# Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)

Save this PDF as:

Size: px
Start display at page:

Download "Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)"

## Transcription

1 Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of the car increases at a constant rate and is 28 m/s at the top of the slope. Determine the acceleration of the car and the time it takes for the car to reach the top of the slope. Newton s 3 Laws of Motion 1st Law of Inertia (an object at rest remains at rest, an object in motion remains in motion UNLESS acted on by an outside force). 2nd Force/Acceleration Relationship (the acceleration created by forces acting on a mass is equal to the vector sum of the forces divided by the mass of the object). 3rd Action/Reaction Pairs (If object A exerts a force on object B, object B is exerting an equal but opposite force on A). Recall Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²) Any object experiencing acceleration (a non-constant velocity in either speed or direction) is experiencing out-of-balance forces.

2 Definitions Vector Measurements that have both MAGNITUDE (amount) and DIRECTION; such as displacement, velocity, acceleration and force. Net Force the vector sum of forces acting on an object Equilibrium the condition when the NET FORCE (vector sum) is 0; condition of a = 0 m/s²; stationary objects or objects under constant velocity Definitions Equilibrium Equations Equations, broken down by axis, showing the sum of all forces equal to zero. Non-Equilibrium Equation Equations, broken down by axis, showing the sum of all forces equal to mass x acceleration. Centripetal Force ANY force causing an object to move in circular motion is a centripetal force and is equal to F c = mv² / r Where m = mass, v = tangential velocity, and r = radius of curvature

3 Types of Force Force Symbol Definition Direction Friction F f Contact force that opposes sliding motion between surfaces Normal F N The contact force exerted by a surface on an object Parallel to surface and opposite direction of travel Perpendicular to and away from the surface Spring F K A restoring force that pulls on an object Opposite displacement Tension F T The pull exerted by a rope or string Away from the object and parallel to the string Thrust F thrust A generic term for forces that move objects such as rockets, etc Weight F W A field force due to gravitational attraction between masses Drag F drag A force acting against motion exerted by objects moving through gas or fluids. In direction of acceleration of object Straight down towards center of exerting mass Against motion OR in the direction of fluid flow. Drag Force and Terminal Velocity In most problems, we ignore the effect of air resistance. In these problems, we assume that falling objects continue to accelerate until they hit the ground. In reality, falling objects experience a force due to air resistance drag force. This same force acts on objects being pulled through liquids. As the velocity of an object increases, the drag force increases. Terminal velocity occurs when the drag force equals the force due to gravity. Practice AS/A2 Force Problems

4 Easy Vector Problem Two forces of magnitude 6.0N and 8.0N act at a point P. Both forces act away from point P and the angle between them is 40. Determine the magnitude and direction of the resultant force acting on point P. P 40 Tension Tension is the specific name given to the force exerted by a string, rope or wire. In most physics problems, we assume that these strings are massless. Examine the simple system of a 100 kg mass on a rope. The forces acting on the mass include the gravitational attraction between the Earth and the mass and the tension between the mass and the string. Tension Problems An Atwood machine uses a counterweight to raise and lower an elevator. If the 850-kg elevator is attached via a pulley to a 1000-kg counterweight, what is the acceleration of the system and force of tension in the cable? How does this change when the elevator is full and has a new mass of 1150-kg?

5 Normal Force Any object not accelerating downward at a rate of -9.8 m/s 2, must be experiencing at least one force that is counteracting the pull of gravity This force is frequently the normal force exerted by surface contact and acting perpendicular to the surface. Find acceleration & final velocity Elevators and Scales The scale shows the normal force NOT your weight. When acceleration 0 m/s²; ΣF = ma = F W + F N = -F W + F N The scale will show F N = ma + F W

6 Lab Help Drag Force Lab: In the final question, they said that F drag = bv n At terminal velocity: F drag = F g So mg = bv n Take the log of each side log(m) + log(g) = log(b) + log(v n ) log(m) + log(g) = log(b) + nlog(v) Rearrange to put your DEPENDENT (v) on one side log(v) = [1/n][log(m)] + [1/n][log(b) - log(g)] From this, how does the slope of your line relate to n and b? How does the y-intercept relate to n or b? Frictional Force There are two types of friction force both always oppose movement. When objects are moving they experience kinetic friction. When objects are stationary, they experience static friction. See page 90 in Giancoli for information of the coefficients of friction for various substances

7 Friction and Normal Forces There is also a relationship between the normal force (the force created by two surfaces in contact) and the friction force. As normal force increases, so does friction force. The two are related as follows: F f kinetic = kf N F f static = sf N Find acceleration & final velocity Incline Problems In evaluating a problem where forces act at angles other than 90 and 180 degrees requires establishing a coordinate system and breaking force vectors into component vectors. Inclined planes are one of the most common examples.

8 Incline Coordinate Systems Breaking forces into component vectors: Set-Up the Problem A box is resting on an inclined plane with an angle of 25 degrees from the horizontal. The mass of the box is 10 kg. If the box is at rest, what is the coefficient of friction between the surface of the box and the incline plane? Example 2 A 10-kg box is resting on a 15 incline with a coefficient of friction of μ = A rope connects the 10-kg box to 3-kg box via a pulley. Consider the ropes to be massless and the pulley to be frictionless. Is the system in equilibrium?

9 Working With Angles Always resolve a problem in to a set of perpendicular planes Horizontal and Vertical Parallel and Perpendicular Break vectors into their components Look at equilibrium/non-equilibrium in both axes. Put the final answer back together. Center of Mass The center of mass (sometimes called the center of gravity) is the average position of all the particles of mass that make up an object. In our previous problems, we have assumed that the geometric center of the object is the center of the mass. Center of Gravity In strong gravitational fields, especially for large objects, we can t assume gravity is uniform. In these cases, the center of gravity is located below the center of mass.

10 Torque The MOMENT of the force Force is needed to initiate or stop motion Torque is needed to initiate or stop rotation. Mathematically, torque is calculated by: = F r Torque is often referred to as MOMENT. Couples Two complimentary torques (moments) create a COUPLE. Opposing torques are not a couple. Torque Torque occurs in circular motion and is created by the force PERPENDICULAR to the radius of the movement. If force is not applied at 90, only the part of the force acting perpendicular to the radius creates torque.

11 Practice 3) Compute the magnitude F for each of the two forces acting on the outer circle, so that they create the same couple moment as that created by the 100-N forces acting on the inner circle. Rotational Inertia Objects moving in circular motion tend to remain in circular motion or more simply, spinning objects tend to keep spinning. For rotational inertia: the further the bulk of the mass is to the axis of rotation, the greater the rotational inertia. This can be written mathematically as: I = mr² So, larger masses have more inertia or they are harder to get started and harder to stop AND longer radii have more inertia. Moments of Inertia

12 Torque and Rotational Inertia Force can be related to F = ma Torque can be related to τ= Iα Rotational Equilibrium Translational Equilibrium refers to objects that are experiencing a 0 N net force. Rotational Equilibrium refers to objects that are experiences a 0 Nm net torque as well. Review Ch 7 #49, 51 Ch 8 #23, 25, 26

13 Choosing an Axis of rotation In any problem of torque, you must select a point as the axis of rotation. In many problems this point will be a pivot, hinge, etc. Sometimes you may wish to select a point of rotation so that it eliminates any unknown torques acting at that point (radius = 0m) Problem 1 Ch 9 #8: A 140-kg horizontal beam is supported at each end. A 320-kg piano rests a quarter of the way from one end. What is the vertical force on each of the supports? 16, 19 Problem 2 Ch 9 #16: Three children are trying to balance on a seesaw, which consists of a fulcrum acting as a pivot at the center and a very light board 3.6 m long. Two children are already on either end. Boy A has a mass of 50 kg and girl B has a mass of 35 kg. Where should girl C, whose mass is 25 kg, place herself to balance the seesaw?

14 Problem 3 Ch 9 #19: A 172-cm-tall person lies on a light (massless) board which is supported by two scales, one under the top of her head and one beneath the bottom of her feet. The two scales read, respectively, 35.1 kg and 31.6 kg. What distance is the center of gravity of this person from the bottom of her feet? Problem Solving Deskwork AS/A2 page 82 all problems.

### Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

### Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

### Newton s Laws.

Newton s Laws http://mathsforeurope.digibel.be/images Forces and Equilibrium If the net force on a body is zero, it is in equilibrium. dynamic equilibrium: moving relative to us static equilibrium: appears

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

### Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor.

51 IDENTIFY: for each object Apply to each weight and to the pulley SET UP: Take upward The pulley has negligible mass Let be the tension in the rope and let be the tension in the chain EXECUTE: (a) The

### Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.

Newton s Laws Newton s first law: An object will stay at rest or in a state of uniform motion with constant velocity, in a straight line, unless acted upon by an external force. In other words, the bodies

### Physics B Newton s Laws AP Review Packet

Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

### Ch 6 Using Newton s Laws. Applications to mass, weight, friction, air resistance, and periodic motion

Ch 6 Using Newton s Laws Applications to mass, weight, friction, air resistance, and periodic motion Newton s 2 nd Law Applied Galileo hypothesized that all objects gain speed at the same rate (have the

### A. B. C. D. E. v x. ΣF x

Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

### Newton s 3 Laws of Motion

Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

### Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 6 Physics, 4 th Edition James S. Walker Chapter 6 Applications of Newton s Laws Units of Chapter 6 Frictional Forces Strings and Springs Translational Equilibrium Connected Objects

### Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Pagpalain ka! (Good luck, in Filipino) Date Chapter 8 - Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued Quiz 3 4.7 The Gravitational Force Newton s Law of Universal Gravitation Every particle in the universe exerts an attractive force on every other

### 24/06/13 Forces ( F.Robilliard) 1

R Fr F W 24/06/13 Forces ( F.Robilliard) 1 Mass: So far, in our studies of mechanics, we have considered the motion of idealised particles moving geometrically through space. Why a particular particle

### PHYSICS - CLUTCH CH 13: ROTATIONAL EQUILIBRIUM.

!! www.clutchprep.com EXAMPLE: POSITION OF SECOND KID ON SEESAW EXAMPLE: A 4 m-long seesaw 50 kg in mass and of uniform mass distribution is pivoted on a fulcrum at its middle, as shown. Two kids sit on

### Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications

Chapters 5-6 Dynamics: orces and Newton s Laws of Motion. Applications That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal,

### Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

### HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge

HSC PHYSICS ONLINE DYNAMICS TYPES O ORCES Electrostatic force (force mediated by a field - long range: action at a distance) the attractive or repulsion between two stationary charged objects. AB A B BA

### Physics Exam 2 October 11, 2007

INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

### Chapter 5. The Laws of Motion

Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

### UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 16, 2000 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

### Forces and Motion in One Dimension

Nicholas J. Giordano www.cengage.com/physics/giordano Forces and Motion in One Dimension Applications of Newton s Laws We will learn how Newton s Laws apply in various situations We will begin with motion

### Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

### Chapter 9. Rotational Dynamics

Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

### PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

### 1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

### PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively.

### NAME. (2) Choose the graph below that represents the velocity vs. time for constant, nonzero acceleration in one dimension.

(1) The figure shows a lever (which is a uniform bar, length d and mass M), hinged at the bottom and supported steadily by a rope. The rope is attached a distance d/4 from the hinge. The two angles are

### Phys 1401: General Physics I

1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

### 3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

### PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

### General Physics I Spring Forces and Newton s Laws of Motion

General Physics I Spring 2011 Forces and Newton s Laws of Motion 1 Forces and Interactions The central concept in understanding why things move is force. If a tractor pushes or pulls a trailer, the tractor

### PH201 Chapter 5 Solutions

PH201 Chapter 5 Solutions 5.4. Set Up: For each object use coordinates where +y is upward. Each object has Call the objects 1 and 2, with and Solve: (a) The free-body diagrams for each object are shown

### Chapter 5 Applying Newton s Laws

Chapter 5 Applying Newton s Laws In this chapter we will introduce further applications of Newton s 1 st and 2 nd law. In summary, all of the contact forces and action-at-a-distance forces will go on the

### What Is a Force? Slide Pearson Education, Inc.

What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

### Newton s Laws of Motion

Newton s Laws of Motion Observation #1 An object at rest remains at rest, unless something makes it move. Observation #2 A object in motion continues in motion with constant velocity, unless something

### Dynamics Test K/U 28 T/I 16 C 26 A 30

Name: Dynamics Test K/U 28 T/I 16 C 26 A 30 A. True/False Indicate whether the sentence or statement is true or false. 1. The normal force that acts on an object is always equal in magnitude and opposite

### Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1

Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

### The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

### Physics 12 Unit 2: Vector Dynamics

1 Physics 12 Unit 2: Vector Dynamics In this unit you will extend your study of forces. In particular, we will examine force as a vector quantity; this will involve solving problems where forces must be

### Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

### Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

### Random sample problems

UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 125 / LeClair Spring 2009 Random sample problems 1. The position of a particle in meters can be described by x = 10t 2.5t 2, where t is in seconds.

### Old Exam. Question Chapter 7 072

Old Exam. Question Chapter 7 072 Q1.Fig 1 shows a simple pendulum, consisting of a ball of mass M = 0.50 kg, attached to one end of a massless string of length L = 1.5 m. The other end is fixed. If the

### Problem Set x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. 1. Moment of Inertia: Disc and Washer

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology Problem Set 10 1. Moment of Inertia: Disc and Washer (a) A thin uniform disc of mass M and radius R is mounted on an axis passing

### Chapter 9 TORQUE & Rotational Kinematics

Chapter 9 TORQUE & Rotational Kinematics This motionless person is in static equilibrium. The forces acting on him add up to zero. Both forces are vertical in this case. This car is in dynamic equilibrium

### Chapter 6. Applications of Newton s Laws

Chapter 6 Applications of Newton s Laws P. Lam 7_11_2018 Learning Goals for Chapter 5 Learn how to apply Newton s First Law & Second Law. Understand the cause of apparent weight and weightlessness Learn

### Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapter Goal: To establish a connection between force and motion. Slide 5-2 Chapter 5 Preview Slide 5-3 Chapter 5 Preview Slide 5-4 Chapter 5 Preview Slide 5-5 Chapter 5 Preview

### Review PHYS114 Chapters 4-7

Review PHYS114 Chapters 4-7 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 27 kg object is accelerated at a rate of 1.7 m/s 2. What force does

### Physics for Scientists and Engineers. Chapter 5 Force and Motion

Physics for Scientists and Engineers Chapter 5 Force and Motion Spring, 2008 Ho Jung Paik Force Forces are what cause any change in the velocity of an object The net force is the vector sum of all the

### variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds?

Newton s Laws 1 1. Define mass variable Formula S or v SI 2. Define inertia, how is inertia related to mass 3. What is a Force? variable Formula S or v SI 4. How is a Newton defined? What does a Newton

### = 40 N. Q = 60 O m s,k

Sample Exam #2 Technical Physics Multiple Choice ( 6 Points Each ): F app = 40 N 20 kg Q = 60 O = 0 1. A 20 kg box is pulled along a frictionless floor with an applied force of 40 N. The applied force

### AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

### Reading Quiz. Chapter 5. Physics 111, Concordia College

Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic

### 4) Vector = and vector = What is vector = +? A) B) C) D) E)

1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In

### Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Chapter 4 Dynamics: Newton s Laws of Motion That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal orce, Tension, riction ree-body

### PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

### Circular Motion Test Review

Circular Motion Test Review Name: Date: 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration is equal to zero. B) No,

### Written Homework problems. Spring (taken from Giancoli, 4 th edition)

Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m

### Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics)

Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics) Instructions: Pick the best answer available for Part A. Show all your work for each question in Part B Part A: Multiple-Choice 1. Inertia

### Newton s First Law and IRFs

Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D

### In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion.

1 PHYS:100 LECTURE 9 MECHANICS (8) In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 9 1. Conservation of Energy. Energy is one of the most fundamental

### Four naturally occuring forces

Forces System vs Environment: system the object the force is applied to environment the world around the object that exerts the force Type Forces: Contact is applied by touching Long range exerted without

### Phys101 Lecture 5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects Free-Body Diagrams Ref: 4-1,2,3,4,5,6,7. Page

### 11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0.

A harmonic wave propagates horizontally along a taut string of length! = 8.0 m and mass! = 0.23 kg. The vertical displacement of the string along its length is given by!!,! = 0.1!m cos 1.5!!! +!0.8!!,

### Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

### Upthrust and Archimedes Principle

1 Upthrust and Archimedes Principle Objects immersed in fluids, experience a force which tends to push them towards the surface of the liquid. This force is called upthrust and it depends on the density

### Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Wiley Plus Final Assignment (5) Is Due Today: Before 11 pm! Final Exam Review December 9, 009 3 What about vector subtraction? Suppose you are given the vector relation A B C RULE: The resultant vector

### WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

### Solution of HW4. and m 2

Solution of HW4 9. REASONING AND SOLUION he magnitude of the gravitational force between any two of the particles is given by Newton's law of universal gravitation: F = Gm 1 m / r where m 1 and m are the

### We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

### Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS

Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget

### St. Joseph s Anglo-Chinese School

Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

### Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs.

PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow Based on Knight 3 rd edition Ch. 5, pgs. 116-133 Section 5.1 A force is a push or a pull What is a force? What is a force? A force

### Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Force The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Forces do not always give rise to motion. Forces can be equal and opposite. Force is a vector

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

### Chapter 5 Lecture. Pearson Physics. Newton's Laws of Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 5 Lecture Pearson Physics Newton's Laws of Motion Prepared by Chris Chiaverina Chapter Contents Newton's Laws of Motion Applying Newton's Laws Friction Newton's Laws of Motion Two of the most important

### Page 1. Name:

Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

### The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

### Forces and Newton s Laws Notes

Forces and Newton s Laws Notes Force An action exerted on an object which can change the motion of the object. The SI unit for force is the Newton (N) o N = (kg m)/s 2 o Pound is also a measure of force

### Practice Test for Midterm Exam

A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

### Newton s Laws and Free-Body Diagrams General Physics I

Newton s Laws and Free-Body Diagrams In the next few sections, we will be exploring some of the most fundamental laws of our universe, laws that govern the relationship actions and motion. These laws are

### PS113 Chapter 4 Forces and Newton s laws of motion

PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two

### Two Hanging Masses. ) by considering just the forces that act on it. Use Newton's 2nd law while

Student View Summary View Diagnostics View Print View with Answers Edit Assignment Settings per Student Exam 2 - Forces [ Print ] Due: 11:59pm on Tuesday, November 1, 2011 Note: To underst how points are

### (35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105

Coordinator: Dr. W. L-Basheer Monday, March 16, 2015 Page: 1 Q1. 70 N block and a 35 N block are connected by a massless inextendable string which is wrapped over a frictionless pulley as shown in Figure

### Chapter 3 The Laws of motion. The Laws of motion

Chapter 3 The Laws of motion The Laws of motion The Concept of Force. Newton s First Law. Newton s Second Law. Newton s Third Law. Some Applications of Newton s Laws. 1 5.1 The Concept of Force Force:

### 1N the force that a 100g bar of chocolate exerts on your hand.

Forces: - - > cause change in motions Newton's first law = law of inertia In absence of a net external force acting upon it, a body will either remain at rest or continue in its rectilinear uniform motion.

### 8.012 Physics I: Classical Mechanics Fall 2008

MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

### Circular Motion Dynamics Concept Questions

Circular Motion Dynamics Concept Questions Problem 1: A puck of mass m is moving in a circle at constant speed on a frictionless table as shown above. The puck is connected by a string to a suspended bob,

### SPH4U Sample Test Dynamics

1of14 True/False Indicate whether the sentence or statement is true or false. 1. The normal force that acts on an object is always equal in magnitude and opposite in direction to the gravitational force

### PH 2213 : Chapter 05 Homework Solutions

PH 2213 : Chapter 05 Homework Solutions Problem 5.4 : The coefficient of static friction between hard rubber and normal street pavement is about 0.90. On how steep a hill (maximum angle) can you leave

### PHYSICS 221, FALL 2010 EXAM #1 Solutions WEDNESDAY, SEPTEMBER 29, 2010

PHYSICS 1, FALL 010 EXAM 1 Solutions WEDNESDAY, SEPTEMBER 9, 010 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In

### Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,

### Be on time Switch off mobile phones. Put away laptops. Being present = Participating actively

A couple of house rules Be on time Switch off mobile phones Put away laptops Being present = Participating actively http://www.phys.tue.nl/nfcmr/natuur/collegenatuur.html Chapter 4 Newton s Laws of Motion

### Use the following to answer question 1:

Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to

### Dynamics Multiple Choice Homework

Dynamics Multiple Choice Homework PSI Physics Name 1. In the absence of a net force, a moving object will A. slow down and eventually stop B. stop immediately C. turn right D. move with constant velocity