Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)


 Shanon Stewart
 8 months ago
 Views:
Transcription
1 Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of the car increases at a constant rate and is 28 m/s at the top of the slope. Determine the acceleration of the car and the time it takes for the car to reach the top of the slope. Newton s 3 Laws of Motion 1st Law of Inertia (an object at rest remains at rest, an object in motion remains in motion UNLESS acted on by an outside force). 2nd Force/Acceleration Relationship (the acceleration created by forces acting on a mass is equal to the vector sum of the forces divided by the mass of the object). 3rd Action/Reaction Pairs (If object A exerts a force on object B, object B is exerting an equal but opposite force on A). Recall Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²) Any object experiencing acceleration (a nonconstant velocity in either speed or direction) is experiencing outofbalance forces.
2 Definitions Vector Measurements that have both MAGNITUDE (amount) and DIRECTION; such as displacement, velocity, acceleration and force. Net Force the vector sum of forces acting on an object Equilibrium the condition when the NET FORCE (vector sum) is 0; condition of a = 0 m/s²; stationary objects or objects under constant velocity Definitions Equilibrium Equations Equations, broken down by axis, showing the sum of all forces equal to zero. NonEquilibrium Equation Equations, broken down by axis, showing the sum of all forces equal to mass x acceleration. Centripetal Force ANY force causing an object to move in circular motion is a centripetal force and is equal to F c = mv² / r Where m = mass, v = tangential velocity, and r = radius of curvature
3 Types of Force Force Symbol Definition Direction Friction F f Contact force that opposes sliding motion between surfaces Normal F N The contact force exerted by a surface on an object Parallel to surface and opposite direction of travel Perpendicular to and away from the surface Spring F K A restoring force that pulls on an object Opposite displacement Tension F T The pull exerted by a rope or string Away from the object and parallel to the string Thrust F thrust A generic term for forces that move objects such as rockets, etc Weight F W A field force due to gravitational attraction between masses Drag F drag A force acting against motion exerted by objects moving through gas or fluids. In direction of acceleration of object Straight down towards center of exerting mass Against motion OR in the direction of fluid flow. Drag Force and Terminal Velocity In most problems, we ignore the effect of air resistance. In these problems, we assume that falling objects continue to accelerate until they hit the ground. In reality, falling objects experience a force due to air resistance drag force. This same force acts on objects being pulled through liquids. As the velocity of an object increases, the drag force increases. Terminal velocity occurs when the drag force equals the force due to gravity. Practice AS/A2 Force Problems
4 Easy Vector Problem Two forces of magnitude 6.0N and 8.0N act at a point P. Both forces act away from point P and the angle between them is 40. Determine the magnitude and direction of the resultant force acting on point P. P 40 Tension Tension is the specific name given to the force exerted by a string, rope or wire. In most physics problems, we assume that these strings are massless. Examine the simple system of a 100 kg mass on a rope. The forces acting on the mass include the gravitational attraction between the Earth and the mass and the tension between the mass and the string. Tension Problems An Atwood machine uses a counterweight to raise and lower an elevator. If the 850kg elevator is attached via a pulley to a 1000kg counterweight, what is the acceleration of the system and force of tension in the cable? How does this change when the elevator is full and has a new mass of 1150kg?
5 Normal Force Any object not accelerating downward at a rate of 9.8 m/s 2, must be experiencing at least one force that is counteracting the pull of gravity This force is frequently the normal force exerted by surface contact and acting perpendicular to the surface. Find acceleration & final velocity Elevators and Scales The scale shows the normal force NOT your weight. When acceleration 0 m/s²; ΣF = ma = F W + F N = F W + F N The scale will show F N = ma + F W
6 Lab Help Drag Force Lab: In the final question, they said that F drag = bv n At terminal velocity: F drag = F g So mg = bv n Take the log of each side log(m) + log(g) = log(b) + log(v n ) log(m) + log(g) = log(b) + nlog(v) Rearrange to put your DEPENDENT (v) on one side log(v) = [1/n][log(m)] + [1/n][log(b)  log(g)] From this, how does the slope of your line relate to n and b? How does the yintercept relate to n or b? Frictional Force There are two types of friction force both always oppose movement. When objects are moving they experience kinetic friction. When objects are stationary, they experience static friction. See page 90 in Giancoli for information of the coefficients of friction for various substances
7 Friction and Normal Forces There is also a relationship between the normal force (the force created by two surfaces in contact) and the friction force. As normal force increases, so does friction force. The two are related as follows: F f kinetic = kf N F f static = sf N Find acceleration & final velocity Incline Problems In evaluating a problem where forces act at angles other than 90 and 180 degrees requires establishing a coordinate system and breaking force vectors into component vectors. Inclined planes are one of the most common examples.
8 Incline Coordinate Systems Breaking forces into component vectors: SetUp the Problem A box is resting on an inclined plane with an angle of 25 degrees from the horizontal. The mass of the box is 10 kg. If the box is at rest, what is the coefficient of friction between the surface of the box and the incline plane? Example 2 A 10kg box is resting on a 15 incline with a coefficient of friction of μ = A rope connects the 10kg box to 3kg box via a pulley. Consider the ropes to be massless and the pulley to be frictionless. Is the system in equilibrium?
9 Working With Angles Always resolve a problem in to a set of perpendicular planes Horizontal and Vertical Parallel and Perpendicular Break vectors into their components Look at equilibrium/nonequilibrium in both axes. Put the final answer back together. Center of Mass The center of mass (sometimes called the center of gravity) is the average position of all the particles of mass that make up an object. In our previous problems, we have assumed that the geometric center of the object is the center of the mass. Center of Gravity In strong gravitational fields, especially for large objects, we can t assume gravity is uniform. In these cases, the center of gravity is located below the center of mass.
10 Torque The MOMENT of the force Force is needed to initiate or stop motion Torque is needed to initiate or stop rotation. Mathematically, torque is calculated by: = F r Torque is often referred to as MOMENT. Couples Two complimentary torques (moments) create a COUPLE. Opposing torques are not a couple. Torque Torque occurs in circular motion and is created by the force PERPENDICULAR to the radius of the movement. If force is not applied at 90, only the part of the force acting perpendicular to the radius creates torque.
11 Practice 3) Compute the magnitude F for each of the two forces acting on the outer circle, so that they create the same couple moment as that created by the 100N forces acting on the inner circle. Rotational Inertia Objects moving in circular motion tend to remain in circular motion or more simply, spinning objects tend to keep spinning. For rotational inertia: the further the bulk of the mass is to the axis of rotation, the greater the rotational inertia. This can be written mathematically as: I = mr² So, larger masses have more inertia or they are harder to get started and harder to stop AND longer radii have more inertia. Moments of Inertia
12 Torque and Rotational Inertia Force can be related to F = ma Torque can be related to τ= Iα Rotational Equilibrium Translational Equilibrium refers to objects that are experiencing a 0 N net force. Rotational Equilibrium refers to objects that are experiences a 0 Nm net torque as well. Review Ch 7 #49, 51 Ch 8 #23, 25, 26
13 Choosing an Axis of rotation In any problem of torque, you must select a point as the axis of rotation. In many problems this point will be a pivot, hinge, etc. Sometimes you may wish to select a point of rotation so that it eliminates any unknown torques acting at that point (radius = 0m) Problem 1 Ch 9 #8: A 140kg horizontal beam is supported at each end. A 320kg piano rests a quarter of the way from one end. What is the vertical force on each of the supports? 16, 19 Problem 2 Ch 9 #16: Three children are trying to balance on a seesaw, which consists of a fulcrum acting as a pivot at the center and a very light board 3.6 m long. Two children are already on either end. Boy A has a mass of 50 kg and girl B has a mass of 35 kg. Where should girl C, whose mass is 25 kg, place herself to balance the seesaw?
14 Problem 3 Ch 9 #19: A 172cmtall person lies on a light (massless) board which is supported by two scales, one under the top of her head and one beneath the bottom of her feet. The two scales read, respectively, 35.1 kg and 31.6 kg. What distance is the center of gravity of this person from the bottom of her feet? Problem Solving Deskwork AS/A2 page 82 all problems.
Chapter Four Holt Physics. Forces and the Laws of Motion
Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces  a. Force  a push or a pull. It can change the motion of an object; start or stop movement; and,
More informationLecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 6 Physics, 4 th Edition James S. Walker Chapter 6 Applications of Newton s Laws Units of Chapter 6 Frictional Forces Strings and Springs Translational Equilibrium Connected Objects
More informationNewton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.
Newton s Laws Newton s first law: An object will stay at rest or in a state of uniform motion with constant velocity, in a straight line, unless acted upon by an external force. In other words, the bodies
More informationNewton s 3 Laws of Motion
Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of
More informationChapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.
Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions
More informationPHYS 101 Previous Exam Problems. Force & Motion I
PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0kg block is lowered with a downward
More informationWritten Homework problems. Spring (taken from Giancoli, 4 th edition)
Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m
More information4) Vector = and vector = What is vector = +? A) B) C) D) E)
1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In
More informationDynamics; Newton s Laws of Motion
Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude
More informationUse the following to answer question 1:
Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the
More informationTwo Hanging Masses. ) by considering just the forces that act on it. Use Newton's 2nd law while
Student View Summary View Diagnostics View Print View with Answers Edit Assignment Settings per Student Exam 2  Forces [ Print ] Due: 11:59pm on Tuesday, November 1, 2011 Note: To underst how points are
More informationPS113 Chapter 4 Forces and Newton s laws of motion
PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two
More informationAP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).
AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the
More informationPhys101 Lecture 5 Dynamics: Newton s Laws of Motion
Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects FreeBody Diagrams Ref: 41,2,3,4,5,6,7. Page
More informationUpthrust and Archimedes Principle
1 Upthrust and Archimedes Principle Objects immersed in fluids, experience a force which tends to push them towards the surface of the liquid. This force is called upthrust and it depends on the density
More informationChapter 4: Newton s Second Law F = m a. F = m a (4.2)
Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.
More informationLECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich
LECTURE 12 FRICTION, STRINGS & SPRINGS Instructor: Kazumi Tolich Lecture 12 2! Reading chapter 61 to 64! Friction " Static friction " Kinetic friction! Strings! Pulleys! Springs Origin of friction 3!!
More informationNewton s Laws and FreeBody Diagrams General Physics I
Newton s Laws and FreeBody Diagrams In the next few sections, we will be exploring some of the most fundamental laws of our universe, laws that govern the relationship actions and motion. These laws are
More informationIsaac Newton ( )
Isaac Newton (16421727) In the beginning of 1665 I found the rule for reducing any degree of binomial to a series. The same year in May I found the method of tangents and in November the method of fluxions
More informationPHYSICS 231 Laws of motion PHY 231
PHYSICS 231 Laws of motion 1 Newton s Laws First Law: If the net force exerted on an object is zero the object continues in its original state of motion; if it was at rest, it remains at rest. If it was
More informationPhysics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line
Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible
More informationPreparing for Six Flags Physics Concepts
Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given
More informationCHAPTER 4 TEST REVIEW  Answer Key
AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 MultiResponse Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST
More informationUniversity Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1
University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction
More information= y(x, t) =A cos (!t + kx)
A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8
More informationDynamics Review Checklist
Dynamics Review Checklist Newton s Laws 2.1.1 Explain Newton s 1 st Law (the Law of Inertia) and the relationship between mass and inertia. Which of the following has the greatest amount of inertia? (a)
More informationREVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions
REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,
More informationForces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics
FORCES Forces Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics Inertia Tendency of an object to remain in the same state of motion. Resists a change in motion.
More informationHATZIC SECONDARY SCHOOL
HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest
More informationVersion PREVIEW Semester 1 Review Slade (22222) 1
Version PREVIEW Semester 1 Review Slade () 1 This printout should have 48 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A
More informationPHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.
PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.
More informationKinematics and Dynamics
AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1 supp.html 201516 AP Physics: Kinematics Study Guide The study guide will help you review all
More informationB C = B 2 + C 2 2BC cosθ = (5.6)(4.8)cos79 = ) The components of vectors B and C are given as follows: B x. = 6.
1) The components of vectors B and C are given as follows: B x = 6.1 C x = 9.8 B y = 5.8 C y = +4.6 The angle between vectors B and C, in degrees, is closest to: A) 162 B) 111 C) 69 D) 18 E) 80 B C = (
More information= o + t = ot + ½ t 2 = o + 2
Chapters 89 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the
More informationConcept Question: Normal Force
Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical
More information1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true?
Slide 1 / 30 1 car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? The car s velocity is constant The car s acceleration is constant The
More informationConcept of Force and Newton s Laws of Motion
Concept of Force and Newton s Laws of Motion 8.01 W02D2 Chapter 7 Newton s Laws of Motion, Sections 7.17.4 Chapter 8 Applications of Newton s Second Law, Sections 8.18.4.1 Announcements W02D3 Reading
More informationPhysics A  PHY 2048C
Physics A  PHY 2048C Mass & Weight, Force, and Friction 10/04/2017 My Office Hours: Thursday 2:003:00 PM 212 Keen Building Warmup Questions 1 Did you read Chapters 6.16.6? 2 In your own words: What
More information(a) On the dots below that represent the students, draw and label freebody diagrams showing the forces on Student A and on Student B.
2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on
More informationPHYS 1303 Final Exam Example Questions
PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 3035,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor
More informationCEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.45
1 / 40 CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.45 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa 2 / 40 EQUATIONS OF MOTION:RECTANGULAR COORDINATES
More informationForces I. Newtons Laws
Forces I Newtons Laws Kinematics The study of how objects move Dynamics The study of why objects move Newton s Laws and Forces What is force? What are they? Force A push or a pull Symbol is F Unit is N
More information66 Chapter 6: FORCE AND MOTION II
Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the
More informationUnit 2: Vector Dynamics
Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal
More informationKINETIC ENERGY AND WORK
Chapter 7: KINETIC ENERGY AND WORK 1 Which of the following is NOT a correct unit for work? A erg B ft lb C watt D newton meter E joule 2 Which of the following groups does NOT contain a scalar quantity?
More informationChapter 10. Rotation
Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGrawPHY 45 Chap_10HaRotationRevised
More informationPOGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.
POGIL: Newton s First Law of Motion and Statics Name Purpose: To become familiar with the forces acting on an object at rest Part 1: Net Force Model: Read the following carefully and study the diagrams
More information4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight.
1 1 wooden block of mass 0.60 kg is on a rough horizontal surface. force of 12 N is applied to the block and it accelerates at 4.0 m s 2. wooden block 4.0 m s 2 12 N hat is the magnitude of the frictional
More information7. Two forces are applied to a 2.0kilogram block on a frictionless horizontal surface, as shown in the diagram below.
1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.
More information2. Mass, Force and Acceleration
. Mass, Force and Acceleration [This material relates predominantly to modules ELP034, ELP035].1 ewton s first law of motion. ewton s second law of motion.3 ewton s third law of motion.4 Friction.5 Circular
More informationChapter 6, Problem 18. Agenda. Rotational Inertia. Rotational Inertia. Calculating Moment of Inertia. Example: Hoop vs.
Agenda Today: Homework quiz, moment of inertia and torque Thursday: Statics problems revisited, rolling motion Reading: Start Chapter 8 in the reading Have to cancel office hours today: will have extra
More informationAP Physics Multiple Choice Practice Torque
AP Physics Multiple Choice Practice Torque 1. A uniform meterstick of mass 0.20 kg is pivoted at the 40 cm mark. Where should one hang a mass of 0.50 kg to balance the stick? (A) 16 cm (B) 36 cm (C) 44
More informationSummer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.
Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope
More informationPhysics 2210 Homework 18 Spring 2015
Physics 2210 Homework 18 Spring 2015 Charles Jui April 12, 2015 IE Sphere Incline Wording A solid sphere of uniform density starts from rest and rolls without slipping down an inclined plane with angle
More informationCHAPTER 2. FORCE and Motion. CHAPTER s Objectives
19 CHAPTER 2 FORCE and Motion CHAPTER s Objectives To define a force To understand the relation between force and motion In chapter 1, we understood that the Greek philosopher Aristotle was the first who
More informationPRACTICE TEST for Midterm Exam
South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos
More informationNEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections )
NEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections 13.113.3) Today s Objectives: Students will be able to: a) Write the equation of motion for an accelerating body. b) Draw the freebody and kinetic
More informationTue Sept 15. Dynamics  Newton s Laws of Motion. Forces: Identifying Forces Freebody diagram Affect on Motion
Tue Sept 15 Assignment 4 Friday Preclass Thursday Lab  Print, do prelab Closed toed shoes Exam Monday Oct 5 7:159:15 PM email me if class conflict or extended time Dynamics  Newton s Laws of Motion
More informationGeneral Physics (PHY 2130)
General Physics (PHY 130) Lecture 0 Rotational dynamics equilibrium nd Newton s Law for rotational motion rolling Exam II review http://www.physics.wayne.edu/~apetrov/phy130/ Lightning Review Last lecture:
More information3. A bicycle tire of radius 0.33 m and a mass 1.5 kg is rotating at 98.7 rad/s. What torque is necessary to stop the tire in 2.0 s?
Practice 8A Torque 1. Find the torque produced by a 3.0 N force applied at an angle of 60.0 to a door 0.25 m from the hinge. What is the maximum torque this force could exert? 2. If the torque required
More informationSolution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:
8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,
More informationAdvanced Higher Physics. Rotational motion
Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration
More informationHint 1. The direction of acceleration can be determined from Newton's second law
Chapter 5 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 5 Due: 11:59pm on Sunday, October 2, 2016 To understand how points are awarded, read the Grading Policy for this
More informationMotion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage).
1 Motion Aristotle s Study Aristotle s Law of Motion This law of motion was based on false assumptions. He believed that an object moved only if something was pushing it. His arguments were based on everyday
More informationPHYSICS 231 INTRODUCTORY PHYSICS I
PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 6 Last Lecture: Gravity Normal forces Strings, ropes and Pulleys Today: Friction Work and Kinetic Energy Potential Energy Conservation of Energy Frictional Forces
More informationReview 3: Forces. 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D)
1. Which graph best represents the motion of an object in equilibrium? A) B) C) D) 2. A rock is thrown straight up into the air. At the highest point of the rock's path, the magnitude of the net force
More informationUniform Circular Motion
Uniform Circular Motion Introduction Earlier we defined acceleration as being the change in velocity with time: = Until now we have only talked about changes in the magnitude of the acceleration: the speeding
More informationCIRCULAR MOTION AND GRAVITATION
CIRCULAR MOTION AND GRAVITATION An object moves in a straight line if the net force on it acts in the direction of motion, or is zero. If the net force acts at an angle to the direction of motion at any
More informationHATZIC SECONDARY SCHOOL
HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT CIRCULAR MOTION MULTIPLE CHOICE / 30 OPEN ENDED / 65 TOTAL / 95 NAME: 1. An object travels along a path at constant speed. There is a constant
More informationAnnouncements. Principle of Work and Energy  Sections Engr222 Spring 2004 Chapter Test Wednesday
Announcements Test Wednesday Closed book 3 page sheet sheet (on web) Calculator Chap 12.610, 13.16 Principle of Work and Energy  Sections 14.13 Today s Objectives: Students will be able to: a) Calculate
More informationSEE the list given for chapter 04 where Newton s laws were introduced.
PH2213 : Examples from Chapter 5 : Applying Newton s Laws Key Concepts Newton s Laws (basically Σ F = m a ) allow us to relate the forces acting on an object (lefthand side) to the motion of the object,
More informationVersion 001 circular and gravitation holland (2383) 1
Version 00 circular and gravitation holland (383) This printout should have 9 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. AP B 993 MC
More informationr r Sample Final questions for PS 150
Sample Final questions for PS 150 1) Which of the following is an accurate statement? A) Rotating a vector about an axis passing through the tip of the vector does not change the vector. B) The magnitude
More informationPhysics Mechanics. Lecture 11 Newton s Laws  part 2
Physics 170  Mechanics Lecture 11 Newton s Laws  part 2 Newton s Second Law of Motion An object may have several forces acting on it; the acceleration is due to the net force: Newton s Second Law of
More information(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III
1. A solid metal ball and a hollow plastic ball of the same external radius are released from rest in a large vacuum chamber. When each has fallen 1m, they both have the same (A) inertia (B) speed (C)
More informationPHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 111, 1314
Final Review: Chapters 111, 1314 These are selected problems that you are to solve independently or in a team of 23 in order to better prepare for your Final Exam 1 Problem 1: Chasing a motorist This
More informationChapter 4 Newton s Laws
Chapter 4 Newton s Laws Isaac Newton 16421727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,
More informationLecture Presentation Chapter 5 Applying Newton s Laws
Lecture Presentation Chapter 5 Applying Newton s Laws Suggested Videos for Chapter 5 Prelecture Videos Static and Dynamic Equilibrium Weight and Apparent Weight Friction Video Tutor Solutions Applying
More informationWhat path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday.
What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday. Centripetal Acceleration and Newtonian Gravitation Reminders: 15
More informationApplying Newton s Laws
Applying Newton s Laws Free Body Diagrams Draw and label the forces acting on the object. Examples of forces: weight, normal force, air resistance, friction, applied forces (like a push or pull) Velocity
More informationPhysics 2A Chapter 4: Forces and Newton s Laws of Motion
Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will
More informationExam 3 Practice Solutions
Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at
More informationPhysics 53 Exam 3 November 3, 2010 Dr. Alward
1. When the speed of a reardrive car (a car that's driven forward by the rear wheels alone) is increasing on a horizontal road the direction of the frictional force on the tires is: A) forward for all
More informationA force is could described by its magnitude and by the direction in which it acts.
8.2.a Forces Students know a force has both direction and magnitude. P13 A force is could described by its magnitude and by the direction in which it acts. 1. Which of the following could describe the
More informationPractice Honors Physics Test: Newtons Laws
Name: Class: Date: Practice Honors Physics Test: Newtons Laws Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Acceleration is defined as the CHANGE in
More informationThe magnitude of this force is a scalar quantity called weight.
Everyday Forces has direction The gravitational force (F g ) exerted on the ball by Earth is a vector directed toward the center of the earth. The magnitude of this force is a scalar quantity called weight.
More informationFreeBody Diagrams: Introduction
FreeBody Diagrams: Introduction Learning Goal: To learn to draw freebody diagrams for various reallife situations. Imagine that you are given a description of a reallife situation and are asked to
More informationDistance travelled time taken and if the particle is a distance s(t) along the xaxis, then its instantaneous speed is:
Chapter 1 Kinematics 1.1 Basic ideas r(t) is the position of a particle; r = r is the distance to the origin. If r = x i + y j + z k = (x, y, z), then r = r = x 2 + y 2 + z 2. v(t) is the velocity; v =
More informationFRICTIONAL FORCES. Direction of frictional forces... (not always obvious)... CHAPTER 5 APPLICATIONS OF NEWTON S LAWS
RICTIONAL ORCES CHAPTER 5 APPLICATIONS O NEWTON S LAWS rictional forces Static friction Kinetic friction Centripetal force Centripetal acceleration Looptheloop Drag force Terminal velocity Direction
More informationAP Physics. Harmonic Motion. Multiple Choice. Test E
AP Physics Harmonic Motion Multiple Choice Test E A 0.10Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.
More information1. A 7.0kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0.
Newton's Laws 1. A 7.0kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0.71 m/s 2 2. An astronaut applies a force of 500 N to an
More informationAP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time.
P Physics Review. Shown is the velocity versus time graph for an object that is moving in one dimension under the (perhaps intermittent) action of a single horizontal force. Velocity, m/s Time, s On the
More information112 A General Method, and Rolling without Slipping
112 A General Method, and Rolling without Slipping Let s begin by summarizing a general method for analyzing situations involving Newton s Second Law for Rotation, such as the situation in Exploration
More informationUNIT07. Newton s Three Laws of Motion
1. Learning Objectives: UNIT07 Newton s Three Laws of Motion 1. Understand the three laws of motion, their proper areas of applicability and especially the difference between the statements of the first
More informationChapter 4. Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Types of Forces: An Overview Examples of Nonfundamental Forces  All of these are derived from the electroweak force: normal or support forces friction tension
More informationVersion A (01) Question. Points
Question Version A (01) Version B (02) 1 a a 3 2 a a 3 3 b a 3 4 a a 3 5 b b 3 6 b b 3 7 b b 3 8 a b 3 9 a a 3 10 b b 3 11 b b 8 12 e e 8 13 a a 4 14 c c 8 15 c c 8 16 a a 4 17 d d 8 18 d d 8 19 a a 4
More informationPhysicsMC Page 1 of 29 Inertia, Force and Motion 1.
PhysicsMC 20067 Page 1 of 29 Inertia, Force and Motion 1. 3. 2. Three blocks of equal mass are placed on a smooth horizontal surface as shown in the figure above. A constant force F is applied to block
More informationClassical mechanics: conservation laws and gravity
Classical mechanics: conservation laws and gravity The homework that would ordinarily have been due today is now due Thursday at midnight. There will be a normal assignment due next Tuesday You should
More informationChapter Test A. Teacher Notes and Answers Forces and the Laws of Motion. Assessment
Assessment Chapter Test A Teacher Notes and Answers Forces and the Laws of Motion CHAPTER TEST A (GENERAL) 1. c 2. d 3. d 4. c 5. c 6. c 7. c 8. b 9. d 10. d 11. c 12. a 13. d 14. d 15. b 16. d 17. c 18.
More information