Motion Planning in Partially Known Dynamic Environments

Size: px
Start display at page:

Download "Motion Planning in Partially Known Dynamic Environments"

Transcription

1 Motion Planning in Partially Known Dynamic Environments Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 Dr. Thierry Fraichard e-motion Team Inria Rhône-Alpes & Gravir-CNRS Laboratory Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.1/24

2 Motivation, Problem European IST Cybercars project [ ] Motion autonomy for: Robotic vehicles (wheeled, car-like), [high speed] Partially known dynamic environments: [fast] moving obstacles Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.2/24

3 Motion Planning Perspective Motion planning: a priori computation of a complete motion to the goal based upon models of the robotic system and its environment Fast robotic system: system dynamics Moving obstacles: knowledge of their future behaviour Model of the future: a priori known / predicted partially known environment Prediction: validity duration? Dynamic environment: limited response time (blind / fast / hostile moving obstacles) r = f(dynamicity) real-time constraint Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.3/24

4 State-Time Space Framework [Fraichard, 92] t q Moving obstacles: time Dynamics: state space q Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.4/24

5 State-Time Space Framework [Fraichard, 92] t T q s g Moving obstacles: time Dynamics: state space s 0 q Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.4/24

6 Previous Approaches t s g s 0 s 1. Reactive approaches: no lookahead convergence & safety problem [Vector Field Histogram, Dynamic Windows, Nearness Diagram... ] Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.5/24

7 Previous Approaches t s g t s g s 0 s s 0 s 1. Reactive approaches: no lookahead convergence & safety problem [Vector Field Histogram, Dynamic Windows, Nearness Diagram... ] 2. Planning approaches: time-consuming process real-time problem [Fraichard 92; Hsu 00; Bruce & Veloso 02; Van den Berg, 04] Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.5/24

8 Previous Approaches t s g t s g t s g s 0 s s 0 s s 0 s 1. Reactive approaches: no lookahead convergence & safety problem [Vector Field Histogram, Dynamic Windows, Nearness Diagram... ] 2. Planning approaches: time-consuming process real-time problem [Fraichard 92; Hsu 00; Bruce & Veloso 02; Van den Berg, 04] 3. Mixed approaches: Upgraded reactive approaches [VFH, Global DW, Global ND... ] Downgraded planning approaches [Frazzoli, 00; Large, 03] Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.5/24

9 Proposed Approach Argument: in a dynamic environment, motion planning must take into account the real-time constraint Observation: best motion planning techniques today are randomised (graph / tree based) no running-time upper-bound Solution: Iterative Partial Trajectory Planning (IPTP) 1. Get model of the future (a priori known / observation & prediction) 2. Expand exploration tree until r is over 3. Return best partial trajectory 4. Repeat until goal is reached Note: IPTP doubly required in a partially known environment Prediction validity duration (partial) Prediction update (iterative) Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.6/24

10 Iterative Partial Trajectory Planning Scheme Observation & Prediction model root (t 1 ) B( t 0, ) δ p0 modelb ( t 1, ) modelb ( t 2, ) modelb( t, n 1 ) root (t 2 ) root (t 3 ) root (t n ) (success) δp 1 δ p 2 PLANNING PLANNING PLANNING... δ pn 1 PLANNING (success) (goal) time φ 0 EXECUTION δ h1 φ 1 EXECUTION φ 2 EXEC. EXECUTION φ n 1 EXECUTION δ h2 δ h3 δ hn 1 t 0 δ c t1 δ 2 c t δc 3 t tn 1 δc tn δ t n+ 1 c step 0 step 1 step 2 step n-1 step n t f r Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.7/24

11 Iterative Partial Trajectory Planning Issues Same as reactive/mixed approaches, related to the fact that only a partial motion is computed: Convergence: will the system ever reach the goal? Safety: won t the system ever collide with an obstacle? Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.8/24

12 Iterative Partial Trajectory Planning Issues Same as reactive/mixed approaches, related to the fact that only a partial motion is computed: Convergence: will the system ever reach the goal? Safety: won t the system ever collide with an obstacle? Solutions proposed wrt safety Braking trajectory [reactive approaches] Evasive trajectory [Hsu 00; ATC literature] τ-safety [Frazzoli, 00; Large, 03] Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.8/24

13 Safety Issue Inevitable Collision State (ICS): state for which, no matter what the future trajectory followed by the system is, a collision will occur [Fraichard, 03] A : (x, y, v) v Wall Collision States Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.9/24

14 Safety Issue Inevitable Collision State (ICS): state for which, no matter what the future trajectory followed by the system is, a collision will occur [Fraichard, 03] A : (x, y, v) v d(v) Wall Collision States Inevitable Collision States Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.9/24

15 Safety Issue Inevitable Collision State (ICS): state for which, no matter what the future trajectory followed by the system is, a collision will occur [Fraichard, 03] A : (x, y, v) v d(v) Wall Collision States Inevitable Collision States v v S y S Inevitable collision states S x S d(v) Collision states Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.9/24

16 Inevitable Collision States General concept: robotic systems, fixed & moving obstacles Key to a robotic system safety: never ever end up in an inevitable collision state! Key to safe IPTP: ICS-free partial trajectories Main drawback: ICS characterisation is complex (infinite number of possible future trajectories), but... Conservative approximation property: by considering a subset I of the whole set of possible trajectories Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.10/24

17 Case Study: Car-Like System A : s = (x, y, θ, v), u = {u ξ, u v } v u ξ = ξ (steering angle): u ξ ξ max ξ θ u v (acceleration): u v u v max b F y R x Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.11/24

18 Case Study: Car-Like System v ξ θ A : s = (x, y, θ, v), u = {u ξ, u v } u ξ = ξ (steering angle): u ξ ξ max u v (acceleration): u v u v max b F Infinite number of possible trajectories φu Approximation property: y R I: φ u with constant steering angle u ξ x u ξ = 0, u v = 0 u ξ = 0, u v 0 u ξ 0, u v = 0 u ξ 0, u v 0 Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.11/24

19 Car-Like System: ICS Characterisation (1) B i d(v) B i B y A y A y A x x x Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.12/24

20 Car-Like System: ICS Characterisation (2) B B B y A y A y A x x x Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.13/24

21 Car-Like System: ICS Characterisation (3) A B θ = 0, v = 1 C Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.14/24

22 Iterative Partial Trajectory Planning Algorithm Exploration using a Rapidly Exploring Random Tree [Lavalle 98] s c s s n i δ s r Output trajectory: feasible, collision-free & ICS-free Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.15/24

23 IPTP Results: 1D Case Film Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.16/24

24 IPTP Results: 2D Case Film Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.17/24

25 Conclusion General motion planning technique designed for: Robotic systems, [high speed] Partially known dynamic environments, [fast] moving obstacles Iterative partial trajectory planning scheme: Real-time constraint Environment model update Safety through the Inevitable Collision State concept Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.18/24

26 Experimental Perspectives Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.19/24

27 Theoretical Perspectives Inevitable Collision States General characterisation Efficient computation Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.20/24

28 Moving Obstacles Future Behaviour Prediction Required for safety checking (collision, ICS) B( t 2 ) time t B( t 1 ) t 0 x ( 2 x 2, y ) moving obstacle model y ( x 0, y0) B( t 0 ) Long-term prediction desirable Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.21/24

29 Moving Obstacles Future Behaviour Prediction Key assumption: the moving obstacles have typical behaviours Two-step statistical approach [Vasquez & Fraichard 03] 1. Learning stage: determine the typical behaviours though observation 2. Prediction stage: determine an obstacle future behaviour through current vs typical behaviour matching Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.22/24

30 Moving Obstacles Future Behaviour Prediction Learning stage: clustering Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.23/24

31 Moving Obstacles Future Behaviour Prediction Prediction stage: film, film Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 p.24/24

Inevitable Collision States: a Probabilistic Perspective

Inevitable Collision States: a Probabilistic Perspective 00 IEEE International Conference on Robotics and Automation Anchorage Convention District May -8, 00, Anchorage, Alaska, USA Inevitable Collision States: a Probabilistic Perspective Antoine Bautin, Luis

More information

The Nonlinear Velocity Obstacle Revisited: the Optimal Time Horizon

The Nonlinear Velocity Obstacle Revisited: the Optimal Time Horizon The Nonlinear Velocity Obstacle Revisited: the Optimal Time Horizon Zvi Shiller, Oren Gal, and Thierry Fraichard bstract This paper addresses the issue of motion safety in dynamic environments using Velocity

More information

Robust Motion Planning using Markov Decision Processes and Quadtree Decomposition

Robust Motion Planning using Markov Decision Processes and Quadtree Decomposition Robust Motion Planning using Markov Decision Processes and Quadtree Decomposition Julien Burlet, Olivier Aycard 1 and Thierry Fraichard 2 Inria Rhône-Alpes & Gravir Lab., Grenoble (FR) {julien.burlet &

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Sachin Patil Guest Lecture: CS287 Advanced Robotics Slides adapted from Pieter Abbeel, Alex Lee Outline Introduction to POMDPs Locally Optimal Solutions

More information

Sufficient Conditions for the Existence of Resolution Complete Planning Algorithms

Sufficient Conditions for the Existence of Resolution Complete Planning Algorithms Sufficient Conditions for the Existence of Resolution Complete Planning Algorithms Dmitry Yershov and Steve LaValle Computer Science niversity of Illinois at rbana-champaign WAFR 2010 December 15, 2010

More information

Fast trajectory correction for nonholonomic mobile robots using affine transformations

Fast trajectory correction for nonholonomic mobile robots using affine transformations Robotics: Science and Systems 11 Los Angeles, CA, USA, June 7-3, 11 Fast trajectory correction for nonholonomic mobile robots using affine transformations Quang-Cuong Pham Nakamura-Takano Laboratory Department

More information

Statistical Model Checking Applied on Perception and Decision-making Systems for Autonomous Driving

Statistical Model Checking Applied on Perception and Decision-making Systems for Autonomous Driving Statistical Model Checking Applied on Perception and Decision-making Systems for Autonomous Driving J. Quilbeuf 1 M. Barbier 2,3 L. Rummelhard 3 C. Laugier 2 A. Legay 1 T. Genevois 2 J. Ibañez-Guzmán 3

More information

An Adaptive Multi-resolution State Lattice Approach for Motion Planning with Uncertainty

An Adaptive Multi-resolution State Lattice Approach for Motion Planning with Uncertainty An Adaptive Multi-resolution State Lattice Approach for Motion Planning with Uncertainty A. González-Sieira 1, M. Mucientes 1 and A. Bugarín 1 Centro de Investigación en Tecnoloxías da Información (CiTIUS),

More information

Autonomous navigation of unicycle robots using MPC

Autonomous navigation of unicycle robots using MPC Autonomous navigation of unicycle robots using MPC M. Farina marcello.farina@polimi.it Dipartimento di Elettronica e Informazione Politecnico di Milano 7 June 26 Outline Model and feedback linearization

More information

Dynamic Obstacle Avoidance using Online Trajectory Time-Scaling and Local Replanning

Dynamic Obstacle Avoidance using Online Trajectory Time-Scaling and Local Replanning Dynamic bstacle Avoidance using nline Trajectory Time-Scaling and Local Replanning Ran Zhao,, Daniel Sidobre, CNRS, LAAS, 7 Avenue du Colonel Roche, F- Toulouse, France Univ. de Toulouse, LAAS, F- Toulouse,

More information

A PROVABLY CONVERGENT DYNAMIC WINDOW APPROACH TO OBSTACLE AVOIDANCE

A PROVABLY CONVERGENT DYNAMIC WINDOW APPROACH TO OBSTACLE AVOIDANCE Submitted to the IFAC (b 02), September 2001 A PROVABLY CONVERGENT DYNAMIC WINDOW APPROACH TO OBSTACLE AVOIDANCE Petter Ögren,1 Naomi E. Leonard,2 Division of Optimization and Systems Theory, Royal Institute

More information

1 Introduction. 2 Successive Convexification Algorithm

1 Introduction. 2 Successive Convexification Algorithm 1 Introduction There has been growing interest in cooperative group robotics [], with potential applications in construction and assembly. Most of this research focuses on grounded or mobile manipulator

More information

Probabilistic Feasibility for Nonlinear Systems with Non-Gaussian Uncertainty using RRT

Probabilistic Feasibility for Nonlinear Systems with Non-Gaussian Uncertainty using RRT Probabilistic Feasibility for Nonlinear Systems with Non-Gaussian Uncertainty using RRT Brandon Luders and Jonathan P. How Aerospace Controls Laboratory Massachusetts Institute of Technology, Cambridge,

More information

arxiv: v1 [cs.sy] 2 May 2016

arxiv: v1 [cs.sy] 2 May 2016 Formal Verification of Obstacle Avoidance and Navigation of Ground Robots arxiv:1605.00604v1 [cs.sy] 2 May 2016 Stefan Mitsch, Khalil Ghorbal, David Vogelbacher, André Platzer Abstract The safety of mobile

More information

Optimal Multi-Robot Path Planning on Graphs: Structure, Complexity, Algorithms, and Applications

Optimal Multi-Robot Path Planning on Graphs: Structure, Complexity, Algorithms, and Applications Optimal Multi-Robot Path Planning on Graphs: Structure, Complexity, Algorithms, and Applications Jingjin Yu Computer Science Rutgers CASE 2016 Multi-Robot Workshop Outline Problem Statement Structural

More information

Inevitable Collision States A Step Towards Safer Robots?

Inevitable Collision States A Step Towards Safer Robots? uthor manuscript, published in "dvanced Robotics 18, 10 (2004) 1001-1024" Inevitable Collision States Step owards Safer Robots? hierr Fraichard & Hajime sama dvanced Robotics, 18(10):1001-1024, 2004 bstract

More information

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it!

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it! Motion and Forces a Resultant forces Step Learning outcome Had a look Nearly there Nailed it Explain the difference between scalar and vector quantities. Use arrows to represent the direction and magnitude

More information

AP Physics 1 Multiple Choice Questions - Chapter 4

AP Physics 1 Multiple Choice Questions - Chapter 4 1 Which of ewton's Three Laws of Motion is best expressed by the equation F=ma? a ewton's First Law b ewton's Second Law c ewton's Third Law d one of the above 4.1 2 A person is running on a track. Which

More information

A motion planner for nonholonomic mobile robots

A motion planner for nonholonomic mobile robots A motion planner for nonholonomic mobile robots Miguel Vargas Material taken form: J. P. Laumond, P. E. Jacobs, M. Taix, R. M. Murray. A motion planner for nonholonomic mobile robots. IEEE Transactions

More information

Recitation Questions 1D Motion (part 2)

Recitation Questions 1D Motion (part 2) Recitation Questions 1D Motion (part 2) 23 January Question 1: a braking car A car is traveling at 30 m/s and applies its brakes to slow down to 10 m/s. If it is able to decelerate at 5 m/s 2, how far

More information

Critical Phenomena and Percolation Theory: II

Critical Phenomena and Percolation Theory: II Critical Phenomena and Percolation Theory: II Kim Christensen Complexity & Networks Group Imperial College London Joint CRM-Imperial College School and Workshop Complex Systems Barcelona 8-13 April 2013

More information

Modelling and Simulation for Train Movement Control Using Car-Following Strategy

Modelling and Simulation for Train Movement Control Using Car-Following Strategy Commun. Theor. Phys. 55 (2011) 29 34 Vol. 55, No. 1, January 15, 2011 Modelling and Simulation for Train Movement Control Using Car-Following Strategy LI Ke-Ping (Ó ), GAO Zi-You (Ô Ð), and TANG Tao (»

More information

ROLLING STOCK BRAKING PERFORMANCE EVALUATION UNDER LOW ADHESION CONDITIONS

ROLLING STOCK BRAKING PERFORMANCE EVALUATION UNDER LOW ADHESION CONDITIONS 11 th International Conference on Vibration Problems Z. Dimitrovová et al. (eds.) Lisbon, Portugal, 9-12 September 2013 ROLLING STOCK BRAKING PERFORMANCE EVALUATION UNDER LOW ADHESION CONDITIONS Marco

More information

FORCE-BASED BOOKKEEPING

FORCE-BASED BOOKKEEPING LOCAL NAVIGATION 2 FORCE-BASED BOOKKEEPING Social force models The forces are first-class abstractions Agents are considered to be mass particles Other models use forces as bookkeeping It is merely a way

More information

Lecture 8: Kinematics: Path and Trajectory Planning

Lecture 8: Kinematics: Path and Trajectory Planning Lecture 8: Kinematics: Path and Trajectory Planning Concept of Configuration Space c Anton Shiriaev. 5EL158: Lecture 8 p. 1/20 Lecture 8: Kinematics: Path and Trajectory Planning Concept of Configuration

More information

Time-Optimal Automobile Test Drives with Gear Shifts

Time-Optimal Automobile Test Drives with Gear Shifts Time-Optimal Control of Automobile Test Drives with Gear Shifts Christian Kirches Interdisciplinary Center for Scientific Computing (IWR) Ruprecht-Karls-University of Heidelberg, Germany joint work with

More information

Instrumentation Commande Architecture des Robots Evolués

Instrumentation Commande Architecture des Robots Evolués Instrumentation Commande Architecture des Robots Evolués Program 4a : Automatic Control, Robotics, Signal Processing Presentation General Orientation Research activities concern the modelling and control

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

Decomposition of planning for multi-agent systems under LTL specifications

Decomposition of planning for multi-agent systems under LTL specifications Decomposition of planning for multi-agent systems under LTL specifications Jana Tumova and Dimos V. Dimarogonas KTH Royal Institute of Technology R E C O N F I G December 14, 2015 General Motivation and

More information

AP Physics 1 Summer Assignment (2014)

AP Physics 1 Summer Assignment (2014) Name: Date: AP Physics 1 Summer Assignment (2014) Instructions: 1. Read and study Chapter 2 Describing Motion: Kinematics in One Dimension. 2. Answer the questions below. 3. Submit your answers online

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 6.4/43 Principles of Autonomy and Decision Making Lecture 8: (Mixed-Integer) Linear Programming for Vehicle Routing and Motion Planning Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute

More information

Formal verification of One Dimensional Time Triggered Velocity PID Controllers Kenneth Payson 12/09/14

Formal verification of One Dimensional Time Triggered Velocity PID Controllers Kenneth Payson 12/09/14 Formal verification of One Dimensional Time Triggered Velocity PID Controllers 12/09/14 1: Abstract This paper provides a formal proof of the safety of a time triggered velocity PID controller that are

More information

LOCAL NAVIGATION. Dynamic adaptation of global plan to local conditions A.K.A. local collision avoidance and pedestrian models

LOCAL NAVIGATION. Dynamic adaptation of global plan to local conditions A.K.A. local collision avoidance and pedestrian models LOCAL NAVIGATION 1 LOCAL NAVIGATION Dynamic adaptation of global plan to local conditions A.K.A. local collision avoidance and pedestrian models 2 LOCAL NAVIGATION Why do it? Could we use global motion

More information

Expressing Bayesian Fusion as a Product of Distributions: Applications in Robotics

Expressing Bayesian Fusion as a Product of Distributions: Applications in Robotics Submitted to the Workshop on Reasoning with Uncertainty in Robotics, EIGHTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE August 9,. Acapulco (Mexico) Expressing Bayesian Fusion as a Product

More information

Topic 9 Potential fields: Follow your potential

Topic 9 Potential fields: Follow your potential Topic 9 Potential fields: Follow your potential Path Planning B: Goal Find intermediate poses forming a path to the goal ) How can we find such paths? 2) Define pose and controls? Path on a graph: vertices

More information

Learning Manipulation Patterns

Learning Manipulation Patterns Introduction Dynamic Movement Primitives Reinforcement Learning Neuroinformatics Group February 29, 2012 Introduction Dynamic Movement Primitives Reinforcement Learning Motivation shift to reactive motion

More information

Estimation of Tire-Road Friction by Tire Rotational Vibration Model

Estimation of Tire-Road Friction by Tire Rotational Vibration Model 53 Research Report Estimation of Tire-Road Friction by Tire Rotational Vibration Model Takaji Umeno Abstract Tire-road friction is the most important piece of information used by active safety systems.

More information

Chapter 4: Forces. Goals of Period Net Force and Acceleration. Force 1 Force 2

Chapter 4: Forces. Goals of Period Net Force and Acceleration. Force 1 Force 2 Chapter 4: Forces Goals of Period 4 Section 4.1: To discuss the effect of net forces acting on objects Section 4.2: To examine the acceleration of falling objects Section 4.3: To describe the frictional

More information

Meet Today s Webinar Team

Meet Today s Webinar Team Meet Today s Webinar Team Presenter: Laurelle Bednar Laurelle is a training consultant for Texas Mutual s safety services department. She conducts webinars, presentations and creates e-learning content

More information

Robust Adaptive Motion Planning in the Presence of Dynamic Obstacles

Robust Adaptive Motion Planning in the Presence of Dynamic Obstacles 2016 American Control Conference (ACC) Boston Marriott Copley Place July 6-8, 2016. Boston, MA, USA Robust Adaptive Motion Planning in the Presence of Dynamic Obstacles Nurali Virani and Minghui Zhu Abstract

More information

CHALLENGE #1: ROAD CONDITIONS

CHALLENGE #1: ROAD CONDITIONS CHALLENGE #1: ROAD CONDITIONS Your forward collision warning system may struggle on wet or icy roads because it is not able to adjust for road conditions. Wet or slick roads may increase your stopping

More information

Understand FORWARD COLLISION WARNING WHAT IS IT? HOW DOES IT WORK? HOW TO USE IT?

Understand FORWARD COLLISION WARNING WHAT IS IT? HOW DOES IT WORK? HOW TO USE IT? Understand WHAT IS IT? Forward collision warning systems warn you of an impending collision by detecting stopped or slowly moved vehicles ahead of your vehicle. Forward collision warning use radar, lasers,

More information

Using Theorem Provers to Guarantee Closed-Loop Properties

Using Theorem Provers to Guarantee Closed-Loop Properties Using Theorem Provers to Guarantee Closed-Loop Properties Nikos Aréchiga Sarah Loos André Platzer Bruce Krogh Carnegie Mellon University April 27, 2012 Aréchiga, Loos, Platzer, Krogh (CMU) Theorem Provers

More information

Nonlinear Optimization for Optimal Control Part 2. Pieter Abbeel UC Berkeley EECS. From linear to nonlinear Model-predictive control (MPC) POMDPs

Nonlinear Optimization for Optimal Control Part 2. Pieter Abbeel UC Berkeley EECS. From linear to nonlinear Model-predictive control (MPC) POMDPs Nonlinear Optimization for Optimal Control Part 2 Pieter Abbeel UC Berkeley EECS Outline From linear to nonlinear Model-predictive control (MPC) POMDPs Page 1! From Linear to Nonlinear We know how to solve

More information

Priority-based intersection management with kinodynamic constraints

Priority-based intersection management with kinodynamic constraints Priority-based intersection management with kinodynamic constraints Jean Gregoire, Silvère Bonnabel, Arnaud De La Fortelle To cite this version: Jean Gregoire, Silvère Bonnabel, Arnaud De La Fortelle.

More information

Driving a car with low dimensional input features

Driving a car with low dimensional input features December 2016 Driving a car with low dimensional input features Jean-Claude Manoli jcma@stanford.edu Abstract The aim of this project is to train a Deep Q-Network to drive a car on a race track using only

More information

Control of Mobile Robots Prof. Luca Bascetta

Control of Mobile Robots Prof. Luca Bascetta Control of Mobile Robots Prof. Luca Bascetta EXERCISE 1 1. Consider a wheel rolling without slipping on the horizontal plane, keeping the sagittal plane in the vertical direction. Write the expression

More information

II Workshop on Black Holes

II Workshop on Black Holes II Workshop on Black Holes 21-22 December 2009 Instituto Superior Técnico, Lisboa Madalena Lemos (CENTRA/IST) Work in progress: E. Berti, V. Cardoso, T. Hinderer, M.L., F. Pretorius, U. Sperhake, N. Yunes

More information

Terramechanics Based Analysis and Motion Control of Rovers on Simulated Lunar Soil

Terramechanics Based Analysis and Motion Control of Rovers on Simulated Lunar Soil ICRA '07 Space Robotics Workshop 14 April, 2007 Terramechanics Based Analysis and Motion Control of Rovers on Simulated Lunar Soil Kazuya Yoshida and Keiji Nagatani Dept. Aerospace Engineering Graduate

More information

Multi-objective branch-and-cut algorithm and multi-modal traveling salesman problem

Multi-objective branch-and-cut algorithm and multi-modal traveling salesman problem Multi-objective branch-and-cut algorithm and multi-modal traveling salesman problem Nicolas Jozefowiez 1, Gilbert Laporte 2, Frédéric Semet 3 1. LAAS-CNRS, INSA, Université de Toulouse, Toulouse, France,

More information

Planning Periodic Persistent Monitoring Trajectories for Sensing Robots in Gaussian Random Fields

Planning Periodic Persistent Monitoring Trajectories for Sensing Robots in Gaussian Random Fields 013 IEEE International Conference on Robotics and Automation (ICRA) Karlsruhe, Germany, May 6-10, 013 Planning Periodic Persistent Monitoring Trajectories for Sensing Robots in Gaussian Random Fields Xiaodong

More information

Learning Model Predictive Control for Iterative Tasks: A Computationally Efficient Approach for Linear System

Learning Model Predictive Control for Iterative Tasks: A Computationally Efficient Approach for Linear System Learning Model Predictive Control for Iterative Tasks: A Computationally Efficient Approach for Linear System Ugo Rosolia Francesco Borrelli University of California at Berkeley, Berkeley, CA 94701, USA

More information

Robotics. Path Planning. University of Stuttgart Winter 2018/19

Robotics. Path Planning. University of Stuttgart Winter 2018/19 Robotics Path Planning Path finding vs. trajectory optimization, local vs. global, Dijkstra, Probabilistic Roadmaps, Rapidly Exploring Random Trees, non-holonomic systems, car system equation, path-finding

More information

Vehicle Dynamic Control Allocation for Path Following Moritz Gaiser

Vehicle Dynamic Control Allocation for Path Following Moritz Gaiser Vehicle Dynamic Control Allocation for Path Following Moritz Gaiser INSTITUT FÜR THEORETISCHE ELEKTROTECHNIK UND SYSTEMOPTIMIERUNG (ITE) KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.ite.kit.edu

More information

Vision for Mobile Robot Navigation: A Survey

Vision for Mobile Robot Navigation: A Survey Vision for Mobile Robot Navigation: A Survey (February 2002) Guilherme N. DeSouza & Avinash C. Kak presentation by: Job Zondag 27 February 2009 Outline: Types of Navigation Absolute localization (Structured)

More information

SPH3U: Introducing The BIG Five Equations of Constant Acceleration

SPH3U: Introducing The BIG Five Equations of Constant Acceleration SPH3U: Introducing The BIG Five Equations of Constant Acceleration A: Displacement for Constant Velocity and Constant Acceleration Constant Velocity: Alice drives her car at a velocity of 20 m/s [W] for

More information

Anytime Planning for Decentralized Multi-Robot Active Information Gathering

Anytime Planning for Decentralized Multi-Robot Active Information Gathering Anytime Planning for Decentralized Multi-Robot Active Information Gathering Brent Schlotfeldt 1 Dinesh Thakur 1 Nikolay Atanasov 2 Vijay Kumar 1 George Pappas 1 1 GRASP Laboratory University of Pennsylvania

More information

Stochastic Model Predictive Controller with Chance Constraints for Comfortable and Safe Driving Behavior of Autonomous Vehicles

Stochastic Model Predictive Controller with Chance Constraints for Comfortable and Safe Driving Behavior of Autonomous Vehicles Stochastic Model Predictive Controller with Chance Constraints for Comfortable and Safe Driving Behavior of Autonomous Vehicles David Lenz 1 and Tobias Kessler 1 and Alois Knoll Abstract In this paper,

More information

Lecture 9 - Rotational Dynamics

Lecture 9 - Rotational Dynamics Lecture 9 - Rotational Dynamics A Puzzle... Angular momentum is a 3D vector, and changing its direction produces a torque τ = dl. An important application in our daily lives is that bicycles don t fall

More information

Localization aware sampling and connection strategies for incremental motion planning under uncertainty

Localization aware sampling and connection strategies for incremental motion planning under uncertainty Autonomous Robots manuscript No. (will be inserted by the editor) Localization aware sampling and connection strategies for incremental motion planning under uncertainty Vinay Pilania Kamal Gupta Received:

More information

Physics Talk FORCES AFFECTING COLLISIONS

Physics Talk FORCES AFFECTING COLLISIONS Chapter 3 Safety Physics Talk FORCES AFFECTING COLLISIONS By examining the different crumple zones designed by other teams in your class, you can get an insight into the physics of collisions. Probably

More information

Constrained Optimization and Distributed Computation Based Car-Following Control of A Connected and Autonomous Vehicle Platoon

Constrained Optimization and Distributed Computation Based Car-Following Control of A Connected and Autonomous Vehicle Platoon Constrained Optimization and Distributed Computation Based Car-Following Control of A Connected and Autonomous Vehicle Platoon Siyuan Gong a, Jinglai Shen b, Lili Du a ldu3@iit.edu a: Illinois Institute

More information

Toward Online Probabilistic Path Replanning

Toward Online Probabilistic Path Replanning Toward Online Probabilistic Path Replanning R. Philippsen 1 B. Jensen 2 R. Siegwart 3 1 LAAS-CNRS, France 2 Singleton Technology, Switzerland 3 ASL-EPFL, Switzerland Workshop on Autonomous Robot Motion,

More information

Multi-Robot Mixing Using Braids

Multi-Robot Mixing Using Braids Multi-Robot Mixing Using Braids Yancy Diaz-Mercado and Magnus Egerstedt Abstract This paper presents a method for automatically achieving multi-robot mixing in the sense that the robots follow predefined

More information

Reachability Analysis for Hybrid Dynamic Systems*

Reachability Analysis for Hybrid Dynamic Systems* Reachability nalysis for Hybrid Dynamic Systems* Olaf Stursberg Faculty of Electrical Engineering and Information Technology Technische Universität München * Thanks to: Matthias lthoff, Edmund M. Clarke,

More information

ADVANCED SUBSIDIARY (AS) General Certificate of Education January Mathematics Assessment Unit M1. assessing. Module M1: Mechanics 1 [AMM11]

ADVANCED SUBSIDIARY (AS) General Certificate of Education January Mathematics Assessment Unit M1. assessing. Module M1: Mechanics 1 [AMM11] ADVANCED SUBSIDIARY (AS) General Certificate of Education January 0 Mathematics Assessment Unit assessing Module : Mechanics [AM] FRIDAY 0 JANUARY, AFTERNOON MARK SCHEME 7.0 GCE ADVANCED/ADVANCED SUBSIDIARY

More information

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Many slides adapted from Jur van den Berg Outline POMDPs Separation Principle / Certainty Equivalence Locally Optimal

More information

MEAM-620 Advanced Robotics. Roller Racer. Akshay Rajhans Nikhil Shaligram

MEAM-620 Advanced Robotics. Roller Racer. Akshay Rajhans Nikhil Shaligram MEAM-620 Advanced Robotics Roller Racer Akshay Rajhans Nikhil Shaligram Introduction: Roller racer is a three wheeled vehicle manually operated by hands. The drive is given to the front wheel and the rear

More information

April 20-25, Albuquerque, (NM). Collision-Free and Continuous-Curvature. Path Planning for Car-Like Robots. A. Scheuer and Th.

April 20-25, Albuquerque, (NM). Collision-Free and Continuous-Curvature. Path Planning for Car-Like Robots. A. Scheuer and Th. IEEE Int. Conf. on Robotics and Automation, April 2-25, 1997. Albuquerque, (NM). Collision-Free and Continuous-Curvature Path Planning for Car-Like Robots A. Scheuer and Th. Fraichard INRIA a Rh^one-Alpes

More information

Controlling probabilistic systems under partial observation an automata and verification perspective

Controlling probabilistic systems under partial observation an automata and verification perspective Controlling probabilistic systems under partial observation an automata and verification perspective Nathalie Bertrand, Inria Rennes, France Uncertainty in Computation Workshop October 4th 2016, Simons

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.410/413 Principles of Autonomy and Decision Making Lecture 23: Markov Decision Processes Policy Iteration Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology December

More information

Underwater vehicles: a surprising non time-optimal path

Underwater vehicles: a surprising non time-optimal path Underwater vehicles: a surprising non time-optimal path M. Chyba Abstract his paper deals with the time-optimal problem for a class of underwater vehicles. We prove that if two configurations at rest can

More information

Correlation between track geometry quality and vehicle reactions in the virtual rolling stock homologation process

Correlation between track geometry quality and vehicle reactions in the virtual rolling stock homologation process Correlation between track geometry quality and vehicle reactions in the virtual rolling stock homologation process K.U. Wolter Deutsche Bahn AG Railway Technology and Services Integrated Systems Rail Voelckerstrasse

More information

Collision Avoidance from Multiple Passive Agents with Partially Predictable Behavior

Collision Avoidance from Multiple Passive Agents with Partially Predictable Behavior applied sciences Article Collision Avoidance from Multiple Passive Agents with Partially Predictable Behavior Khalil Muhammad Zuhaib 1 ID, Abdul Manan Khan 2, Junaid Iqbal 1 ID, Mian Ashfaq Ali 3, Muhammad

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Robotics. Path Planning. Marc Toussaint U Stuttgart

Robotics. Path Planning. Marc Toussaint U Stuttgart Robotics Path Planning Path finding vs. trajectory optimization, local vs. global, Dijkstra, Probabilistic Roadmaps, Rapidly Exploring Random Trees, non-holonomic systems, car system equation, path-finding

More information

Collisions in Two Dimensions

Collisions in Two Dimensions Collisions in Two Dimensions Why physicists are so awesome at pool, and How to reconstruct car accidents! Practice: 6.31, 6.33, 6.39, 6.41, 6.43, 6.45, 6.47, 6.49, 6.51, 6.53, 6.55, 6.63, 6.73 I hope you

More information

Stochastic domination in space-time for the supercritical contact process

Stochastic domination in space-time for the supercritical contact process Stochastic domination in space-time for the supercritical contact process Stein Andreas Bethuelsen joint work with Rob van den Berg (CWI and VU Amsterdam) Workshop on Genealogies of Interacting Particle

More information

Elementary Physics October 8, 2007

Elementary Physics October 8, 2007 INSTRUCTIONS: For for the multiple choice questions 1 8, you will be scored only on the basis of choosing only the one correct answer for full credit. No partial credit will be given. For questions 9 10,

More information

Stability analysis of linear systems under asynchronous samplings

Stability analysis of linear systems under asynchronous samplings Haifa, April, 4 th, 2010 Stability analysis of linear systems under asynchronous samplings Alexandre Seuret CNRS Associate Researcher NeCS Team GIPSA-Lab / INRIA Rhônes-Alpes Grenoble, France 1 Motivation

More information

DP Physics Torque Simulation

DP Physics Torque Simulation DP Physics Torque Simulation Name Go to Phet Simulation: ( http://phet.colorado.edu/simulations/sims.php?sim=torque ) Part I: Torque 1. Click the tab at the top that says torque 2. Set the force equal

More information

arxiv: v1 [cs.sy] 23 Sep 2016

arxiv: v1 [cs.sy] 23 Sep 2016 Safety Certified Cooperative Adaptive Cruise Control under Unreliable Inter-vehicle Communications* Rafael Rodrigues da Silva 1,2 and Hai Lin 1 arxiv:1609.07501v1 [cs.sy] 23 Sep 2016 Abstract Cooperative

More information

Week 3: Wheeled Kinematics AMR - Autonomous Mobile Robots

Week 3: Wheeled Kinematics AMR - Autonomous Mobile Robots Week 3: Wheeled Kinematics AMR - Paul Furgale Margarita Chli, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Wheeled Kinematics 1 AMRx Flipped Classroom A Matlab exercise is coming later

More information

Chapter 9: Impulse and Momentum

Chapter 9: Impulse and Momentum Conservation Laws Much of the rest of Phys 221 will be concerned with conservation of energy and momentum This new perspective of conservation laws requires us to compare situations BEFORE and AFTER an

More information

WAVES MODULE 3.1 PRACTICAL ACTIVITY TRAVELLING WAVES GRAPHICAL ANALYSIS WORKSHOP

WAVES MODULE 3.1 PRACTICAL ACTIVITY TRAVELLING WAVES GRAPHICAL ANALYSIS WORKSHOP HSC PHYSICS ONLINE WAVES MODULE 3.1 PRACTICAL ACTIVITY TRAVELLING WAVES GRAPHICAL ANALYSIS WORKSHOP This practical activity is best done with a team of three people. There should be a reflection period

More information

Reactive Path Deformation for Nonholonomic Mobile Robots

Reactive Path Deformation for Nonholonomic Mobile Robots 1 Reactive Path Deformation for Nonholonomic Mobile Robots F. Lamiraux, D. Bonnafous, and O. Lefebvre LAAS-CNRS, Toulouse, France {orent,dbonnafo,olefebvr}@laas.fr Abstract This paper presents a novel

More information

Polynomial-Time Verification of PCTL Properties of MDPs with Convex Uncertainties and its Application to Cyber-Physical Systems

Polynomial-Time Verification of PCTL Properties of MDPs with Convex Uncertainties and its Application to Cyber-Physical Systems Polynomial-Time Verification of PCTL Properties of MDPs with Convex Uncertainties and its Application to Cyber-Physical Systems Alberto Puggelli DREAM Seminar - November 26, 2013 Collaborators and PIs:

More information

Information Projection Algorithms and Belief Propagation

Information Projection Algorithms and Belief Propagation χ 1 π(χ 1 ) Information Projection Algorithms and Belief Propagation Phil Regalia Department of Electrical Engineering and Computer Science Catholic University of America Washington, DC 20064 with J. M.

More information

Trajectory planning of unmanned ground vehicles evolving on an uneven terrain with vertical dynamic consideration

Trajectory planning of unmanned ground vehicles evolving on an uneven terrain with vertical dynamic consideration Trajectory planning of unmanned ground vehicles evolving on an uneven terrain with vertical dynamic consideration B. Menkouz, A.Bouzar Essaidi, M. Haddad and T. Chettibi Laboratoire Mécanique des Structures,

More information

SPH4U UNIVERSITY PHYSICS

SPH4U UNIVERSITY PHYSICS SPH4U UNIVERSITY PHYSICS ENERGY & MOMENTUM L Momentum & Impulse (P.222-227) Momentum & Impulse The driver of this race car walked away from the crash without a scratch. Luck had little to do with this

More information

Optimal Control. McGill COMP 765 Oct 3 rd, 2017

Optimal Control. McGill COMP 765 Oct 3 rd, 2017 Optimal Control McGill COMP 765 Oct 3 rd, 2017 Classical Control Quiz Question 1: Can a PID controller be used to balance an inverted pendulum: A) That starts upright? B) That must be swung-up (perhaps

More information

Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20

More information

Convergence of a distributed asynchronous learning vector quantization algorithm.

Convergence of a distributed asynchronous learning vector quantization algorithm. Convergence of a distributed asynchronous learning vector quantization algorithm. ENS ULM, NOVEMBER 2010 Benoît Patra (UPMC-Paris VI/Lokad) 1 / 59 Outline. 1 Introduction. 2 Vector quantization, convergence

More information

Incremental Learning of Statistical Motion Patterns with Growing Hidden Markov Models

Incremental Learning of Statistical Motion Patterns with Growing Hidden Markov Models Incremental Learning of Statistical Motion Patterns with Growing Hidden Markov Models Dizan Alejandro Vasquez Govea, Thierry Fraichard, Christian Laugier To cite this version: Dizan Alejandro Vasquez Govea,

More information

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms L06. LINEAR KALMAN FILTERS NA568 Mobile Robotics: Methods & Algorithms 2 PS2 is out! Landmark-based Localization: EKF, UKF, PF Today s Lecture Minimum Mean Square Error (MMSE) Linear Kalman Filter Gaussian

More information

Vehicle Motion Equations:

Vehicle Motion Equations: 1 Vehicle Motion Equations: v = at + v (2.2.4) x x = v2 2 v 2a (2.2.6) v 2 = v 2 + 2a(x x ) (2.2.6) x = 1 2 at2 + v t + x (2.2.7) D b = x cos α (2.2.10) x = vt D b = v 2 v 2 2g(f G) (2.2.14) e + f s =

More information

CP1 REVISION LECTURE 1 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 1 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 1 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 1 : INTRODUCTION TO CLASSICAL MECHANICS 1. Force and work 1.1 Newton

More information

Multi-Objective Trajectory Planning of Mobile Robots Using Augmented Lagrangian

Multi-Objective Trajectory Planning of Mobile Robots Using Augmented Lagrangian CSC 007 6-8 May Marraech Morocco /0 Multi-Objective rajectory Planning of Mobile Robots Using Augmented Lagrangian Amar Khouhi Luc Baron and Mare Balazinsi Mechanical Engineering Dept. École Polytechnique

More information

Activity 4. Life (and Death) before Seat Belts. What Do You Think? For You To Do GOALS

Activity 4. Life (and Death) before Seat Belts. What Do You Think? For You To Do GOALS Activity 4 Life (and Death) before Seat Belts Activity 4 Life (and Death) before Seat Belts GOALS In this activity you will: Understand Newton s First Law of Motion. Understand the role of safety belts.

More information

:RUVW&DVH3HUIRUPDQFH(YDOXDWLRQ

:RUVW&DVH3HUIRUPDQFH(YDOXDWLRQ :RUVW&DVH3HUIRUPDQFH(YDOXDWLRQ A case study on the rollover of the M916A1 army truck Quad Members: Huei Peng, Assistant Professor, Univ. of Michigan Wen-Hou Ma, Graduate Student, Univ. of Michigan Tom

More information