Hypothesis testing (cont d)

Size: px
Start display at page:

Download "Hypothesis testing (cont d)"

Transcription

1 Hypothesis testing (cont d) Ulrich Heintz Brown University 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 1

2 Hypothesis testing Is our hypothesis about the fundamental physics correct? We will not be able to give a yes no answer to this question but only a degree of confidence General approach: use parameter estimation techniques and determine p-value to quantify the degree of confidence 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 2

3 A simple counting experiment Consider an experiment which counts events of a certain type in search of a new process The expected background count from known processes is b = 5.2 The only model parameter is the number of counts from the new process s Thus the expected count is λ = b + s The probability to observe n counts is b+s e b + s n p n s = n! 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 3

4 p(n s = 0) Results Assume an observed count n The p-value ξ is the probability to observe at least n counts under the hypothesis s = 0 ξ n = p n s n=n n ξ /12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 4 n

5 Hypothesis testing Framework for decision making between two hypotheses Null hypothesis H 0 - here s = 0 Alternative hypothesis H 1 - here s > 0 Reject H 0 if the p-value for observed data under H 0 is below some predefined threshold α Possible errors Error of the first kind (or type 1): reject H 0 if it is true ( false discovery ), probability = α Error of the second kind (or type 2): accept H 0 if it is false ( missed discovery), probability = β The probability 1 β to correctly reject H 0 if H 1 is true is called the power of the test For a given α select the test with the largest power 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 5

6 Z value Often p-values are very small Define z-value ( number of sigmas ) 1 2π z e 1 2 x2 dx = ξ z ξ ξ For large counts use Gaussian approximation z s b 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 6

7 Distribution testing Generally it is more powerful to test a distribution of counts of many different event types Likelihood function for n 1, n 2, counts L μ = i p( n i b i + μs i μ is the signal strength parameter H 0 - background only (μ = 0) H 1 - background + signal (μ > 0) 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 7

8 Test statistic How to define the p-value for a distribution test? Choose a function, called the test statistic, which characterizes how signal-like the data are This could be a sum of squares χ 2 or a likelihood L Choose the function which maximizes the power of the test Only well-defined if H 1 is a simple hypothesis (doesn t have any free parameters) Then the most powerful test statistic is (Neyman-Pearson Lemma) t = ln L(H 1) L H 0 A generalization for complex H 1 is the profile likelihood ratio t = ln max μ>0 L 0 L μ Large values of t favor H 1, small values favor H 0 For an observed value t, the p-value then is ξ = p(t > t H 0 ) 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 8

9 Example μ = 0.72 μ = 0 Perform two max likelihood fits t = 4.92 What is the parent distribution of t? Generate many sample distributions with the background histogram as parent distribution Compute t for each of them 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 9

10 Results What fraction of sample distributions yield a value of t > t? ξ = 86 z = /12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 10

11 Systematic uncertainties How can we consider systematic uncertainties in the hypothesis test? Say in our counting experiment we measure the background from a control experiment to be b = 5.2 ± 2.6 Possible approach: Include a probability distribution for b in the likelihood and average over all values of b Such parameters are called nuisance parameters because we are not fundamentally interested in their values (as opposed to the signal strength parameter, which we want to measure) 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 11

12 Result including systematic uncertainty 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 12

13 Result including systematic uncertainty 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 13

14 Result including systematic uncertainty In general, adding systematic uncertainties broadens the distributions of the test statistic, increases the p-value, and reduces the z-value Gaussian approximation for large counts z s b + δb 2 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 14

15 Look elsewhere effect We reject H 0 if ξ < α the probability to reject H 0 incorrectly is α If we repeat the procedure for the same H 0 but many different alternative hypotheses H 1 (eg test for peaks at different places) the probability that some tests reject H 0 becomes larger than α For n independent tests the probability is nα (if α 1) For example: Assume we want to carry out a test with 3 significance α = The probability to reject H 0 in one test is 0.13% If 10 independent channels are tested the probability to reject H 0 in any one of them is 1.3% Correct local p-value to a global p-value by multiplying with the trial factor n 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 15

16 Result with look elsewhere effect If we look only at M=500 we had ξ = or z = 3.1 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 16

17 Result with look elsewhere effect If we look only at M=500 we had ξ = or z = 3.1 If we look at a wider range of M, the probability to observe such a deviation increases Draw random samples and compute the minimum p-value for all values of M For M=300, 500, 700 we get ξ min = /12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 17

18 Return to our simple counting experiment Count events of a certain type in search of a new process The expected background count from known processes is b = 5.2 The only model parameter is the number of counts from the new process s Thus the expected count is λ = b + s Suppose we count n = 8 events What statement can we make about s? Can we exclude large values of s such as s = 500? 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 18

19 Neyman construction Upper limit construction by hypothesis test inversion : 1. For a given s = s 0, carry out a hypothesis test with the null hypothesis s = s 0 and the alternative hypothesis s < s 0 with type-i error α (e.g., α = 0.05). 2. Repeat step 1 for different values of s The confidence interval for s comprises exactly those values s 0 for which the hypothesis test could not reject the null hypothesis s = s 0. For this formulation of the hypothesis test we get an upper limit with confidence level 1 α (here: 95%). This is known as the Neyman Construction. 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 19

20 Neyman construction Example: Counting experiment with b = 5.2. As a function of s, determine n 0 for which p(n obs < n 0 s) α: 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 20

21 Neyman construction Example: n obs = 8, the 95% C.L. upper limit for s is /12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 21

22 Empty intervals In the Neyman construction one can obtain empty intervals, e.g. for n obs = 1, one would state s < 0 at 95% C.L. For a correct-coverage method and true μ = 0, this happens in 5% of the cases, when n obs happens to be small. 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 22

23 Empty intervals Empty (or very small) intervals are unsatisfactory: We know we are in the 5% type I error case. We would cite a very strong limit although there is no experimental sensitivity for such small values. To avoid citing such intervals, one can modify the frequentist construction modified frequentist intervals also known as the CLs method. 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 23

24 The CLs method Small/empty intervals happen in case of incompatibility with background-only model (e.g. very few events even for background-only). 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 24

25 The CLs method Test statistic distribution for background-only model μ = 0. increase limit if data is incompatible with background-only hypothesis μ = 0. increase interval in case of small values for p b. 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 25

26 Definition of CLs The CLs-value is a modified p-value which is large for small p b CLs = p s+b p b In the limit construction, use CLs in place of p s+b as before Limit is μ for which CLs = α. CLs limits are always more conservative than Neyman limits because CLs p s+b by construction The CLs method prevents citing limits with no experimental sensitivity 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 26

Statistical Methods for Particle Physics Lecture 4: discovery, exclusion limits

Statistical Methods for Particle Physics Lecture 4: discovery, exclusion limits Statistical Methods for Particle Physics Lecture 4: discovery, exclusion limits www.pp.rhul.ac.uk/~cowan/stat_aachen.html Graduierten-Kolleg RWTH Aachen 10-14 February 2014 Glen Cowan Physics Department

More information

Statistical Methods for Particle Physics Lecture 3: Systematics, nuisance parameters

Statistical Methods for Particle Physics Lecture 3: Systematics, nuisance parameters Statistical Methods for Particle Physics Lecture 3: Systematics, nuisance parameters http://benasque.org/2018tae/cgi-bin/talks/allprint.pl TAE 2018 Centro de ciencias Pedro Pascual Benasque, Spain 3-15

More information

Some Statistical Tools for Particle Physics

Some Statistical Tools for Particle Physics Some Statistical Tools for Particle Physics Particle Physics Colloquium MPI für Physik u. Astrophysik Munich, 10 May, 2016 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk

More information

Statistics for the LHC Lecture 2: Discovery

Statistics for the LHC Lecture 2: Discovery Statistics for the LHC Lecture 2: Discovery Academic Training Lectures CERN, 14 17 June, 2010 indico.cern.ch/conferencedisplay.py?confid=77830 Glen Cowan Physics Department Royal Holloway, University of

More information

FYST17 Lecture 8 Statistics and hypothesis testing. Thanks to T. Petersen, S. Maschiocci, G. Cowan, L. Lyons

FYST17 Lecture 8 Statistics and hypothesis testing. Thanks to T. Petersen, S. Maschiocci, G. Cowan, L. Lyons FYST17 Lecture 8 Statistics and hypothesis testing Thanks to T. Petersen, S. Maschiocci, G. Cowan, L. Lyons 1 Plan for today: Introduction to concepts The Gaussian distribution Likelihood functions Hypothesis

More information

Statistical Methods in Particle Physics Lecture 2: Limits and Discovery

Statistical Methods in Particle Physics Lecture 2: Limits and Discovery Statistical Methods in Particle Physics Lecture 2: Limits and Discovery SUSSP65 St Andrews 16 29 August 2009 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Statistics for Particle Physics. Kyle Cranmer. New York University. Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5, 2009

Statistics for Particle Physics. Kyle Cranmer. New York University. Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5, 2009 Statistics for Particle Physics Kyle Cranmer New York University 91 Remaining Lectures Lecture 3:! Compound hypotheses, nuisance parameters, & similar tests! The Neyman-Construction (illustrated)! Inverted

More information

Physics 403. Segev BenZvi. Credible Intervals, Confidence Intervals, and Limits. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Credible Intervals, Confidence Intervals, and Limits. Department of Physics and Astronomy University of Rochester Physics 403 Credible Intervals, Confidence Intervals, and Limits Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Summarizing Parameters with a Range Bayesian

More information

Primer on statistics:

Primer on statistics: Primer on statistics: MLE, Confidence Intervals, and Hypothesis Testing ryan.reece@gmail.com http://rreece.github.io/ Insight Data Science - AI Fellows Workshop Feb 16, 018 Outline 1. Maximum likelihood

More information

Statistical Methods for Particle Physics (I)

Statistical Methods for Particle Physics (I) Statistical Methods for Particle Physics (I) https://agenda.infn.it/conferencedisplay.py?confid=14407 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Statistics Challenges in High Energy Physics Search Experiments

Statistics Challenges in High Energy Physics Search Experiments Statistics Challenges in High Energy Physics Search Experiments The Weizmann Institute of Science, Rehovot, Israel E-mail: eilam.gross@weizmann.ac.il Ofer Vitells The Weizmann Institute of Science, Rehovot,

More information

Hypothesis Testing - Frequentist

Hypothesis Testing - Frequentist Frequentist Hypothesis Testing - Frequentist Compare two hypotheses to see which one better explains the data. Or, alternatively, what is the best way to separate events into two classes, those originating

More information

Recent developments in statistical methods for particle physics

Recent developments in statistical methods for particle physics Recent developments in statistical methods for particle physics Particle Physics Seminar Warwick, 17 February 2011 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk

More information

Statistics for Particle Physics. Kyle Cranmer. New York University. Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5, 2009

Statistics for Particle Physics. Kyle Cranmer. New York University. Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5, 2009 Statistics for Particle Physics Kyle Cranmer New York University 1 Hypothesis Testing 55 Hypothesis testing One of the most common uses of statistics in particle physics is Hypothesis Testing! assume one

More information

Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process

Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process Applied Mathematical Sciences, Vol. 4, 2010, no. 62, 3083-3093 Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process Julia Bondarenko Helmut-Schmidt University Hamburg University

More information

Parameter Estimation and Fitting to Data

Parameter Estimation and Fitting to Data Parameter Estimation and Fitting to Data Parameter estimation Maximum likelihood Least squares Goodness-of-fit Examples Elton S. Smith, Jefferson Lab 1 Parameter estimation Properties of estimators 3 An

More information

Statistical Data Analysis Stat 3: p-values, parameter estimation

Statistical Data Analysis Stat 3: p-values, parameter estimation Statistical Data Analysis Stat 3: p-values, parameter estimation London Postgraduate Lectures on Particle Physics; University of London MSci course PH4515 Glen Cowan Physics Department Royal Holloway,

More information

arxiv: v1 [hep-ex] 9 Jul 2013

arxiv: v1 [hep-ex] 9 Jul 2013 Statistics for Searches at the LHC Glen Cowan Physics Department, Royal Holloway, University of London, Egham, Surrey, TW2 EX, UK arxiv:137.2487v1 [hep-ex] 9 Jul 213 Abstract These lectures 1 describe

More information

Statistical Methods for Particle Physics Lecture 1: parameter estimation, statistical tests

Statistical Methods for Particle Physics Lecture 1: parameter estimation, statistical tests Statistical Methods for Particle Physics Lecture 1: parameter estimation, statistical tests http://benasque.org/2018tae/cgi-bin/talks/allprint.pl TAE 2018 Benasque, Spain 3-15 Sept 2018 Glen Cowan Physics

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 11 January 7, 2013 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline How to communicate the statistical uncertainty

More information

Statistical Methods for Particle Physics Lecture 3: systematic uncertainties / further topics

Statistical Methods for Particle Physics Lecture 3: systematic uncertainties / further topics Statistical Methods for Particle Physics Lecture 3: systematic uncertainties / further topics istep 2014 IHEP, Beijing August 20-29, 2014 Glen Cowan ( Physics Department Royal Holloway, University of London

More information

Hypothesis Testing. BS2 Statistical Inference, Lecture 11 Michaelmas Term Steffen Lauritzen, University of Oxford; November 15, 2004

Hypothesis Testing. BS2 Statistical Inference, Lecture 11 Michaelmas Term Steffen Lauritzen, University of Oxford; November 15, 2004 Hypothesis Testing BS2 Statistical Inference, Lecture 11 Michaelmas Term 2004 Steffen Lauritzen, University of Oxford; November 15, 2004 Hypothesis testing We consider a family of densities F = {f(x; θ),

More information

P Values and Nuisance Parameters

P Values and Nuisance Parameters P Values and Nuisance Parameters Luc Demortier The Rockefeller University PHYSTAT-LHC Workshop on Statistical Issues for LHC Physics CERN, Geneva, June 27 29, 2007 Definition and interpretation of p values;

More information

Statistical Methods for Discovery and Limits in HEP Experiments Day 3: Exclusion Limits

Statistical Methods for Discovery and Limits in HEP Experiments Day 3: Exclusion Limits Statistical Methods for Discovery and Limits in HEP Experiments Day 3: Exclusion Limits www.pp.rhul.ac.uk/~cowan/stat_freiburg.html Vorlesungen des GK Physik an Hadron-Beschleunigern, Freiburg, 27-29 June,

More information

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing STAT 135 Lab 5 Bootstrapping and Hypothesis Testing Rebecca Barter March 2, 2015 The Bootstrap Bootstrap Suppose that we are interested in estimating a parameter θ from some population with members x 1,...,

More information

Physics 403. Segev BenZvi. Classical Hypothesis Testing: The Likelihood Ratio Test. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Classical Hypothesis Testing: The Likelihood Ratio Test. Department of Physics and Astronomy University of Rochester Physics 403 Classical Hypothesis Testing: The Likelihood Ratio Test Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Bayesian Hypothesis Testing Posterior Odds

More information

Statistical Methods for Astronomy

Statistical Methods for Astronomy Statistical Methods for Astronomy Probability (Lecture 1) Statistics (Lecture 2) Why do we need statistics? Useful Statistics Definitions Error Analysis Probability distributions Error Propagation Binomial

More information

Lecture Testing Hypotheses: The Neyman-Pearson Paradigm

Lecture Testing Hypotheses: The Neyman-Pearson Paradigm Math 408 - Mathematical Statistics Lecture 29-30. Testing Hypotheses: The Neyman-Pearson Paradigm April 12-15, 2013 Konstantin Zuev (USC) Math 408, Lecture 29-30 April 12-15, 2013 1 / 12 Agenda Example:

More information

Use of the likelihood principle in physics. Statistics II

Use of the likelihood principle in physics. Statistics II Use of the likelihood principle in physics Statistics II 1 2 3 + Bayesians vs Frequentists 4 Why ML does work? hypothesis observation 5 6 7 8 9 10 11 ) 12 13 14 15 16 Fit of Histograms corresponds This

More information

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1,

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1, Economics 520 Lecture Note 9: Hypothesis Testing via the Neyman-Pearson Lemma CB 8., 8.3.-8.3.3 Uniformly Most Powerful Tests and the Neyman-Pearson Lemma Let s return to the hypothesis testing problem

More information

Some Topics in Statistical Data Analysis

Some Topics in Statistical Data Analysis Some Topics in Statistical Data Analysis Invisibles School IPPP Durham July 15, 2013 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan G. Cowan

More information

Discovery significance with statistical uncertainty in the background estimate

Discovery significance with statistical uncertainty in the background estimate Glen Cowan, Eilam Gross ATLAS Statistics Forum 8 May, 2008 Discovery significance with statistical uncertainty in the background estimate Introduction In a search for a new type of event, data samples

More information

Lecture 2. G. Cowan Lectures on Statistical Data Analysis Lecture 2 page 1

Lecture 2. G. Cowan Lectures on Statistical Data Analysis Lecture 2 page 1 Lecture 2 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

Statistical Methods for Particle Physics

Statistical Methods for Particle Physics Statistical Methods for Particle Physics Invisibles School 8-13 July 2014 Château de Button Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Statistical Tools in Collider Experiments. Multivariate analysis in high energy physics

Statistical Tools in Collider Experiments. Multivariate analysis in high energy physics Statistical Tools in Collider Experiments Multivariate analysis in high energy physics Lecture 5 Pauli Lectures - 10/02/2012 Nicolas Chanon - ETH Zürich 1 Outline 1.Introduction 2.Multivariate methods

More information

Multivariate statistical methods and data mining in particle physics

Multivariate statistical methods and data mining in particle physics Multivariate statistical methods and data mining in particle physics RHUL Physics www.pp.rhul.ac.uk/~cowan Academic Training Lectures CERN 16 19 June, 2008 1 Outline Statement of the problem Some general

More information

Asymptotic formulae for likelihood-based tests of new physics

Asymptotic formulae for likelihood-based tests of new physics Eur. Phys. J. C (2011) 71: 1554 DOI 10.1140/epjc/s10052-011-1554-0 Special Article - Tools for Experiment and Theory Asymptotic formulae for likelihood-based tests of new physics Glen Cowan 1, Kyle Cranmer

More information

Statistics for the LHC Lecture 1: Introduction

Statistics for the LHC Lecture 1: Introduction Statistics for the LHC Lecture 1: Introduction Academic Training Lectures CERN, 14 17 June, 2010 indico.cern.ch/conferencedisplay.py?confid=77830 Glen Cowan Physics Department Royal Holloway, University

More information

Partitioning the Parameter Space. Topic 18 Composite Hypotheses

Partitioning the Parameter Space. Topic 18 Composite Hypotheses Topic 18 Composite Hypotheses Partitioning the Parameter Space 1 / 10 Outline Partitioning the Parameter Space 2 / 10 Partitioning the Parameter Space Simple hypotheses limit us to a decision between one

More information

Advanced statistical methods for data analysis Lecture 1

Advanced statistical methods for data analysis Lecture 1 Advanced statistical methods for data analysis Lecture 1 RHUL Physics www.pp.rhul.ac.uk/~cowan Universität Mainz Klausurtagung des GK Eichtheorien exp. Tests... Bullay/Mosel 15 17 September, 2008 1 Outline

More information

Testing Hypotheses in Particle Physics: Plots of p 0 Versus p 1

Testing Hypotheses in Particle Physics: Plots of p 0 Versus p 1 Testing Hypotheses in Particle Physics: Plots of p 0 Versus p 1 Luc Demortier, Louis Lyons Laboratory of Experimental High Energy Physics The Rockefeller University, New York, NY 10065, USA Blackett Laboratory

More information

Chapters 10. Hypothesis Testing

Chapters 10. Hypothesis Testing Chapters 10. Hypothesis Testing Some examples of hypothesis testing 1. Toss a coin 100 times and get 62 heads. Is this coin a fair coin? 2. Is the new treatment on blood pressure more effective than the

More information

Parameter Estimation, Sampling Distributions & Hypothesis Testing

Parameter Estimation, Sampling Distributions & Hypothesis Testing Parameter Estimation, Sampling Distributions & Hypothesis Testing Parameter Estimation & Hypothesis Testing In doing research, we are usually interested in some feature of a population distribution (which

More information

ORF 245 Fundamentals of Statistics Chapter 9 Hypothesis Testing

ORF 245 Fundamentals of Statistics Chapter 9 Hypothesis Testing ORF 245 Fundamentals of Statistics Chapter 9 Hypothesis Testing Robert Vanderbei Fall 2014 Slides last edited on November 24, 2014 http://www.princeton.edu/ rvdb Coin Tossing Example Consider two coins.

More information

Journeys of an Accidental Statistician

Journeys of an Accidental Statistician Journeys of an Accidental Statistician A partially anecdotal account of A Unified Approach to the Classical Statistical Analysis of Small Signals, GJF and Robert D. Cousins, Phys. Rev. D 57, 3873 (1998)

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 524 Detection and Estimation Theory Joseph A. O Sullivan Samuel C. Sachs Professor Electronic Systems and Signals Research Laboratory Electrical and Systems Engineering Washington University 211 Urbauer

More information

Stat 135, Fall 2006 A. Adhikari HOMEWORK 6 SOLUTIONS

Stat 135, Fall 2006 A. Adhikari HOMEWORK 6 SOLUTIONS Stat 135, Fall 2006 A. Adhikari HOMEWORK 6 SOLUTIONS 1a. Under the null hypothesis X has the binomial (100,.5) distribution with E(X) = 50 and SE(X) = 5. So P ( X 50 > 10) is (approximately) two tails

More information

Introductory Statistics Course Part II

Introductory Statistics Course Part II Introductory Statistics Course Part II https://indico.cern.ch/event/735431/ PHYSTAT ν CERN 22-25 January 2019 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

arxiv: v3 [physics.data-an] 24 Jun 2013

arxiv: v3 [physics.data-an] 24 Jun 2013 arxiv:07.727v3 [physics.data-an] 24 Jun 203 Asymptotic formulae for likelihood-based tests of new physics Glen Cowan, Kyle Cranmer 2, Eilam Gross 3, Ofer Vitells 3 Physics Department, Royal Holloway, University

More information

Signal Detection Basics - CFAR

Signal Detection Basics - CFAR Signal Detection Basics - CFAR Types of noise clutter and signals targets Signal separation by comparison threshold detection Signal Statistics - Parameter estimation Threshold determination based on the

More information

Hypothesis testing. Chapter Formulating a hypothesis. 7.2 Testing if the hypothesis agrees with data

Hypothesis testing. Chapter Formulating a hypothesis. 7.2 Testing if the hypothesis agrees with data Chapter 7 Hypothesis testing 7.1 Formulating a hypothesis Up until now we have discussed how to define a measurement in terms of a central value, uncertainties, and units, as well as how to extend these

More information

Confidence Intervals. First ICFA Instrumentation School/Workshop. Harrison B. Prosper Florida State University

Confidence Intervals. First ICFA Instrumentation School/Workshop. Harrison B. Prosper Florida State University Confidence Intervals First ICFA Instrumentation School/Workshop At Morelia,, Mexico, November 18-29, 2002 Harrison B. Prosper Florida State University Outline Lecture 1 Introduction Confidence Intervals

More information

LECTURE 10: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING. The last equality is provided so this can look like a more familiar parametric test.

LECTURE 10: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING. The last equality is provided so this can look like a more familiar parametric test. Economics 52 Econometrics Professor N.M. Kiefer LECTURE 1: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING NEYMAN-PEARSON LEMMA: Lesson: Good tests are based on the likelihood ratio. The proof is easy in the

More information

MODIFIED FREQUENTIST ANALYSIS OF SEARCH RESULTS (THE CL s METHOD)

MODIFIED FREQUENTIST ANALYSIS OF SEARCH RESULTS (THE CL s METHOD) MODIFIED FREQUENTIST ANALYSIS OF SEARCH RESULTS (THE CL s METHOD) A. L. Read University of Oslo, Department of Physics, P.O. Box 148, Blindern, 316 Oslo 3, Norway Abstract The statistical analysis of direct

More information

Lecture 28 Chi-Square Analysis

Lecture 28 Chi-Square Analysis Lecture 28 STAT 225 Introduction to Probability Models April 23, 2014 Whitney Huang Purdue University 28.1 χ 2 test for For a given contingency table, we want to test if two have a relationship or not

More information

Hypothesis Testing Chap 10p460

Hypothesis Testing Chap 10p460 Hypothesis Testing Chap 1p46 Elements of a statistical test p462 - Null hypothesis - Alternative hypothesis - Test Statistic - Rejection region Rejection Region p462 The rejection region (RR) specifies

More information

Systematic uncertainties in statistical data analysis for particle physics. DESY Seminar Hamburg, 31 March, 2009

Systematic uncertainties in statistical data analysis for particle physics. DESY Seminar Hamburg, 31 March, 2009 Systematic uncertainties in statistical data analysis for particle physics DESY Seminar Hamburg, 31 March, 2009 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Search and Discovery Statistics in HEP

Search and Discovery Statistics in HEP Search and Discovery Statistics in HEP Eilam Gross, Weizmann Institute of Science This presentation would have not been possible without the tremendous help of the following people throughout many years

More information

http://www.math.uah.edu/stat/hypothesis/.xhtml 1 of 5 7/29/2009 3:14 PM Virtual Laboratories > 9. Hy pothesis Testing > 1 2 3 4 5 6 7 1. The Basic Statistical Model As usual, our starting point is a random

More information

Statistics of Small Signals

Statistics of Small Signals Statistics of Small Signals Gary Feldman Harvard University NEPPSR August 17, 2005 Statistics of Small Signals In 1998, Bob Cousins and I were working on the NOMAD neutrino oscillation experiment and we

More information

Confidence Limits and Intervals 3: Various other topics. Roger Barlow SLUO Lectures on Statistics August 2006

Confidence Limits and Intervals 3: Various other topics. Roger Barlow SLUO Lectures on Statistics August 2006 Confidence Limits and Intervals 3: Various other topics Roger Barlow SLUO Lectures on Statistics August 2006 Contents 1.Likelihood and lnl 2.Multidimensional confidence regions 3.Systematic errors: various

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Structural Health Monitoring Using Statistical Pattern Recognition Introduction to Statistical Inference Presented by Charles R. Farrar, Ph.D., P.E. Outline Introduce statistical decision making for Structural

More information

Hypothesis Testing and Confidence Intervals (Part 2): Cohen s d, Logic of Testing, and Confidence Intervals

Hypothesis Testing and Confidence Intervals (Part 2): Cohen s d, Logic of Testing, and Confidence Intervals Hypothesis Testing and Confidence Intervals (Part 2): Cohen s d, Logic of Testing, and Confidence Intervals Lecture 9 Justin Kern April 9, 2018 Measuring Effect Size: Cohen s d Simply finding whether a

More information

E. Santovetti lesson 4 Maximum likelihood Interval estimation

E. Santovetti lesson 4 Maximum likelihood Interval estimation E. Santovetti lesson 4 Maximum likelihood Interval estimation 1 Extended Maximum Likelihood Sometimes the number of total events measurements of the experiment n is not fixed, but, for example, is a Poisson

More information

hypothesis testing 1

hypothesis testing 1 hypothesis testing 1 Does smoking cause cancer? competing hypotheses (a) No; we don t know what causes cancer, but smokers are no more likely to get it than nonsmokers (b) Yes; a much greater % of smokers

More information

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)?

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)? ECE 830 / CS 76 Spring 06 Instructors: R. Willett & R. Nowak Lecture 3: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we

More information

(1) Introduction to Bayesian statistics

(1) Introduction to Bayesian statistics Spring, 2018 A motivating example Student 1 will write down a number and then flip a coin If the flip is heads, they will honestly tell student 2 if the number is even or odd If the flip is tails, they

More information

Direction: This test is worth 250 points and each problem worth points. DO ANY SIX

Direction: This test is worth 250 points and each problem worth points. DO ANY SIX Term Test 3 December 5, 2003 Name Math 52 Student Number Direction: This test is worth 250 points and each problem worth 4 points DO ANY SIX PROBLEMS You are required to complete this test within 50 minutes

More information

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary ECE 830 Spring 207 Instructor: R. Willett Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we saw that the likelihood

More information

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes Neyman-Pearson paradigm. Suppose that a researcher is interested in whether the new drug works. The process of determining whether the outcome of the experiment points to yes or no is called hypothesis

More information

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015 STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots March 8, 2015 The duality between CI and hypothesis testing The duality between CI and hypothesis

More information

Topic 15: Simple Hypotheses

Topic 15: Simple Hypotheses Topic 15: November 10, 2009 In the simplest set-up for a statistical hypothesis, we consider two values θ 0, θ 1 in the parameter space. We write the test as H 0 : θ = θ 0 versus H 1 : θ = θ 1. H 0 is

More information

Detection and Estimation Chapter 1. Hypothesis Testing

Detection and Estimation Chapter 1. Hypothesis Testing Detection and Estimation Chapter 1. Hypothesis Testing Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2015 1/20 Syllabus Homework:

More information

6.4 Type I and Type II Errors

6.4 Type I and Type II Errors 6.4 Type I and Type II Errors Ulrich Hoensch Friday, March 22, 2013 Null and Alternative Hypothesis Neyman-Pearson Approach to Statistical Inference: A statistical test (also known as a hypothesis test)

More information

Parameter Estimation and Hypothesis Testing

Parameter Estimation and Hypothesis Testing Parameter Estimation and Hypothesis Testing Parameter estimation Maximum likelihood Least squares Hypothesis tests Goodness-of-fit Elton S. Smith Jefferson Lab Con ayuda de Eduardo Medinaceli y Cristian

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Topic 3: Hypothesis Testing

Topic 3: Hypothesis Testing CS 8850: Advanced Machine Learning Fall 07 Topic 3: Hypothesis Testing Instructor: Daniel L. Pimentel-Alarcón c Copyright 07 3. Introduction One of the simplest inference problems is that of deciding between

More information

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Lecture No. # 36 Sampling Distribution and Parameter Estimation

More information

HYPOTHESIS TESTING: FREQUENTIST APPROACH.

HYPOTHESIS TESTING: FREQUENTIST APPROACH. HYPOTHESIS TESTING: FREQUENTIST APPROACH. These notes summarize the lectures on (the frequentist approach to) hypothesis testing. You should be familiar with the standard hypothesis testing from previous

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability & Mathematical Statistics May 2011 Examinations INDICATIVE SOLUTION Introduction The indicative solution has been written by the Examiners with the

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics MAS 713 Chapter 8 Previous lecture: 1 Bayesian Inference 2 Decision theory 3 Bayesian Vs. Frequentist 4 Loss functions 5 Conjugate priors Any questions? Mathematical Statistics

More information

ETH Zurich HS Mauro Donegà: Higgs physics meeting name date 1

ETH Zurich HS Mauro Donegà: Higgs physics meeting name date 1 Higgs physics - lecture 4 ETH Zurich HS 2015 Mauro Donegà Mauro Donegà: Higgs physics meeting name date 1 Outline 1 2 3 4 5 6 Introduction Accelerators Detectors EW constraints Search at LEP1 / LEP 2 Statistics:

More information

Statistical Methods for Particle Physics Lecture 2: statistical tests, multivariate methods

Statistical Methods for Particle Physics Lecture 2: statistical tests, multivariate methods Statistical Methods for Particle Physics Lecture 2: statistical tests, multivariate methods www.pp.rhul.ac.uk/~cowan/stat_aachen.html Graduierten-Kolleg RWTH Aachen 10-14 February 2014 Glen Cowan Physics

More information

Physics 403. Segev BenZvi. Choosing Priors and the Principle of Maximum Entropy. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Choosing Priors and the Principle of Maximum Entropy. Department of Physics and Astronomy University of Rochester Physics 403 Choosing Priors and the Principle of Maximum Entropy Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Odds Ratio Occam Factors

More information

Statistical Methods in Particle Physics Day 4: Discovery and limits

Statistical Methods in Particle Physics Day 4: Discovery and limits Statistical Methods in Particle Physics Day 4: Discovery and limits 清华大学高能物理研究中心 2010 年 4 月 12 16 日 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Summary of Chapters 7-9

Summary of Chapters 7-9 Summary of Chapters 7-9 Chapter 7. Interval Estimation 7.2. Confidence Intervals for Difference of Two Means Let X 1,, X n and Y 1, Y 2,, Y m be two independent random samples of sizes n and m from two

More information

ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters

ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters D. Richard Brown III Worcester Polytechnic Institute 26-February-2009 Worcester Polytechnic Institute D. Richard Brown III 26-February-2009

More information

AST 418/518 Instrumentation and Statistics

AST 418/518 Instrumentation and Statistics AST 418/518 Instrumentation and Statistics Class Website: http://ircamera.as.arizona.edu/astr_518 Class Texts: Practical Statistics for Astronomers, J.V. Wall, and C.R. Jenkins Measuring the Universe,

More information

Statistical Methods in Particle Physics Lecture 1: Bayesian methods

Statistical Methods in Particle Physics Lecture 1: Bayesian methods Statistical Methods in Particle Physics Lecture 1: Bayesian methods SUSSP65 St Andrews 16 29 August 2009 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Statistical methods in CMS searches

Statistical methods in CMS searches Statistical methods in searches Amnon Harel, on behalf of the collaboration University of Rochester Introduction Abstract A review of the statistical methods used in the first searches for new physics

More information

ECE531 Screencast 11.4: Composite Neyman-Pearson Hypothesis Testing

ECE531 Screencast 11.4: Composite Neyman-Pearson Hypothesis Testing ECE531 Screencast 11.4: Composite Neyman-Pearson Hypothesis Testing D. Richard Brown III Worcester Polytechnic Institute Worcester Polytechnic Institute D. Richard Brown III 1 / 8 Basics Hypotheses H 0

More information

Second Workshop, Third Summary

Second Workshop, Third Summary Statistical Issues Relevant to Significance of Discovery Claims Second Workshop, Third Summary Luc Demortier The Rockefeller University Banff, July 16, 2010 1 / 23 1 In the Beginning There Were Questions...

More information

Importance Sampling and. Radon-Nikodym Derivatives. Steven R. Dunbar. Sampling with respect to 2 distributions. Rare Event Simulation

Importance Sampling and. Radon-Nikodym Derivatives. Steven R. Dunbar. Sampling with respect to 2 distributions. Rare Event Simulation 1 / 33 Outline 1 2 3 4 5 2 / 33 More than one way to evaluate a statistic A statistic for X with pdf u(x) is A = E u [F (X)] = F (x)u(x) dx 3 / 33 Suppose v(x) is another probability density such that

More information

Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing

Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing Agenda Introduction to Estimation Point estimation Interval estimation Introduction to Hypothesis Testing Concepts en terminology

More information

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Probability quantifies randomness and uncertainty How do I estimate the normalization and logarithmic slope of a X ray continuum, assuming

More information

Confidence Intervals and Hypothesis Tests

Confidence Intervals and Hypothesis Tests Confidence Intervals and Hypothesis Tests STA 281 Fall 2011 1 Background The central limit theorem provides a very powerful tool for determining the distribution of sample means for large sample sizes.

More information

ECE531 Screencast 9.2: N-P Detection with an Infinite Number of Possible Observations

ECE531 Screencast 9.2: N-P Detection with an Infinite Number of Possible Observations ECE531 Screencast 9.2: N-P Detection with an Infinite Number of Possible Observations D. Richard Brown III Worcester Polytechnic Institute Worcester Polytechnic Institute D. Richard Brown III 1 / 7 Neyman

More information

Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1)

Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1) Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1) Detection problems can usually be casted as binary or M-ary hypothesis testing problems. Applications: This chapter: Simple hypothesis

More information

TUTORIAL 8 SOLUTIONS #

TUTORIAL 8 SOLUTIONS # TUTORIAL 8 SOLUTIONS #9.11.21 Suppose that a single observation X is taken from a uniform density on [0,θ], and consider testing H 0 : θ = 1 versus H 1 : θ =2. (a) Find a test that has significance level

More information