Justin Chumbley ETH and UZH. (Thanks to Jean Denizeau for slides) Bayesian inference Justin Chumbley ETH and UZH (Thanks to Jean Denizeau for slides) Overview of the talk Introduction: Bayesian inference Bayesian model comparison Group-level Bayesian model selection

More information

Lecture 4: Probabilistic Learning

Lecture 4: Probabilistic Learning DD2431 Autumn, 2015 1 Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods 2 Classification vs Clustering Heuristic Example: K-means Expectation Maximization 3 Maximum Likelihood Methods

More information

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33 Hypothesis Testing Econ 690 Purdue University Justin L. Tobias (Purdue) Testing 1 / 33 Outline 1 Basic Testing Framework 2 Testing with HPD intervals 3 Example 4 Savage Dickey Density Ratio 5 Bartlett

More information