Confidence Intervals Lecture 2

Size: px
Start display at page:

Download "Confidence Intervals Lecture 2"

Transcription

1 Confidence Intervals Lecture 2 First ICFA Instrumentation School/Workshop At Morelia,, Mexico, November 18-29, 2002 Harrison B. rosper Florida State University

2 Recap of Lecture 1 To interpret a confidence level as a relative frequency requires the concept of a set of ensembles of experiments. Each ensemble has a coverage probability,, which is simply the fraction of experiments in the ensemble with intervals that contain the value of the parameter pertaining to that ensemble. The confidence level is the minimum coverage probability over the set of ensembles. November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper 2

3 What s Wrong With Ensembles? Nothing, if they are obectively real, such as: The people in Morelia between the ages of 16 and 26 Daily temperature data in Morelia during the last decade But the ensembles used in data analysis typically are not There was only a single instance of Run I of DØ and CDF. But to determine confidence levels with a frequency interpretation we must embed the two experiments into ensembles, that is, we must decide what constitutes a repetition of the experiments. The problem is that reasonable people sometimes disagree about the choice of ensembles, but, because the ensembles are not real, there is generally no simple way to resolve disagreements. November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper 5

4 Outline Deductive Reasoning Inductive Reasoning robability Bayes Theorem Example Summary November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper

5 Deductive Reasoning Consider the propositions: A this is a baby B she cries a lot Maor premise: If A is TRUE, then B is TRUE Minor premise: A is TRUE Conclusion: Therefore, B is TRUE Maor premise: If A is TRUE, then B is TRUE Minor premise: B is FALSE Conclusion: Therefore, A is FALSE Aristotle, ~ 350 BC AB A November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper

6 A this is a baby B she cries a lot Deductive Reasoning - ii Maor premise: If A is TRUE, then B is TRUE Minor premise: A is FALSE Conclusion: Therefore, B is? Maor premise: If A is TRUE, then B is TRUE Minor premise: B is TRUE Conclusion: Therefore, A is? AB A November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper

7 A this is a baby B she cries a lot Inductive Reasoning Maor premise: If A is TRUE, then B is TRUE Minor premise: B is TRUE Conclusion: Therefore, A is more plausible Maor premise: If A is TRUE, then B is TRUE Minor premise: A is FALSE Conclusion: Therefore, B is less plausible Can plausible be made precise? November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper

8 Yes! Bayes1763, Laplace1774, Boole1854, Jeffreys1939, Cox1946, olya1946, Jaynes1957 In 1946, the physicist Richard Cox showed that inductive reasoning follows rules that are isomorphic to those of probability theory November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper

9 The Rules of Inductive Reasoning: Boolean Algebra + robability Boolean Algebra A A + 0 A + A 1 A + B B + A A + B C A + B A + C A 1 A A A 0 A B B A A B + C A B + A C November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper

10 November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper 12 robability robability / / A AB A B B AB B A B A AB AB B A B A + + Conditional robability A theorem

11 robability - ii roduct Rule AB B A A A B B Sum Rule A B + A B 1 Sum Rule Bayes Theorem B A A B B/ A These rules together with Boolean algebra are the foundation of Bayesian robability Theory November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper

12 Bayes Theorem C D i A A C D i C D i / A if C D i C D i then we can write Bayes' Theorem as are exhaustive propositions, i.e., A i, A C D A C D i i C D i i C D i, C D i A 1, We can sum over propositions that are of no interest marginalization C i A CiD A November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper

13 Bayes Theorem: Example 1 Signal/Background Discrimination S Signal B Background S Data Data S S Data S S + Data B B The probability SData Data, of an event being a signal given some event Data,, can be approximated in several ways, for example, with a feed-forward forward neural network November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper 15

14 Bayes Theorem: Continuous ropositions posterior θ, λ x, I likelihood marginalization prior x θ, λ, I θ, λ I θ, λ x θ, λ, I θ, λ I θ x, I θ, λ x, I λ θ, λ x, I f θ, λ x dθ dλ I is the prior information November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper

15 Bayes Theorem: Model Comparison Standard Model For each model M, we integrate over the parameters of the theory. L x M, I x θ, M, I θ M, I θ M x, I M L x M, I M I L x M, I M I Mx,I is the probability of model M given data x. SUSY Models November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper 17

16 Bayesian measures of uncertainty Variance Bayesian Confidence Interval 2 2 σ θ θ θ x, I where β θ θ u x θ ˆ θ θ x, I θ θ x, I θ l x Also known as a Credible Interval November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper

17 Example 1: Counting Experiment Experiment: To measure the mean rate of UHECRs above ev per unit solid angle. Assume the probability of N events to be a given by a oisson distribution θ e θ n θ, θ < n n! n >, σ θ November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper 19

18 Example 1: Counting Experiment - ii Apply Bayes Theorem θ n, I n n θ, I θ I θ, I θ I What should we take for the prior probability I? θ How about I d? θ n, I e θ n! θ n November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper 20

19 But why choose I d? Why not 2 I d? Or tan I d? Choosing a prior probability in the absence of useful prior information is a difficult and controversial problem. The difficulty is to determine the variable in terms of which the prior probability density is constant. In practice one considers a class of prior probabilities and uses it to assess the sensitivity of the results to the choice of prior. November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper 21

20 Credible Intervals With I d 20 Bayesian Interval - oisson Distribution Bayesian 15 arameter 10 N± N Count November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper 22

21 Credible Interval Widths 10 Width of Intervals 8 Bayesian Interval Width 6 4 N± N Count Bayesian RootN November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper 23

22 Coverage robabilities: Credible Intervals 1 Coverage robability 0.8 Bayesian robability Even though these are 0.2 Bayesian intervals nothing prevents us from studying their frequency behavior with respect to some ensemble! oisson arameter November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper 24

23 Bayes Theorem: Measuring a Cross-section section Model θ σl +b Data n rior information lˆ,, ˆ, δl b δb Likelihood n σ, b, l, I e θ n! θ n l is the efficiency times branching fraction times integrated luminosity b is the mean background count lˆ, bˆ are estimates November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper

24 Measuring a Cross-section section - ii Apply Bayes Theorem: posterior likelihood n σ, b, l, I σ, b, l I σ, b, l n, I n σ, b, l, I σ, b, l I σ, b, l Then marginalize: that is, integrate over nuisance parameters σ n, I σ, b, l n, I b, l prior November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper

25 November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper 27 What rior? What rior?,, so we can write, and,, But usually,,,,,, I I b I l I b l I b I b I l I b l I I b I b l I b l σ σ σ σ σ σ σ σ We can usually write down something sensible for the luminosity and background priors. But, again, what to write for the cross-section prior is controversial. In DØ and CDF, as a matter of convention, we set I d I d Rule: Always report the Rule: Always report the prior prior you have used! you have used!

26 Summary Confidence levels are probabilities; as such, their interpretation depends on the interpretation of probability adopted If one adopts a frequency interpretation the confidence level is tied to the set of ensembles one uses and is a property of that set. Typically, however, these ensembles do not obectively exist. If one adopts a degree of belief interpretation the confidence level is a property of the interval calculated. A set of ensembles is not required for interpretation. However, the results necessarily depend on the choice of prior. November 21, 2002 First ICFA Instrumentation School/Workshop Harrison B. rosper 28

Confidence Intervals. First ICFA Instrumentation School/Workshop. Harrison B. Prosper Florida State University

Confidence Intervals. First ICFA Instrumentation School/Workshop. Harrison B. Prosper Florida State University Confidence Intervals First ICFA Instrumentation School/Workshop At Morelia,, Mexico, November 18-29, 2002 Harrison B. Prosper Florida State University Outline Lecture 1 Introduction Confidence Intervals

More information

2. A Basic Statistical Toolbox

2. A Basic Statistical Toolbox . A Basic Statistical Toolbo Statistics is a mathematical science pertaining to the collection, analysis, interpretation, and presentation of data. Wikipedia definition Mathematical statistics: concerned

More information

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007 Bayesian inference Fredrik Ronquist and Peter Beerli October 3, 2007 1 Introduction The last few decades has seen a growing interest in Bayesian inference, an alternative approach to statistical inference.

More information

Bayesian Model Specification: Toward a Theory of Applied Statistics

Bayesian Model Specification: Toward a Theory of Applied Statistics Bayesian Model Specification: Toward a Theory of Applied Statistics David Draper Department of Applied Mathematics and Statistics University of California, Santa Cruz draper@ams.ucsc.edu www.ams.ucsc.edu/

More information

BFF Four: Are we Converging?

BFF Four: Are we Converging? BFF Four: Are we Converging? Nancy Reid May 2, 2017 Classical Approaches: A Look Way Back Nature of Probability BFF one to three: a look back Comparisons Are we getting there? BFF Four Harvard, May 2017

More information

Confidence Distribution

Confidence Distribution Confidence Distribution Xie and Singh (2013): Confidence distribution, the frequentist distribution estimator of a parameter: A Review Céline Cunen, 15/09/2014 Outline of Article Introduction The concept

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

Harrison B. Prosper. CMS Statistics Committee

Harrison B. Prosper. CMS Statistics Committee Harrison B. Prosper Florida State University CMS Statistics Committee 08-08-08 Bayesian Methods: Theory & Practice. Harrison B. Prosper 1 h Lecture 3 Applications h Hypothesis Testing Recap h A Single

More information

Probability and Inference

Probability and Inference Deniz Yuret ECOE 554 Lecture 3 Outline 1 Probabilities and ensembles 2 3 Ensemble An ensemble X is a triple (x, A X, P X ), where the outcome x is the value of a random variable, which takes on one of

More information

Bayesian inference in a nutshell

Bayesian inference in a nutshell Bayesian inference in a nutshell Tom Loredo Dept. of Astronomy, Cornell University http://www.astro.cornell.edu/staff/loredo/ Cosmic Populations @ CASt 9 10 June 2014 1/43 Bayesian inference in a nutshell

More information

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio Estimation of reliability parameters from Experimental data (Parte 2) This lecture Life test (t 1,t 2,...,t n ) Estimate θ of f T t θ For example: λ of f T (t)= λe - λt Classical approach (frequentist

More information

Statistics of Small Signals

Statistics of Small Signals Statistics of Small Signals Gary Feldman Harvard University NEPPSR August 17, 2005 Statistics of Small Signals In 1998, Bob Cousins and I were working on the NOMAD neutrino oscillation experiment and we

More information

Bayesian Inference for Normal Mean

Bayesian Inference for Normal Mean Al Nosedal. University of Toronto. November 18, 2015 Likelihood of Single Observation The conditional observation distribution of y µ is Normal with mean µ and variance σ 2, which is known. Its density

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

An introduction to Bayesian reasoning in particle physics

An introduction to Bayesian reasoning in particle physics An introduction to Bayesian reasoning in particle physics Graduiertenkolleg seminar, May 15th 2013 Overview Overview A concrete example Scientific reasoning Probability and the Bayesian interpretation

More information

Bayesian Data Analysis

Bayesian Data Analysis An Introduction to Bayesian Data Analysis Lecture 1 D. S. Sivia St. John s College Oxford, England April 29, 2012 Some recommended books........................................................ 2 Outline.......................................................................

More information

Statistics for the LHC Lecture 1: Introduction

Statistics for the LHC Lecture 1: Introduction Statistics for the LHC Lecture 1: Introduction Academic Training Lectures CERN, 14 17 June, 2010 indico.cern.ch/conferencedisplay.py?confid=77830 Glen Cowan Physics Department Royal Holloway, University

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 20 Lecture 6 : Bayesian Inference

More information

Statistics for Particle Physics. Kyle Cranmer. New York University. Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5, 2009

Statistics for Particle Physics. Kyle Cranmer. New York University. Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5, 2009 Statistics for Particle Physics Kyle Cranmer New York University 91 Remaining Lectures Lecture 3:! Compound hypotheses, nuisance parameters, & similar tests! The Neyman-Construction (illustrated)! Inverted

More information

The dark energ ASTR509 - y 2 puzzl e 2. Probability ASTR509 Jasper Wal Fal term

The dark energ ASTR509 - y 2 puzzl e 2. Probability ASTR509 Jasper Wal Fal term The ASTR509 dark energy - 2 puzzle 2. Probability ASTR509 Jasper Wall Fall term 2013 1 The Review dark of energy lecture puzzle 1 Science is decision - we must work out how to decide Decision is by comparing

More information

Treatment and analysis of data Applied statistics Lecture 4: Estimation

Treatment and analysis of data Applied statistics Lecture 4: Estimation Treatment and analysis of data Applied statistics Lecture 4: Estimation Topics covered: Hierarchy of estimation methods Modelling of data The likelihood function The Maximum Likelihood Estimate (MLE) Confidence

More information

Bayesian Inference. Anders Gorm Pedersen. Molecular Evolution Group Center for Biological Sequence Analysis Technical University of Denmark (DTU)

Bayesian Inference. Anders Gorm Pedersen. Molecular Evolution Group Center for Biological Sequence Analysis Technical University of Denmark (DTU) Bayesian Inference Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis Technical University of Denmark (DTU) Background: Conditional probability A P (B A) = A,B P (A,

More information

Probability and (Bayesian) Data Analysis

Probability and (Bayesian) Data Analysis Department of Statistics The University of Auckland https://www.stat.auckland.ac.nz/ brewer/ Where to get everything To get all of the material (slides, code, exercises): git clone --recursive https://github.com/eggplantbren/madrid

More information

Bayesian Inference in Astronomy & Astrophysics A Short Course

Bayesian Inference in Astronomy & Astrophysics A Short Course Bayesian Inference in Astronomy & Astrophysics A Short Course Tom Loredo Dept. of Astronomy, Cornell University p.1/37 Five Lectures Overview of Bayesian Inference From Gaussians to Periodograms Learning

More information

Choosing among models

Choosing among models Eco 515 Fall 2014 Chris Sims Choosing among models September 18, 2014 c 2014 by Christopher A. Sims. This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

Generative Techniques: Bayes Rule and the Axioms of Probability

Generative Techniques: Bayes Rule and the Axioms of Probability Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2016/2017 Lesson 8 3 March 2017 Generative Techniques: Bayes Rule and the Axioms of Probability Generative

More information

Data Analysis and Monte Carlo Methods

Data Analysis and Monte Carlo Methods Lecturer: Allen Caldwell, Max Planck Institute for Physics & TUM Recitation Instructor: Oleksander (Alex) Volynets, MPP & TUM General Information: - Lectures will be held in English, Mondays 16-18:00 -

More information

Bayesian Reasoning. Adapted from slides by Tim Finin and Marie desjardins.

Bayesian Reasoning. Adapted from slides by Tim Finin and Marie desjardins. Bayesian Reasoning Adapted from slides by Tim Finin and Marie desjardins. 1 Outline Probability theory Bayesian inference From the joint distribution Using independence/factoring From sources of evidence

More information

Inquiry Calculus and the Issue of Negative Higher Order Informations

Inquiry Calculus and the Issue of Negative Higher Order Informations Article Inquiry Calculus and the Issue of Negative Higher Order Informations H. R. Noel van Erp, *, Ronald O. Linger and Pieter H. A. J. M. van Gelder,2 ID Safety and Security Science Group, TU Delft,

More information

Introduction to Bayesian Data Analysis

Introduction to Bayesian Data Analysis Introduction to Bayesian Data Analysis Phil Gregory University of British Columbia March 2010 Hardback (ISBN-10: 052184150X ISBN-13: 9780521841504) Resources and solutions This title has free Mathematica

More information

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33 Hypothesis Testing Econ 690 Purdue University Justin L. Tobias (Purdue) Testing 1 / 33 Outline 1 Basic Testing Framework 2 Testing with HPD intervals 3 Example 4 Savage Dickey Density Ratio 5 Bartlett

More information

E. Santovetti lesson 4 Maximum likelihood Interval estimation

E. Santovetti lesson 4 Maximum likelihood Interval estimation E. Santovetti lesson 4 Maximum likelihood Interval estimation 1 Extended Maximum Likelihood Sometimes the number of total events measurements of the experiment n is not fixed, but, for example, is a Poisson

More information

Introduction to Bayesian Inference Lecture 1: Fundamentals

Introduction to Bayesian Inference Lecture 1: Fundamentals Introduction to Bayesian Inference Lecture 1: Fundamentals Tom Loredo Dept. of Astronomy, Cornell University http://www.astro.cornell.edu/staff/loredo/bayes/ CASt Summer School 11 June 2010 1/ 59 Lecture

More information

STA 250: Statistics. Notes 7. Bayesian Approach to Statistics. Book chapters: 7.2

STA 250: Statistics. Notes 7. Bayesian Approach to Statistics. Book chapters: 7.2 STA 25: Statistics Notes 7. Bayesian Aroach to Statistics Book chaters: 7.2 1 From calibrating a rocedure to quantifying uncertainty We saw that the central idea of classical testing is to rovide a rigorous

More information

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course Bayesian Inference Chris Mathys Wellcome Trust Centre for Neuroimaging UCL London SPM Course Thanks to Jean Daunizeau and Jérémie Mattout for previous versions of this talk A spectacular piece of information

More information

Journeys of an Accidental Statistician

Journeys of an Accidental Statistician Journeys of an Accidental Statistician A partially anecdotal account of A Unified Approach to the Classical Statistical Analysis of Small Signals, GJF and Robert D. Cousins, Phys. Rev. D 57, 3873 (1998)

More information

Bayesian inference: what it means and why we care

Bayesian inference: what it means and why we care Bayesian inference: what it means and why we care Robin J. Ryder Centre de Recherche en Mathématiques de la Décision Université Paris-Dauphine 6 November 2017 Mathematical Coffees Robin Ryder (Dauphine)

More information

FREQUENTIST BEHAVIOR OF FORMAL BAYESIAN INFERENCE

FREQUENTIST BEHAVIOR OF FORMAL BAYESIAN INFERENCE FREQUENTIST BEHAVIOR OF FORMAL BAYESIAN INFERENCE Donald A. Pierce Oregon State Univ (Emeritus), RERF Hiroshima (Retired), Oregon Health Sciences Univ (Adjunct) Ruggero Bellio Univ of Udine For Perugia

More information

CSE 20. Lecture 4: Introduction to Boolean algebra. CSE 20: Lecture4

CSE 20. Lecture 4: Introduction to Boolean algebra. CSE 20: Lecture4 CSE 20 Lecture 4: Introduction to Boolean algebra Reminder First quiz will be on Friday (17th January) in class. It is a paper quiz. Syllabus is all that has been done till Wednesday. If you want you may

More information

Uncertainties in estimates of the occurrence rate of rare space weather events

Uncertainties in estimates of the occurrence rate of rare space weather events Uncertainties in estimates of the occurrence rate of rare space weather events Jeffrey J. Love Geomagnetism Program USGS Natural Hazards Mission jlove@usgs.gov Love, J. J., 2012. Credible occurrence probabilities

More information

Basic of Probability Theory for Ph.D. students in Education, Social Sciences and Business (Shing On LEUNG and Hui Ping WU) (May 2015)

Basic of Probability Theory for Ph.D. students in Education, Social Sciences and Business (Shing On LEUNG and Hui Ping WU) (May 2015) Basic of Probability Theory for Ph.D. students in Education, Social Sciences and Business (Shing On LEUNG and Hui Ping WU) (May 2015) This is a series of 3 talks respectively on: A. Probability Theory

More information

An English translation of Laplace s Théorie Analytique des Probabilités is available online at the departmental website of Richard Pulskamp (Math

An English translation of Laplace s Théorie Analytique des Probabilités is available online at the departmental website of Richard Pulskamp (Math An English translation of Laplace s Théorie Analytique des Probabilités is available online at the departmental website of Richard Pulskamp (Math Dept, Xavier U, Cincinnati). Ed Jaynes would have rejoiced

More information

A Discussion of the Bayesian Approach

A Discussion of the Bayesian Approach A Discussion of the Bayesian Approach Reference: Chapter 10 of Theoretical Statistics, Cox and Hinkley, 1974 and Sujit Ghosh s lecture notes David Madigan Statistics The subject of statistics concerns

More information

Lecture 23 Maximum Likelihood Estimation and Bayesian Inference

Lecture 23 Maximum Likelihood Estimation and Bayesian Inference Lecture 23 Maximum Likelihood Estimation and Bayesian Inference Thais Paiva STA 111 - Summer 2013 Term II August 7, 2013 1 / 31 Thais Paiva STA 111 - Summer 2013 Term II Lecture 23, 08/07/2013 Lecture

More information

Introduction to Probability for Graphical Models

Introduction to Probability for Graphical Models Introduction to Probability for Grahical Models CSC 4 Kaustav Kundu Thursday January 4, 06 *Most slides based on Kevin Swersky s slides, Inmar Givoni s slides, Danny Tarlow s slides, Jaser Snoek s slides,

More information

(Dated: July 1, 2004) Abstract. In Run I, the DØ Collaboration adopted a Bayesian method for calculating confidence limits that

(Dated: July 1, 2004) Abstract. In Run I, the DØ Collaboration adopted a Bayesian method for calculating confidence limits that DRAFT Calculating Confidence Limits DØNote 4491 J. Linnemann 1, M. Paterno 2 and H.B. Prosper 3 1 Michigan State University, East Lansing, Michigan 48824 2 Fermi National Accelerator Laboratory, Batavia,

More information

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Why uncertainty? Why should data mining care about uncertainty? We

More information

Objective Bayesian Upper Limits for Poisson Processes

Objective Bayesian Upper Limits for Poisson Processes CDF/MEMO/STATISTICS/PUBLIC/5928 Version 2.1 June 24, 25 Objective Bayesian Upper Limits for Poisson Processes Luc Demortier Laboratory of Experimental High-Energy Physics The Rockefeller University...all

More information

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 Nasser Sadeghkhani a.sadeghkhani@queensu.ca There are two main schools to statistical inference: 1-frequentist

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 11 January 7, 2013 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline How to communicate the statistical uncertainty

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Review: Statistical Model

Review: Statistical Model Review: Statistical Model { f θ :θ Ω} A statistical model for some data is a set of distributions, one of which corresponds to the true unknown distribution that produced the data. The statistical model

More information

Harrison B. Prosper. CMS Statistics Committee

Harrison B. Prosper. CMS Statistics Committee Harrison B. Prosper Florida State University CMS Statistics Committee 7 August, 2008 Bayesian Methods: Theory & Practice. Harrison B. Prosper 1 h Lecture 2 Foundations & Applications h The Bayesian Approach

More information

Bayes Theorem (Recap) Adrian Bevan.

Bayes Theorem (Recap) Adrian Bevan. Bayes Theorem (Recap) Adrian Bevan email: a.j.bevan@qmul.ac.uk Overview Bayes theorem is given by The probability you want to compute: The probability of the hypothesis B given the data A. This is sometimes

More information

Probability, Entropy, and Inference / More About Inference

Probability, Entropy, and Inference / More About Inference Probability, Entropy, and Inference / More About Inference Mário S. Alvim (msalvim@dcc.ufmg.br) Information Theory DCC-UFMG (2018/02) Mário S. Alvim (msalvim@dcc.ufmg.br) Probability, Entropy, and Inference

More information

Probabilistic Reasoning

Probabilistic Reasoning Course 16 :198 :520 : Introduction To Artificial Intelligence Lecture 7 Probabilistic Reasoning Abdeslam Boularias Monday, September 28, 2015 1 / 17 Outline We show how to reason and act under uncertainty.

More information

Bayesian parameter estimation with weak data and when combining evidence: the case of climate sensitivity

Bayesian parameter estimation with weak data and when combining evidence: the case of climate sensitivity Bayesian parameter estimation with weak data and when combining evidence: the case of climate sensitivity Nicholas Lewis Independent climate scientist CliMathNet 5 July 2016 Main areas to be discussed

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet.

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet. Stat 535 C - Statistical Computing & Monte Carlo Methods Arnaud Doucet Email: arnaud@cs.ubc.ca 1 Suggested Projects: www.cs.ubc.ca/~arnaud/projects.html First assignement on the web: capture/recapture.

More information

Cromwell's principle idealized under the theory of large deviations

Cromwell's principle idealized under the theory of large deviations Cromwell's principle idealized under the theory of large deviations Seminar, Statistics and Probability Research Group, University of Ottawa Ottawa, Ontario April 27, 2018 David Bickel University of Ottawa

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Chapter 9: Interval Estimation and Confidence Sets Lecture 16: Confidence sets and credible sets

Chapter 9: Interval Estimation and Confidence Sets Lecture 16: Confidence sets and credible sets Chapter 9: Interval Estimation and Confidence Sets Lecture 16: Confidence sets and credible sets Confidence sets We consider a sample X from a population indexed by θ Θ R k. We are interested in ϑ, a vector-valued

More information

Model Averaging (Bayesian Learning)

Model Averaging (Bayesian Learning) Model Averaging (Bayesian Learning) We want to predict the output Y of a new case that has input X = x given the training examples e: p(y x e) = m M P(Y m x e) = m M P(Y m x e)p(m x e) = m M P(Y m x)p(m

More information

A Very Brief Summary of Bayesian Inference, and Examples

A Very Brief Summary of Bayesian Inference, and Examples A Very Brief Summary of Bayesian Inference, and Examples Trinity Term 009 Prof Gesine Reinert Our starting point are data x = x 1, x,, x n, which we view as realisations of random variables X 1, X,, X

More information

Bayesian Uncertainty: Pluses and Minuses

Bayesian Uncertainty: Pluses and Minuses Bayesian Uncertainty: Pluses and Minuses Rod White Thanks to Rob Willink, Blair Hall, Dave LeBlond Measurement Standards Laboratory New Zealand Outline: A simple statistical experiment (coin toss) Confidence

More information

CS540 Machine learning L9 Bayesian statistics

CS540 Machine learning L9 Bayesian statistics CS540 Machine learning L9 Bayesian statistics 1 Last time Naïve Bayes Beta-Bernoulli 2 Outline Bayesian concept learning Beta-Bernoulli model (review) Dirichlet-multinomial model Credible intervals 3 Bayesian

More information

Bayesian Inference: What, and Why?

Bayesian Inference: What, and Why? Winter School on Big Data Challenges to Modern Statistics Geilo Jan, 2014 (A Light Appetizer before Dinner) Bayesian Inference: What, and Why? Elja Arjas UH, THL, UiO Understanding the concepts of randomness

More information

Should all Machine Learning be Bayesian? Should all Bayesian models be non-parametric?

Should all Machine Learning be Bayesian? Should all Bayesian models be non-parametric? Should all Machine Learning be Bayesian? Should all Bayesian models be non-parametric? Zoubin Ghahramani Department of Engineering University of Cambridge, UK zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/

More information

Bayesian analysis in nuclear physics

Bayesian analysis in nuclear physics Bayesian analysis in nuclear physics Ken Hanson T-16, Nuclear Physics; Theoretical Division Los Alamos National Laboratory Tutorials presented at LANSCE Los Alamos Neutron Scattering Center July 25 August

More information

Second Workshop, Third Summary

Second Workshop, Third Summary Statistical Issues Relevant to Significance of Discovery Claims Second Workshop, Third Summary Luc Demortier The Rockefeller University Banff, July 16, 2010 1 / 23 1 In the Beginning There Were Questions...

More information

Bayesian rules of probability as principles of logic [Cox] Notation: pr(x I) is the probability (or pdf) of x being true given information I

Bayesian rules of probability as principles of logic [Cox] Notation: pr(x I) is the probability (or pdf) of x being true given information I Bayesian rules of probability as principles of logic [Cox] Notation: pr(x I) is the probability (or pdf) of x being true given information I 1 Sum rule: If set {x i } is exhaustive and exclusive, pr(x

More information

Zerlegung von Massenspektren mit Hilfe der Bayes schen Datenanalyse

Zerlegung von Massenspektren mit Hilfe der Bayes schen Datenanalyse Max-lanck-nstitut für lasmaphysik Zerlegung von Massenspektren mit Hilfe der Bayes schen Datenanalyse Thomas Schwarz-Selinger, H.D. Kang, R. reuss, V. Dose Workshop Oberflächentechnologie mit lasma- und

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Reasoning Under Uncertainty: Introduction to Probability

Reasoning Under Uncertainty: Introduction to Probability Reasoning Under Uncertainty: Introduction to Probability CPSC 322 Lecture 23 March 12, 2007 Textbook 9 Reasoning Under Uncertainty: Introduction to Probability CPSC 322 Lecture 23, Slide 1 Lecture Overview

More information

Evidence for Single Top Quark Production. Reinhard Schwienhorst

Evidence for Single Top Quark Production. Reinhard Schwienhorst Evidence for Single Top Quark Production Reinhard Schwienhorst MSU high energy seminar, 1/9/2007 Outline Motivation Preparation Optimized Event Analysis Sensitivity Cross section measurement Vtb Conclusions/Outlook

More information

Probability and Estimation. Alan Moses

Probability and Estimation. Alan Moses Probability and Estimation Alan Moses Random variables and probability A random variable is like a variable in algebra (e.g., y=e x ), but where at least part of the variability is taken to be stochastic.

More information

Statistical learning. Chapter 20, Sections 1 4 1

Statistical learning. Chapter 20, Sections 1 4 1 Statistical learning Chapter 20, Sections 1 4 Chapter 20, Sections 1 4 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

ECE521 W17 Tutorial 6. Min Bai and Yuhuai (Tony) Wu

ECE521 W17 Tutorial 6. Min Bai and Yuhuai (Tony) Wu ECE521 W17 Tutorial 6 Min Bai and Yuhuai (Tony) Wu Agenda knn and PCA Bayesian Inference k-means Technique for clustering Unsupervised pattern and grouping discovery Class prediction Outlier detection

More information

Whaddya know? Bayesian and Frequentist approaches to inverse problems

Whaddya know? Bayesian and Frequentist approaches to inverse problems Whaddya know? Bayesian and Frequentist approaches to inverse problems Philip B. Stark Department of Statistics University of California, Berkeley Inverse Problems: Practical Applications and Advanced Analysis

More information

Bayes: All uncertainty is described using probability.

Bayes: All uncertainty is described using probability. Bayes: All uncertainty is described using probability. Let w be the data and θ be any unknown quantities. Likelihood. The probability model π(w θ) has θ fixed and w varying. The likelihood L(θ; w) is π(w

More information

Teaching Bayesian Model Comparison With the Three-sided Coin

Teaching Bayesian Model Comparison With the Three-sided Coin Teaching Bayesian Model Comparison With the Three-sided Coin Scott R. Kuindersma Brian S. Blais, Department of Science and Technology, Bryant University, Smithfield RI January 4, 2007 Abstract In the present

More information

Statistical Methods in Particle Physics Lecture 2: Limits and Discovery

Statistical Methods in Particle Physics Lecture 2: Limits and Discovery Statistical Methods in Particle Physics Lecture 2: Limits and Discovery SUSSP65 St Andrews 16 29 August 2009 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics DS-GA 100 Lecture notes 11 Fall 016 Bayesian statistics In the frequentist paradigm we model the data as realizations from a distribution that depends on deterministic parameters. In contrast, in Bayesian

More information

P Values and Nuisance Parameters

P Values and Nuisance Parameters P Values and Nuisance Parameters Luc Demortier The Rockefeller University PHYSTAT-LHC Workshop on Statistical Issues for LHC Physics CERN, Geneva, June 27 29, 2007 Definition and interpretation of p values;

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet.

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet. Stat 535 C - Statistical Computing & Monte Carlo Methods Arnaud Doucet Email: arnaud@cs.ubc.ca 1 CS students: don t forget to re-register in CS-535D. Even if you just audit this course, please do register.

More information

Bayesian Model Diagnostics and Checking

Bayesian Model Diagnostics and Checking Earvin Balderama Quantitative Ecology Lab Department of Forestry and Environmental Resources North Carolina State University April 12, 2013 1 / 34 Introduction MCMCMC 2 / 34 Introduction MCMCMC Steps in

More information

Probabilistic Robotics. Slides from Autonomous Robots (Siegwart and Nourbaksh), Chapter 5 Probabilistic Robotics (S. Thurn et al.

Probabilistic Robotics. Slides from Autonomous Robots (Siegwart and Nourbaksh), Chapter 5 Probabilistic Robotics (S. Thurn et al. robabilistic Robotics Slides from Autonomous Robots Siegwart and Nourbaksh Chapter 5 robabilistic Robotics S. Thurn et al. Today Overview of probability Representing uncertainty ropagation of uncertainty

More information

Learning with Probabilities

Learning with Probabilities Learning with Probabilities CS194-10 Fall 2011 Lecture 15 CS194-10 Fall 2011 Lecture 15 1 Outline Bayesian learning eliminates arbitrary loss functions and regularizers facilitates incorporation of prior

More information

Statistical learning. Chapter 20, Sections 1 3 1

Statistical learning. Chapter 20, Sections 1 3 1 Statistical learning Chapter 20, Sections 1 3 Chapter 20, Sections 1 3 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Bayesian vs frequentist techniques for the analysis of binary outcome data

Bayesian vs frequentist techniques for the analysis of binary outcome data 1 Bayesian vs frequentist techniques for the analysis of binary outcome data By M. Stapleton Abstract We compare Bayesian and frequentist techniques for analysing binary outcome data. Such data are commonly

More information

@R_Trotta Bayesian inference: Principles and applications

@R_Trotta Bayesian inference: Principles and applications @R_Trotta Bayesian inference: Principles and applications - www.robertotrotta.com Copenhagen PhD School Oct 6th-10th 2014 astro.ic.ac.uk/icic Bayesian methods on the rise Bayes Theorem Bayes' Theorem follows

More information

MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM

MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM Eco517 Fall 2004 C. Sims MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM 1. SOMETHING WE SHOULD ALREADY HAVE MENTIONED A t n (µ, Σ) distribution converges, as n, to a N(µ, Σ). Consider the univariate

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Constructing Ensembles of Pseudo-Experiments

Constructing Ensembles of Pseudo-Experiments Constructing Ensembles of Pseudo-Experiments Luc Demortier The Rockefeller University, New York, NY 10021, USA The frequentist interpretation of measurement results requires the specification of an ensemble

More information

CS 540: Machine Learning Lecture 2: Review of Probability & Statistics

CS 540: Machine Learning Lecture 2: Review of Probability & Statistics CS 540: Machine Learning Lecture 2: Review of Probability & Statistics AD January 2008 AD () January 2008 1 / 35 Outline Probability theory (PRML, Section 1.2) Statistics (PRML, Sections 2.1-2.4) AD ()

More information

Bios 6649: Clinical Trials - Statistical Design and Monitoring

Bios 6649: Clinical Trials - Statistical Design and Monitoring Bios 6649: Clinical Trials - Statistical Design and Monitoring Spring Semester 2015 John M. Kittelson Department of Biostatistics & nformatics Colorado School of Public Health University of Colorado Denver

More information

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment Ben Shaby SAMSI August 3, 2010 Ben Shaby (SAMSI) OFS adjustment August 3, 2010 1 / 29 Outline 1 Introduction 2 Spatial

More information

Error analysis for efficiency

Error analysis for efficiency Glen Cowan RHUL Physics 28 July, 2008 Error analysis for efficiency To estimate a selection efficiency using Monte Carlo one typically takes the number of events selected m divided by the number generated

More information