SOLVING DYNAMICS OF QUIET STANDING AS NONLINEAR POLYNOMIAL SYSTEMS

Size: px
Start display at page:

Download "SOLVING DYNAMICS OF QUIET STANDING AS NONLINEAR POLYNOMIAL SYSTEMS"

Transcription

1 SOLVING DYNAMICS OF QUIET STANDING AS NONLINEAR POLYNOMIAL SYSTEMS Zhiming Ji Department of Mechanical Engineering, New Jersey Institute of Technology, Newark, New Jersey 070 Abstract Many problems in mechanisms analysis and synthesis and robotics lead naturally to systems of polynomial equations, as is succinctly pointed out by Raghavan and Roth (995. Developing methods for solving sets of nonlinear polynomial equations represents one of Bernard Roth s many significant contributions towards establishment of theoretical basis for the mechanisms analysis and synthesis and the mechanical aspects of robotics. In this paper, results from studying the human postural stability during quiet standing are discussed to show that some problems in biomechanical systems may also lead to systems of nonlinear polynomial equations. Keywords: Systems of polynomial equations, Postural stability, Biomechanical systems.. Introduction Postural control is coordinated by the central nervous system with input from three systems: visual, vestibular, and somatosensory (collectively known as the proprioceptive system. Body sway is used as an indicator of postural stability. Falls due to impaired postural control present a serious health hazard to elderly as well as to persons with balance disorder (for examples, deficits of the proprioceptic system or muscle weakness, and diminish a person's ability to perform activities of daily living. The Sensory Organization Test (SOT, Motor Control Test (MCT and Adaptation Test (ADT form the core battery of tests, recognized as Computerized Dynamic Posturography (CDP, for diagnosing the functional impairments underlying balance disorders. Most Computerized Dynamic Posturography systems qualify postural stability based on force plate technology. These systems measure the ground reaction force with transducers on force plate to determine the center of pressure (COP. Then they use the upward projection of the COP as an estimate for the body center of mass (COM. Different low-pass filters are used on the COP time series to remove the high frequency content in the resulted COP (Benda, Riley and Krebs, 994; Caron, Faure and Breniere, 997, based on the assumption that postural sway is quasi-static.

2 Another approach is to estimate COM with the second integral of horizontal acceleration, which is assumed to be proportional to the horizontal ground reaction force (Shimba, 984. This method requires the initial constants of integration and several techniques were suggested for estimating these integration constants (Zatsiorsky and King, 998. Winter et al (998 estimate COM based on their 4-segment model and the measurements of markers. This approach works well for research purpose but less practical for clinical applications. Most of the studies on quiet standing use the single-joint inverted pendulum model (Winter, Patla, Rietdyk and Ishac, 00; Morasso and Schieppati, 999 and only the moment equilibrium is considered as the system equation. By including the force equilibrium into the system equation, we can determine the COM directly from the measured ground reaction force, without using integration or filtering. We show that the resulted nonlinear differential equation can be solved as a set of nonlinear polynomial equations, even for quiet standing on inclined surface.. Equations of Motion for Quiet Standing A complete set of dynamic equilibrium equations can be easily derived to establish the relationship between sway movement and the ground reaction forces. Free body diagrams in Figures and illustrate the human inverted pendulum for sway in the sagittal plane. Figures shows the entire body excluding feet as inverted pendulum rotating about the ankle joint A. M is the mass of body above ankle, F, and F V are horizontal and vertical force acting H A at ankle joint, τ is moment acting at ankle joint by muscles and θ is absolute sway angle with respect to fixed vertical reference. Figure. Free body diagram of body (above ankle

3 Figures shows the feet together with the force plate. m is the total mass of the feet and the force plate; F F and front and rear transducers respectively; F R are ground reaction forces perpendicular to the force plate, measured with F H is ground reaction force parallel to the force plate, measured with transducer at pin join; d is the distance between to the pin axis and transducers that measures forces perpendicular to the force plate; e is the distance between ankle join and transducer that measuring force parallel to force plate; a is distance from the line through ankle and pin joints to the center of mass of the feet, θ m is sway angle of the center of mass relative to the line perpendicular to force plate, and φ is incline angle of the force plate. Figure. Free body diagram of feet with force plate If h is the distance between the ankle joint and the center of mass of the body and I is the moment of inertia of the body about the ankle joint, then the equation of motion for the body can be written as F ( &, θ cosθ & H A = M h θ sinθ ( F ( & θ sinθ & V = Mg Mh + θ cosθ ( τ + Mgh sin θ = I & θ (3 The equilibrium of the feet can be written as 3 ( F F φ F = F cosφ + + sin (4 H, A H F R

4 F V = ( F + F cosφ F sinφ mg (5 F R H τ = ( F F d + F e mga cosφ (6 F R H After eliminating all the internal forces and moments F,, F V, and τ from eqs. (-6, we H A have the following three differential equations for the postural system: Mh ( & θ cosθ & θ sinθ = F cosφ + ( F + F sinφ (7 H F Mh ( & θ sinθ + & θ cosθ = ( M + m g ( F + F cosφ + F sinφ (8 F I & θ = Mghsinθ ( F F d F e mga cosφ (9 F R H + R R H The ground reaction forces F F, F R and F H are induced by the sway motion. Once they are measured by the transducers embedded in the force plate, the unknown state θ, & θ, and & θ of the sway for a fixed inclination φ can be obtained by solving eqs. (7-9. Although & θ and & θ are derivatives of the sway θ (t, they can be treated as independent to each other. Let x = sinθ, x = cosθ, & x 3 = θ, and x = & θ 4, we convert the set of differential eqs. (7-9 into a set of polynomial equations a ( = a x x4 xx3 xx4 x x3 4 x a5x4 a6 + x = (0 a ( = a a = + ( 3 + ( x (3 where a = Mh, a = FH cosφ + ( FF + FR sinφ, a 3 = ( M + m g ( FF + FR cosφ + FH sinφ, a 4 = Mgh, a5 = I, a6 = ( FF FR d + FH e mga cosφ. The resulted polynomial system can be solved with one of the three well-known methods (Raghavan and Roth, 995: Dialytic elimination, Polynomial Continuation, and Grobner bases. Applying Sylvester's Dialytic Elimination, we obtain a quadratic equation of x as: [( a + a a + a a ] x a a ( a a + a a x + a a a a 0 a ( = 4

5 From the solution of equation (4, we can obtain the rest by formulas [ aa6 ( aa4 a3a5 x ] aa5 x = + (5 x 3 a3x a x = ( a (6 4 a3x a x x = ( + a (7 The sway angle can now be solved as θ = ATAN ( x, x. Note that the process only yields & x 3 = θ. Thus only the magnitude θ &, not the direction, of the angular velocity θ & is found. Therefore, this direction information must be derived from the time history of angle θ. For small sway, an approximation sin θ θ and cosθ may be used to simplify the solution. The ankle moment can be evaluated with eq. (6. With the computed sway angle and ankle moment, muscle stiffness during quiet standing can now be evaluated. 3. Application Examples We have been using EquiTest system (NeuroCom International, 00 to evaluate patients and subjects for balance and postural stability. This system consists of a movable dual platform, which is surrounded by a visual scene that can also rotate about the ankle joints. It quantifies the ground reaction force using five force transducers. The two force plates are connected by a pin joint and supported by four force transducers mounted symmetrically on a supporting plate. These four transducers measure forces perpendicular to the force plate. A fifth transducer is mounted to the supporting plate directly beneath the pin joint for measuring shear force. The force transducers are sampled at 00Hz, with a detection threshold about one Newton. The system estimates COM from COP using a moving average filter. We applied the derived formulas with measured ground reaction forces from several groups of subjects. The subjects body segment lengths and inertial parameters are calculated using anthropometric data taken from the literature (Dempster, 955; Miller and Nelson, 973; Le Veau, William and Lissner, 977, based on the subjects height and weight. The results for one of the subjects are presented here. The subject s height and weight are H =. 67 m and W = kgf, respectively. We find M = kg, m =. 65 kg, I = 85.0 kg m, h = m, d = m, e = m and a = m. The following plots are generated based on one of the trials (each trial lasts 0 seconds. 5

6 Figure 3 shows the computed COM ( y = h sinθ and the moving average reported by the Equitest system for the same trial. We can see clearly the smoothing effect of the moving average by comparing the computed and the reported COM. The system estimates h as 0.557H or h = 0. 93m, which is slightly smaller than the value we used. As a result, the reported COM curve is lower than our computed COM. Figure 3. Example of COM displacement Fig. 4 shows the result of a linear regression of ankle moment versus sway angle for the trial presented in Fig. 3. The resulted line is τ = θ ( N m with the coefficient of determination R = This indicates that the ankle stiffness closely resembles an ideal spring, which is in agreement with (Winter, Patla, Rietdyk and Ishac, 00. This computed ankle stiffness is very close to the value of Mgh, which is In this particular trial, the difference between the stabilizing ankle moment and the destabilizing gravity moment is less than % of the ankle moment, as shown in Fig. 5. The discrete nature of the force measurement can be seen from the plot of the net moment Mgh θ τ. 6

7 Figure 4. Example of linear regression between ankle moment and sway angle Figure 5. Example of net moment at the ankle 4. Conclusions The equations of motion for human quiet standing, when modeled as a single-joint inverted pendulum, form a set of nonlinear differential equations. By using the measured ground reaction force, this set of equations can be solved as a set of nonlinear polynomial equations. The resulted polynomial equations can be solved based on the work of Raghavan and Roth to obtain the COM 7

8 displacement during quiet standing. Such a solution can be used to evaluate ankle muscle stiffness. 5. Acknowledgements The work reported here was inspired by the scholarship of Bernard Roth and discussions with Thomas Findley and Hans Chaudhry. References Benda B. J., Riley P. O., and Krebs D. E., 994, Biomechanical relationship between the center of gravity and center of pressure during standing, IEEE Transactions on Rehabilitation Engineering, Vol., pp Caron O., Faure B. and Breniere Y., 997, Estimating the centre of gravity of the body on the basis of the centre of pressure in standing posture, Journal of Biomechanics, Vol. 30(/, pp Dempster W. T., 955, Space Requirements of the seated operator, Aero Medical Lab., Wright- Patterson Air Force Base, WADC TR Miller D., and Nelson R., 973, Biomechanics of sport, Lea & Febiger, Philadelphia. NeuroCom International Inc., 00, EquiTest System operator s manual, ver B. Le Veau, William and Lissner, 977, Biomechanics of human motion, nd. Ed., W. B. Saunders Co., Philadelphia. Morasso P.G., and Schieppati M., 999, Can muscle stiffness alone stabilize upright standing? J. Neurophysiol. Vol. 8(3, pp Raghavan M., and Roth B., 995, Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulators, Special 50th Anniversary Design Issue, Trans. ASME 7, pp Shimba T., 984, An estimation of center of gravity from force platform data, Journal of Biomechanics, Vol. 7, pp Winter D. A., Patla A. E., Prince F., Ishac M., and Gielo-Perczak K., 998, Stiffness control of balance in quiet standing, J. Neurophysiol. Vol. 80 (3, pp.-. Winter D. A., Patla A.E., Rietdyk, S., and Ishac, M. G., 00, Ankle muscle stiffness in the control of balance during quiet standing, J. Neurophysiol. Vol. 85 (6, pp Zatsiorsky V. M. And King D. L.,998, An algorithm for determining gravity line location from posturographic recordings, Journal of Biomechanics, Vol. 3(, pp

A Biomechanical Model That Confirms Human Ankle Angle Changes Seen During Short Anterior Perturbations of a Standing Platform

A Biomechanical Model That Confirms Human Ankle Angle Changes Seen During Short Anterior Perturbations of a Standing Platform A Biomechanical Model That Confirms Human Ankle Angle Changes Seen During Short Anterior Perturbations of a Standing Platform Rakesh Pilkar 1, 2, John Moosbrugger 3, Viprali Bhatkar 1, 2, Robert Schilling

More information

Adaptive Control of Human Posture in a Specific Movement

Adaptive Control of Human Posture in a Specific Movement Journal of Informatics and Computer Engineering (JICE) Vol. 2(5), Oct. 216, pp. 195-199 Adaptive Control of Human Posture in a Specific Movement Seyyed Arash Haghpanah School of Mechanical Engineering,

More information

Three-Dimensional Biomechanical Analysis of Human Movement

Three-Dimensional Biomechanical Analysis of Human Movement Three-Dimensional Biomechanical Analysis of Human Movement Anthropometric Measurements Motion Data Acquisition Force Platform Body Mass & Height Biomechanical Model Moments of Inertia and Locations of

More information

BIOMECHANICS AND MOTOR CONTROL OF HUMAN MOVEMENT

BIOMECHANICS AND MOTOR CONTROL OF HUMAN MOVEMENT BIOMECHANICS AND MOTOR CONTROL OF HUMAN MOVEMENT Third Edition DAVID Α. WINTER University of Waterloo Waterloo, Ontario, Canada WILEY JOHN WILEY & SONS, INC. CONTENTS Preface to the Third Edition xv 1

More information

KIN Mechanics of posture by Stephen Robinovitch, Ph.D.

KIN Mechanics of posture by Stephen Robinovitch, Ph.D. KIN 840 2006-1 Mechanics of posture 2006 by Stephen Robinovitch, Ph.D. Outline Base of support Effect of strength and body size on base of support Centre of pressure and centre of gravity Inverted pendulum

More information

EE Homework 3 Due Date: 03 / 30 / Spring 2015

EE Homework 3 Due Date: 03 / 30 / Spring 2015 EE 476 - Homework 3 Due Date: 03 / 30 / 2015 Spring 2015 Exercise 1 (10 points). Consider the problem of two pulleys and a mass discussed in class. We solved a version of the problem where the mass was

More information

Presenter: Siu Ho (4 th year, Doctor of Engineering) Other authors: Dr Andy Kerr, Dr Avril Thomson

Presenter: Siu Ho (4 th year, Doctor of Engineering) Other authors: Dr Andy Kerr, Dr Avril Thomson The development and evaluation of a sensor-fusion and adaptive algorithm for detecting real-time upper-trunk kinematics, phases and timing of the sit-to-stand movements in stroke survivors Presenter: Siu

More information

A model of a human standing. by Richard Denker. January 7, 2013

A model of a human standing. by Richard Denker. January 7, 2013 A model of a human standing by Richard Denker January 7, 2013 Analytical Mechanics (FYGC04), HT 2012 Faculty of Technology and Science Department of Physics Contents 1 Introduction 3 2 Theory 3 2.1 The

More information

Method for stabilogram characterization using angular-segment function

Method for stabilogram characterization using angular-segment function BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 61, No. 2, 2013 DOI: 10.2478/bpasts-2013-0038 Method for stabilogram characterization using angular-segment function J. FIOŁKA and Z.

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody Lecture 27. THE COMPOUND PENDULUM Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody diagram The term compound is used to distinguish the present

More information

Friction and Motion. Prof. Paul Eugenio 13 Sep Friction (cont.) Motion: kinetics and dynamics Vertical jump Energy conservation

Friction and Motion. Prof. Paul Eugenio 13 Sep Friction (cont.) Motion: kinetics and dynamics Vertical jump Energy conservation Friction and Motion Friction (cont.) Motion: kinetics and dynamics Vertical jump Energy conservation Ukulele means jumping flea Prof. Paul Eugenio 13 Sep 2018 Lecture 5 Reactive, Normal, and Friction Forces

More information

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws Lecture 13 REVIEW Physics 106 Spring 2006 http://web.njit.edu/~sirenko/ What should we know? Vectors addition, subtraction, scalar and vector multiplication Trigonometric functions sinθ, cos θ, tan θ,

More information

Models and Anthropometry

Models and Anthropometry Learning Objectives Models and Anthropometry Readings: some of Chapter 8 [in text] some of Chapter 11 [in text] By the end of this lecture, you should be able to: Describe common anthropometric measurements

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Chapter 8. Centripetal Force and The Law of Gravity

Chapter 8. Centripetal Force and The Law of Gravity Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration

More information

For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is

For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is Experiment 14 The Physical Pendulum The period of oscillation of a physical pendulum is found to a high degree of accuracy by two methods: theory and experiment. The values are then compared. Theory For

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = s = rφ = Frφ Fr = τ (torque) = τφ r φ s F to s θ = 0 DEFINITION

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = rφ = Frφ Fr = τ (torque) = τφ r φ s F to x θ = 0 DEFINITION OF

More information

In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions

In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 TEAL Fall Term 004 In-Class Problems 30-3: Moment of Inertia, Torque, and Pendulum: Solutions Problem 30 Moment of Inertia of a

More information

How a plantar pressure-based, tongue-placed tactile biofeedback modifies postural control mechanisms during quiet standing

How a plantar pressure-based, tongue-placed tactile biofeedback modifies postural control mechanisms during quiet standing Exp Brain Res (2007) 181:547 554 DOI 10.1007/s00221-007-0953-9 RESEARCH ARTICLE How a plantar pressure-based, tongue-placed tactile biofeedback modifies postural control mechanisms during quiet standing

More information

Sports biomechanics explores the relationship between the body motion, internal forces and external forces to optimize the sport performance.

Sports biomechanics explores the relationship between the body motion, internal forces and external forces to optimize the sport performance. What is biomechanics? Biomechanics is the field of study that makes use of the laws of physics and engineering concepts to describe motion of body segments, and the internal and external forces, which

More information

I B.TECH EXAMINATIONS, JUNE ENGINEERING MECHANICS (COMMON TO CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM)

I B.TECH EXAMINATIONS, JUNE ENGINEERING MECHANICS (COMMON TO CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM) Code.No: 09A1BS05 R09 SET-1 I B.TECH EXAMINATIONS, JUNE - 2011 ENGINEERING MECHANICS (COMMON TO CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM) Time: 3 hours Max. Marks: 75 Answer any FIVE questions All questions

More information

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life. Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

More information

Mechanical energy transfer by internal force during the swing phase of running

Mechanical energy transfer by internal force during the swing phase of running Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 772 777 9 th Conference of the International Sports Engineering Association (ISEA) Mechanical energy transfer by internal force

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Stiffness Control of Balance in Quiet Standing

Stiffness Control of Balance in Quiet Standing Stiffness Control of Balance in Quiet Standing DAVID A. WINTER, 1 AFTAB E. PATLA, 1 FRANCOIS PRINCE, 2 MILAD ISHAC, 1 AND KRYSTYNA GIELO-PERCZAK 1 1 Department of Kinesiology, University of Waterloo, Waterloo,

More information

» APPLICATIONS OF CONTROL

» APPLICATIONS OF CONTROL » APPLICATIONS OF CONTROL A PID Model of Human Balance Keeping KIMURA HIDENORI and YIFA JIANG The basic requirement of biped (two-legged) motion is apparatus records what we know today as the center of

More information

Internal models in the control of posture

Internal models in the control of posture PERGAMON Neural Networks 12 (1999) 1173 1180 Neural Networks www.elsevier.com/locate/neunet Internal models in the control of posture P.G. Morasso a,b, *, L. Baratto b, R. Capra b, G. Spada b a Department

More information

CHAPTER 12 OSCILLATORY MOTION

CHAPTER 12 OSCILLATORY MOTION CHAPTER 1 OSCILLATORY MOTION Before starting the discussion of the chapter s concepts it is worth to define some terms we will use frequently in this chapter: 1. The period of the motion, T, is the time

More information

Physics 4A Solutions to Chapter 10 Homework

Physics 4A Solutions to Chapter 10 Homework Physics 4A Solutions to Chapter 0 Homework Chapter 0 Questions: 4, 6, 8 Exercises & Problems 6, 3, 6, 4, 45, 5, 5, 7, 8 Answers to Questions: Q 0-4 (a) positive (b) zero (c) negative (d) negative Q 0-6

More information

Stabilization of Motion of the Segway 1

Stabilization of Motion of the Segway 1 Stabilization of Motion of the Segway 1 Houtman P. Siregar, 2 Yuri G. Martynenko 1 Department of Mechatronics Engineering, Indonesia Institute of Technology, Jl. Raya Puspiptek-Serpong, Indonesia 15320,

More information

Coordinating Feet in Bipedal Balance

Coordinating Feet in Bipedal Balance Coordinating Feet in Bipedal Balance S.O. Anderson, C.G. Atkeson, J.K. Hodgins Robotics Institute Carnegie Mellon University soa,cga,jkh@ri.cmu.edu Abstract Biomechanical models of human standing balance

More information

Chapter 12 Static Equilibrium

Chapter 12 Static Equilibrium Chapter Static Equilibrium. Analysis Model: Rigid Body in Equilibrium. More on the Center of Gravity. Examples of Rigid Objects in Static Equilibrium CHAPTER : STATIC EQUILIBRIUM AND ELASTICITY.) The Conditions

More information

PHYS 1114, Lecture 33, April 10 Contents:

PHYS 1114, Lecture 33, April 10 Contents: PHYS 1114, Lecture 33, April 10 Contents: 1 This class is o cially cancelled, and has been replaced by the common exam Tuesday, April 11, 5:30 PM. A review and Q&A session is scheduled instead during class

More information

Chapter 8. Rotational Motion

Chapter 8. Rotational Motion Chapter 8 Rotational Motion The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of

More information

Research Article On the Dynamics of the Furuta Pendulum

Research Article On the Dynamics of the Furuta Pendulum Control Science and Engineering Volume, Article ID 583, 8 pages doi:.55//583 Research Article On the Dynamics of the Furuta Pendulum Benjamin Seth Cazzolato and Zebb Prime School of Mechanical Engineering,

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.6 The Action of Forces and Torques on Rigid Objects Chapter 8 developed the concepts of angular motion. θ : angles and radian measure for angular variables ω :

More information

τ = F d Angular Kinetics Components of Torque (review from Systems FBD lecture Muscles Create Torques Torque is a Vector Work versus Torque

τ = F d Angular Kinetics Components of Torque (review from Systems FBD lecture Muscles Create Torques Torque is a Vector Work versus Torque Components of Torque (review from Systems FBD lecture Angular Kinetics Hamill & Knutzen (Ch 11) Hay (Ch. 6), Hay & Ried (Ch. 12), Kreighbaum & Barthels (Module I & J) or Hall (Ch. 13 & 14) axis of rotation

More information

Chapter 5 Gravitation Chapter 6 Work and Energy

Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 (5.6) Newton s Law of Universal Gravitation (5.7) Gravity Near the Earth s Surface Chapter 6 (today) Work Done by a Constant Force Kinetic Energy,

More information

General Physics I Spring Applying Newton s Laws

General Physics I Spring Applying Newton s Laws General Physics I Spring 2011 Applying Newton s Laws 1 Equilibrium An object is in equilibrium if the net force acting on it is zero. According to Newton s first law, such an object will remain at rest

More information

Kinematics, Kinetics, Amputee Gait (part 1)

Kinematics, Kinetics, Amputee Gait (part 1) Kinematics, Kinetics, Amputee Gait (part 1) MCE 493/593 & ECE 492/592 Prosthesis Design and Control October 16, 2014 Antonie J. (Ton) van den Bogert Mechanical Engineering Cleveland State University 1

More information

Section 6: 6: Kinematics Kinematics 6-1

Section 6: 6: Kinematics Kinematics 6-1 6-1 Section 6: Kinematics Biomechanics - angular kinematics Same as linear kinematics, but There is one vector along the moment arm. There is one vector perpendicular to the moment arm. MA F RMA F RD F

More information

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th ) Conceptual Q: 4 (7), 7 (), 8 (6) Physics 4 HW Set Chapter 5 Serway 8 th ( 7 th ) Q4(7) Answer (c). The equilibrium position is 5 cm below the starting point. The motion is symmetric about the equilibrium

More information

SOLUTION di x = y2 dm. rdv. m = a 2 bdx. = 2 3 rpab2. I x = 1 2 rp L0. b 4 a1 - x2 a 2 b. = 4 15 rpab4. Thus, I x = 2 5 mb2. Ans.

SOLUTION di x = y2 dm. rdv. m = a 2 bdx. = 2 3 rpab2. I x = 1 2 rp L0. b 4 a1 - x2 a 2 b. = 4 15 rpab4. Thus, I x = 2 5 mb2. Ans. 17 4. Determine the moment of inertia of the semiellipsoid with respect to the x axis and express the result in terms of the mass m of the semiellipsoid. The material has a constant density r. y x y a

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information

Physics 2001/2051 The Compound Pendulum Experiment 4 and Helical Springs

Physics 2001/2051 The Compound Pendulum Experiment 4 and Helical Springs PY001/051 Compound Pendulum and Helical Springs Experiment 4 Physics 001/051 The Compound Pendulum Experiment 4 and Helical Springs Prelab 1 Read the following background/setup and ensure you are familiar

More information

Lecture 8. Torque. and Equilibrium. Pre-reading: KJF 8.1 and 8.2

Lecture 8. Torque. and Equilibrium. Pre-reading: KJF 8.1 and 8.2 Lecture 8 Torque and Equilibrium Pre-reading: KJF 8.1 and 8.2 Archimedes Lever Rule At equilibrium (and with forces 90 to lever): r 1 F 1 = r 2 F 2 2 General Lever Rule For general angles r 1 F 1 sin θ

More information

UNITS AND DEFINITIONS RELATED TO BIOMECHANICAL AND ELECTROMYOGRAPHICAL MEASUREMENTS

UNITS AND DEFINITIONS RELATED TO BIOMECHANICAL AND ELECTROMYOGRAPHICAL MEASUREMENTS APPENDIX B UNITS AND DEFINITIONS RELATED TO BIOMECHANICAL AND ELECTROMYOGRAPHICAL MEASUREMENTS All units used are SI (Système International d Unités). The system is based on seven well-defined base units

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

!T = 2# T = 2! " The velocity and acceleration of the object are found by taking the first and second derivative of the position:

!T = 2# T = 2!  The velocity and acceleration of the object are found by taking the first and second derivative of the position: A pendulum swinging back and forth or a mass oscillating on a spring are two examples of (SHM.) SHM occurs any time the position of an object as a function of time can be represented by a sine wave. We

More information

Appendix W. Dynamic Models. W.2 4 Complex Mechanical Systems. Translational and Rotational Systems W.2.1

Appendix W. Dynamic Models. W.2 4 Complex Mechanical Systems. Translational and Rotational Systems W.2.1 Appendix W Dynamic Models W.2 4 Complex Mechanical Systems W.2.1 Translational and Rotational Systems In some cases, mechanical systems contain both translational and rotational portions. The procedure

More information

Dynamic Optimization of the Sit-to-Stand Movement

Dynamic Optimization of the Sit-to-Stand Movement Journal of Applied Biomechanics, 011, 7, 306-313 011 Human Kinetics, Inc. Dynamic Optimization of the Sit-to-Stand Movement Hiroshi R. Yamasaki, 1 Hiroyuki Kambara, and Yasuharu Koike 1 Showa University;

More information

7. FORCE ANALYSIS. Fundamentals F C

7. FORCE ANALYSIS. Fundamentals F C ME 352 ORE NLYSIS 7. ORE NLYSIS his chapter discusses some of the methodologies used to perform force analysis on mechanisms. he chapter begins with a review of some fundamentals of force analysis using

More information

QUESTION TWO: BUNGY JUMPING. Acceleration due to gravity = 9.81 m s 2

QUESTION TWO: BUNGY JUMPING. Acceleration due to gravity = 9.81 m s 2 6 QUESTION TWO: BUNGY JUMPING Acceleration due to gravity = 9.81 m s Standing on a platform that is 5.0 m above a river, Emma, of height.00 m and mass m, is tied to one end of an elastic rope (the bungy)

More information

( )( ) ( )( ) Fall 2017 PHYS 131 Week 9 Recitation: Chapter 9: 5, 10, 12, 13, 31, 34

( )( ) ( )( ) Fall 2017 PHYS 131 Week 9 Recitation: Chapter 9: 5, 10, 12, 13, 31, 34 Fall 07 PHYS 3 Chapter 9: 5, 0,, 3, 3, 34 5. ssm The drawing shows a jet engine suspended beneath the wing of an airplane. The weight W of the engine is 0 00 N and acts as shown in the drawing. In flight

More information

24/06/13 Forces ( F.Robilliard) 1

24/06/13 Forces ( F.Robilliard) 1 R Fr F W 24/06/13 Forces ( F.Robilliard) 1 Mass: So far, in our studies of mechanics, we have considered the motion of idealised particles moving geometrically through space. Why a particular particle

More information

Chap. 10: Rotational Motion

Chap. 10: Rotational Motion Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics - Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N

More information

A consideration on position of center of ground reaction force in upright posture

A consideration on position of center of ground reaction force in upright posture sice02-0206 A consideration on position of center of ground reaction force in upright posture Satoshi Ito ),2) Yoshihisa Saka ) Haruhisa Kawasaki ) satoshi@robo.mech.gifu-u.ac.jp h33208@guedu.cc.gifu-u.ac.jp

More information

2. a) Explain the equilibrium of i) Concurrent force system, and ii) General force system.

2. a) Explain the equilibrium of i) Concurrent force system, and ii) General force system. Code No: R21031 R10 SET - 1 II B. Tech I Semester Supplementary Examinations Dec 2013 ENGINEERING MECHANICS (Com to ME, AE, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions

More information

Exercises on Newton s Laws of Motion

Exercises on Newton s Laws of Motion Exercises on Newton s Laws of Motion Problems created by: Raditya 1. A pendulum is hanging on a ceiling of a plane which is initially at rest. When the plane prepares to take off, it accelerates with a

More information

Biomechanical Modelling of Musculoskeletal Systems

Biomechanical Modelling of Musculoskeletal Systems Biomechanical Modelling of Musculoskeletal Systems Lecture 6 Presented by Phillip Tran AMME4981/9981 Semester 1, 2016 The University of Sydney Slide 1 The Musculoskeletal System The University of Sydney

More information

Unit 7: Oscillations

Unit 7: Oscillations Text: Chapter 15 Unit 7: Oscillations NAME: Problems (p. 405-412) #1: 1, 7, 13, 17, 24, 26, 28, 32, 35 (simple harmonic motion, springs) #2: 45, 46, 49, 51, 75 (pendulums) Vocabulary: simple harmonic motion,

More information

Oscillatory Motion. Solutions of Selected Problems

Oscillatory Motion. Solutions of Selected Problems Chapter 15 Oscillatory Motion. Solutions of Selected Problems 15.1 Problem 15.18 (In the text book) A block-spring system oscillates with an amplitude of 3.50 cm. If the spring constant is 250 N/m and

More information

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Review of rotational kinematics equations Review and more on rotational inertia Rolling motion as rotation and translation Rotational kinetic energy

More information

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects Free-Body Diagrams Ref: 4-1,2,3,4,5,6,7. Page

More information

Theory of Vibrations in Stewart Platforms

Theory of Vibrations in Stewart Platforms Theory of Vibrations in Stewart Platforms J.M. Selig and X. Ding School of Computing, Info. Sys. & Maths. South Bank University London SE1 0AA, U.K. (seligjm@sbu.ac.uk) Abstract This article develops a

More information

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm. 1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics 9.1 The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics 9.1 The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination

More information

Ch 6 Using Newton s Laws. Applications to mass, weight, friction, air resistance, and periodic motion

Ch 6 Using Newton s Laws. Applications to mass, weight, friction, air resistance, and periodic motion Ch 6 Using Newton s Laws Applications to mass, weight, friction, air resistance, and periodic motion Newton s 2 nd Law Applied Galileo hypothesized that all objects gain speed at the same rate (have the

More information

Static Equilibrium, Gravitation, Periodic Motion

Static Equilibrium, Gravitation, Periodic Motion This test covers static equilibrium, universal gravitation, and simple harmonic motion, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. 60 A B 10 kg A mass of 10

More information

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²) Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of

More information

Torque. Introduction. Torque. PHY torque - J. Hedberg

Torque. Introduction. Torque. PHY torque - J. Hedberg Torque PHY 207 - torque - J. Hedberg - 2017 1. Introduction 2. Torque 1. Lever arm changes 3. Net Torques 4. Moment of Rotational Inertia 1. Moment of Inertia for Arbitrary Shapes 2. Parallel Axis Theorem

More information

POTENTIAL ENERGY AND ENERGY CONSERVATION

POTENTIAL ENERGY AND ENERGY CONSERVATION 7 POTENTIAL ENERGY AND ENERGY CONSERVATION 7.. IDENTIFY: U grav = mgy so ΔU grav = mg( y y ) SET UP: + y is upward. EXECUTE: (a) ΔU = (75 kg)(9.8 m/s )(4 m 5 m) = +6.6 5 J (b) ΔU = (75 kg)(9.8 m/s )(35

More information

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam. WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system is always

More information

PH201 Chapter 5 Solutions

PH201 Chapter 5 Solutions PH201 Chapter 5 Solutions 5.4. Set Up: For each object use coordinates where +y is upward. Each object has Call the objects 1 and 2, with and Solve: (a) The free-body diagrams for each object are shown

More information

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Kinetic Energy Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =

More information

Worksheet #05 Kinetic Energy-Work Theorem

Worksheet #05 Kinetic Energy-Work Theorem Physics Summer 08 Worksheet #05 June. 8, 08. A 0-kg crate is pulled 5 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.0 m/s. (a) Draw

More information

Fr h mg rh h. h 2( m)( m) ( (0.800 kg)(9.80 m/s )

Fr h mg rh h. h 2( m)( m) ( (0.800 kg)(9.80 m/s ) 5. We consider the wheel as it leaves the lower floor. The floor no longer exerts a force on the wheel, and the only forces acting are the force F applied horizontally at the axle, the force of gravity

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. APPLICATIONS

More information

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014 1 Rotational Dynamics Why do objects spin? Objects can travel in different ways: Translation all points on the body travel in parallel paths Rotation all points on the body move around a fixed point An

More information

Rigid Body Dynamics, Constraints, and Inverses

Rigid Body Dynamics, Constraints, and Inverses Rigid Body Dynamics, Constraints, and Inverses Hooshang Hemami Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 Bostwick F. Wyman Department of Mathematics,

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Application of Newton/GMRES Method to Nonlinear Model Predictive Control of Functional Electrical Stimulation

Application of Newton/GMRES Method to Nonlinear Model Predictive Control of Functional Electrical Stimulation Proceedings of the 3 rd International Conference on Control, Dynamic Systems, and Robotics (CDSR 16) Ottawa, Canada May 9 10, 2016 Paper No. 121 DOI: 10.11159/cdsr16.121 Application of Newton/GMRES Method

More information

Units are important anyway

Units are important anyway Ch. 1 Units -- SI System (length m, Mass Kg and Time s). Dimensions -- First check of Mathematical relation. Trigonometry -- Cosine, Sine and Tangent functions. -- Pythagorean Theorem Scalar and Vector

More information

PreLab 2 - Simple Harmonic Motion: Pendulum (adapted from PASCO- PS-2826 Manual)

PreLab 2 - Simple Harmonic Motion: Pendulum (adapted from PASCO- PS-2826 Manual) Musical Acoustics Lab, C. Bertulani, 2012 PreLab 2 - Simple Harmonic Motion: Pendulum (adapted from PASCO- PS-2826 Manual) A body is said to be in a position of stable equilibrium if, after displacement

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED SUBSIDIARY GCE UNIT 761/01 MATHEMATICS (MEI) Mechanics 1 MONDAY 1 MAY 007 Additional materials: Answer booklet (8 pages) Graph paper MEI Examination Formulae and Tables (MF) Morning Time: 1 hour

More information

Angular Kinetics. Learning Objectives: Learning Objectives: Properties of Torques (review from Models and Anthropometry) T = F d

Angular Kinetics. Learning Objectives: Learning Objectives: Properties of Torques (review from Models and Anthropometry) T = F d Angular Kinetics Readings: Chapter 11 [course text] Hay, Chapter 6 [on reserve] Hall, Chapter 13 & 14 [on reserve] Kreighbaum & Barthels, Modules I & J [on reserve] 1 Learning Objectives: By the end of

More information

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

More information

1 CHAPTER 8 IMPULSIVE FORCES

1 CHAPTER 8 IMPULSIVE FORCES 8.1 Introduction. 1 CHAPTER 8 IMPULSIVE FORCES As it goes about its business, a particle may experience many different sorts of forces. In Chapter 7, we looked at the effect of forces that depend only

More information

Levers of the Musculoskeletal System

Levers of the Musculoskeletal System Levers of the Musculoskeletal System Lever system consists of: lever fulcrum load force Three classes of levers 1. first class (a) - pry bars, crowbars 2. second class (b) - wheelbarrow 3. third class

More information

Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium

Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium Strike (Day 10) Prelectures, checkpoints, lectures continue with no change. Take-home quizzes this week. See Elaine Schulte s email. HW

More information

COMPUTATIONAL AND ROBOTIC MODELS OF HUMAN POSTURAL CONTROL. by Arash Mahboobin

COMPUTATIONAL AND ROBOTIC MODELS OF HUMAN POSTURAL CONTROL. by Arash Mahboobin COMPUTATIONAL AND ROBOTIC MODELS OF HUMAN POSTURAL CONTROL by Arash Mahboobin B.S., Azad University, 1998 M.S., University of Illinois at Urbana Champaign, 2002 Submitted to the Graduate Faculty of the

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

11th Grade. Review for General Exam-3. decreases. smaller than. remains the same

11th Grade. Review for General Exam-3. decreases. smaller than. remains the same 1. An object is thrown horizontally with a speed of v from point M and hits point E on the vertical wall after t seconds as shown in the figure. (Ignore air friction.). Two objects M and S are thrown as

More information

Chapter 9- Static Equilibrium

Chapter 9- Static Equilibrium Chapter 9- Static Equilibrium Changes in Office-hours The following changes will take place until the end of the semester Office-hours: - Monday, 12:00-13:00h - Wednesday, 14:00-15:00h - Friday, 13:00-14:00h

More information

Notes on Torque. We ve seen that if we define torque as rfsinθ, and the N 2. i i

Notes on Torque. We ve seen that if we define torque as rfsinθ, and the N 2. i i Notes on Torque We ve seen that if we define torque as rfsinθ, and the moment of inertia as N, we end up with an equation mr i= 1 that looks just like Newton s Second Law There is a crucial difference,

More information