Vehicle Dynamic Control Allocation for Path Following Moritz Gaiser

Size: px
Start display at page:

Download "Vehicle Dynamic Control Allocation for Path Following Moritz Gaiser"

Transcription

1 Vehicle Dynamic Control Allocation for Path Following Moritz Gaiser INSTITUT FÜR THEORETISCHE ELEKTROTECHNIK UND SYSTEMOPTIMIERUNG (ITE) KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

2 Motivation System Design for autonomous platforms Automotive Application: System for path following Path planning: Straight lines, curve... Guidance problem Controller Structure 2

3 Introduction Guidance Navigation w x Controller u c Sensor data Sensors Environment Vehicle w: Target values x: Estimated actual values u c : Actuator values 3

4 Outline Motivation and Introduction Guidance Controller Simulation Results Conclusion 4

5 Spline-Based Guidance North e p Projection p Lookahead Trajectory Input to guidance: Path (Spline data) Vehicle state x Nav y Nav Objective Path Following: Minimize cross-track error (lateral deviation) East 5

6 Spline-Based Guidance 1. Find closest point on trajectory (Newton-Raphson method) y n y d Θ = 1 y d Θ x d Θ x n x d Θ y d Θ y y d Θ + x d Θ x x d Θ = 0 2. Move forward on the spline by increasing the parametrizing variable Θ y d Θ + = a Θ b Θ c Θ + + d 3. Calculate desired course angle χ d Δ: Look ahead distance Θ: Parametrizing variable 6

7 Controller Structure Controller Guidance Command Filter w F Dynamic Control u c Virtual Controller Allocation Vehicle 7

8 Command Filter Receives commanded values from guidance Smooths and limits the values by taking vehicle dynamics into account Supplies the inputs to the virtual controller: Commanded position r c Commanded velocity v c Commanded acceleration a c y = 2Dω 0 ω o 2D e y y D: Damping coefficient ω 0 : Circular frequency Output signals are continuous and reasonable w.r.t. vehicle dynamics 8

9 Virtual Controller Virtual with the meaning of not actually controlling the vehicle Calculates the necessary force in body-frame Derivation of the control law: Translation dynamic: x n y n = 1 m F n v,x F n v,y + F n h,x + F n h,y n F W,x n F W,y v n eb = 1 C m b n Cb s F s v + F b n h F W n F v,x/y n F h,x/y n F W,x/y : Force front axle : Force back axle : Air resistance 9

10 Virtual Controller Define error dynamics e p = e v e v = p c v = p c 1 m C b n F b F W n Apply backstepping control with Lyapunow Control law: F Virtual = C n b [m r desired + K 1 + K 2 v + I 2x2 + K 1 K 2 r + F W ] K i : Controller parameter 10

11 Dynamic Control Allocation Control Allocation (CA): Distribute forces/moments among longitudinal and lateral forces of individual tires. Distribution in an optimal manner (Cost function) Two CA techniques Static Control Allocation Dynamic Control Allocation v F v,x δ Fv v,y Optimization problem with eq. constraint: min u J u, x, t τ d = h u h F h,x h F h,y 11

12 Dynamic Control Allocation Objective function: 4 J x, u, t = u T Wu w F ln c i (F i ) w δ ln c 5 (δ) + ln c 6 (δ) i=1 1. Part: Minimizing actuators u = F v v,x, F v v,y, F h h,x, F h h,y, δ 2. Part: Barrier functions penalizing the objective function when exceeding certain force and steering angle areas Extend OP with Lagrange multipliers to Lagrange function: L x, u, λt = J x, u, t + λ T τ d x, t h u 12

13 Dynamic Control Allocation Dynamic update law: u λ = ΓΗ L u L λ + Η 1 2 L τ d u 2 L τ d λ τ d Γ = γ ΗWΗ + εi 1 Η = 2 L u 2 2 L λ u 2 L u λ 0 13

14 Simulation Results Simulation using CarMaker Monte-Carlo simulations varying sensor noise to prove robustness of the system Target Trajectory 200m Straight Line 270 Curve with R=50m 125m Straight Line 90 Curve with R=25m 50m Straight Line 90 Curve with R=25m 125m Straight Line 14

15 Conclusion Design of a system for path following in automotive applications using Spline-based guidance with time-varying lookahead distance, Backstepping controller, And dynamic control allocation. Future goals Improve robustness of the guidance Introduce speed control to the guidance Reduce and simplify amount of tuneable parameters 15

Comparison of two non-linear model-based control strategies for autonomous vehicles

Comparison of two non-linear model-based control strategies for autonomous vehicles Comparison of two non-linear model-based control strategies for autonomous vehicles E. Alcala*, L. Sellart**, V. Puig*, J. Quevedo*, J. Saludes*, D. Vázquez** and A. López** * Supervision & Security of

More information

Design of Advanced Control Techniques for an Underwater Vehicle

Design of Advanced Control Techniques for an Underwater Vehicle Design of Advanced Control Techniques for an Underwater Vehicle Divine Maalouf Advisors: Vincent Creuze Ahmed Chemori René Zapata 5 juillet 2012 OUTLINE I. Introduction: Problems/Challenges II. Modeling

More information

Problem 1: Ship Path-Following Control System (35%)

Problem 1: Ship Path-Following Control System (35%) Problem 1: Ship Path-Following Control System (35%) Consider the kinematic equations: Figure 1: NTNU s research vessel, R/V Gunnerus, and Nomoto model: T ṙ + r = Kδ (1) with T = 22.0 s and K = 0.1 s 1.

More information

Overcoming the Limitations of Conservation of Linear Momentum by Including External Impulse

Overcoming the Limitations of Conservation of Linear Momentum by Including External Impulse Overcoming the Limitations of Conservation of Linear Momentum by Including External Impulse March 12, 2008 The University of Tulsa MEPS Lunch Meeting 1 / 40 Motivation The University of Tulsa MEPS Lunch

More information

Localization. Howie Choset Adapted from slides by Humphrey Hu, Trevor Decker, and Brad Neuman

Localization. Howie Choset Adapted from slides by Humphrey Hu, Trevor Decker, and Brad Neuman Localization Howie Choset Adapted from slides by Humphrey Hu, Trevor Decker, and Brad Neuman Localization General robotic task Where am I? Techniques generalize to many estimation tasks System parameter

More information

Robot Dynamics II: Trajectories & Motion

Robot Dynamics II: Trajectories & Motion Robot Dynamics II: Trajectories & Motion Are We There Yet? METR 4202: Advanced Control & Robotics Dr Surya Singh Lecture # 5 August 23, 2013 metr4202@itee.uq.edu.au http://itee.uq.edu.au/~metr4202/ 2013

More information

We provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill.

We provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill. We provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill. 2.3.2. Steering control using point mass model: Open loop commands We consider

More information

Video 1.1 Vijay Kumar and Ani Hsieh

Video 1.1 Vijay Kumar and Ani Hsieh Video 1.1 Vijay Kumar and Ani Hsieh 1 Robotics: Dynamics and Control Vijay Kumar and Ani Hsieh University of Pennsylvania 2 Why? Robots live in a physical world The physical world is governed by the laws

More information

University of Huddersfield Repository

University of Huddersfield Repository University of Huddersfield Repository Pislaru, Crinela Modelling and Simulation of the Dynamic Behaviour of Wheel-Rail Interface Original Citation Pislaru, Crinela (2012) Modelling and Simulation of the

More information

An Evaluation of UAV Path Following Algorithms

An Evaluation of UAV Path Following Algorithms 213 European Control Conference (ECC) July 17-19, 213, Zürich, Switzerland. An Evaluation of UAV Following Algorithms P.B. Sujit, Srikanth Saripalli, J.B. Sousa Abstract following is the simplest desired

More information

Draft 01PC-73 Sensor fusion for accurate computation of yaw rate and absolute velocity

Draft 01PC-73 Sensor fusion for accurate computation of yaw rate and absolute velocity Draft PC-73 Sensor fusion for accurate computation of yaw rate and absolute velocity Fredrik Gustafsson Department of Electrical Engineering, Linköping University, Sweden Stefan Ahlqvist, Urban Forssell,

More information

Team-Exercises for DGC 100 Modelica Course

Team-Exercises for DGC 100 Modelica Course Team-Exercises for DGC 100 Modelica Course Hubertus Tummescheit United Technologies Research Center, East Hartford, CT 06108. November 4, 2003 Abstract This document is a preliminary version and is going

More information

Integration of a strapdown gravimeter system in an Autonomous Underwater Vehicle

Integration of a strapdown gravimeter system in an Autonomous Underwater Vehicle Integration of a strapdown gravimeter system in an Autonomous Underwater Vehicle Clément ROUSSEL PhD - Student (L2G - Le Mans - FRANCE) April 17, 2015 Clément ROUSSEL ISPRS / CIPA Workshop April 17, 2015

More information

Exam - TTK 4190 Guidance & Control Eksamen - TTK 4190 Fartøysstyring

Exam - TTK 4190 Guidance & Control Eksamen - TTK 4190 Fartøysstyring Page 1 of 6 Norges teknisk- naturvitenskapelige universitet Institutt for teknisk kybernetikk Faglig kontakt / contact person: Navn: Morten Pedersen, Universitetslektor Tlf.: 41602135 Exam - TTK 4190 Guidance

More information

Multi-Robotic Systems

Multi-Robotic Systems CHAPTER 9 Multi-Robotic Systems The topic of multi-robotic systems is quite popular now. It is believed that such systems can have the following benefits: Improved performance ( winning by numbers ) Distributed

More information

Simple Car Dynamics. Outline. Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, May 18, 2005

Simple Car Dynamics. Outline. Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, May 18, 2005 Simple Car Dynamics Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, and CMLabs Simulations, Montréal, Canada May 18, 2005 Typeset by FoilTEX May 16th 2005 Outline basics of vehicle dynamics different

More information

Model Reference Adaptive Control of Underwater Robotic Vehicle in Plane Motion

Model Reference Adaptive Control of Underwater Robotic Vehicle in Plane Motion Proceedings of the 11th WSEAS International Conference on SSTEMS Agios ikolaos Crete Island Greece July 23-25 27 38 Model Reference Adaptive Control of Underwater Robotic Vehicle in Plane Motion j.garus@amw.gdynia.pl

More information

Verified High-Order Optimal Control in Space Flight Dynamics

Verified High-Order Optimal Control in Space Flight Dynamics Verified High-Order Optimal Control in Space Flight Dynamics R. Armellin, P. Di Lizia, F. Bernelli-Zazzera K. Makino and M. Berz Fourth International Workshop on Taylor Methods Boca Raton, December 16

More information

Control of Mobile Robots

Control of Mobile Robots Control of Mobile Robots Regulation and trajectory tracking Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Organization and

More information

5th-order differentiation

5th-order differentiation ARBITRARY-ORDER REAL-TIME EXACT ROBUST DIFFERENTIATION A. Levant Applied Mathematics Dept., Tel-Aviv University, Israel E-mail: levant@post.tau.ac.il Homepage: http://www.tau.ac.il/~levant/ 5th-order differentiation

More information

On a Data Assimilation Method coupling Kalman Filtering, MCRE Concept and PGD Model Reduction for Real-Time Updating of Structural Mechanics Model

On a Data Assimilation Method coupling Kalman Filtering, MCRE Concept and PGD Model Reduction for Real-Time Updating of Structural Mechanics Model On a Data Assimilation Method coupling, MCRE Concept and PGD Model Reduction for Real-Time Updating of Structural Mechanics Model 2016 SIAM Conference on Uncertainty Quantification Basile Marchand 1, Ludovic

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation Navigation Mathematics: Coordinate Frames Kevin Wedeward Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen

More information

CONDENSATION Conditional Density Propagation for Visual Tracking

CONDENSATION Conditional Density Propagation for Visual Tracking CONDENSATION Conditional Density Propagation for Visual Tracking Michael Isard and Andrew Blake Presented by Neil Alldrin Department of Computer Science & Engineering University of California, San Diego

More information

Chapter 10 Single Track Models

Chapter 10 Single Track Models Chapter Single Track Models Single track models allow a physically plausible description of the driving behavior of vehicles without major modeling and parameterization effort. Hence, in this chapter a

More information

Path Planning for Time-Optimal Information Collection

Path Planning for Time-Optimal Information Collection Path Planning for Time-Optimal Information Collection Andy Klesh University of Michigan April 2, 2008 Motivation Motivation Problem Many Intelligence, Surveillance and Reconnaissance (ISR) Missions require

More information

Consistent Triangulation for Mobile Robot Localization Using Discontinuous Angular Measurements

Consistent Triangulation for Mobile Robot Localization Using Discontinuous Angular Measurements Seminar on Mechanical Robotic Systems Centre for Intelligent Machines McGill University Consistent Triangulation for Mobile Robot Localization Using Discontinuous Angular Measurements Josep M. Font Llagunes

More information

Estimation of Tire-Road Friction by Tire Rotational Vibration Model

Estimation of Tire-Road Friction by Tire Rotational Vibration Model 53 Research Report Estimation of Tire-Road Friction by Tire Rotational Vibration Model Takaji Umeno Abstract Tire-road friction is the most important piece of information used by active safety systems.

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Cooperative Motion Control of Multiple Autonomous Marine

Cooperative Motion Control of Multiple Autonomous Marine Cooperative Motion Control of Multiple Autonomous Marine Collision Avoidance in Dynamic Environments EECI Graduate School on Control Supélec, Feb. 21-25, 2011 Outline Motivation/Objectives Cooperative

More information

MPC and PSO Based Control Methodology for Path Tracking of 4WS4WD Vehicles

MPC and PSO Based Control Methodology for Path Tracking of 4WS4WD Vehicles applied sciences Article MPC and Based Control Methodology for Path Tracking of 4WS4WD Vehicles Qifan Tan 1, * ID, Penglei Dai 2, Zhihao Zhang 3 and Jay Katupitiya 3 1 School of Mechanical, Electronic

More information

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems ELEC4631 s Lecture 2: Dynamic Control Systems 7 March 2011 Overview of dynamic control systems Goals of Controller design Autonomous dynamic systems Linear Multi-input multi-output (MIMO) systems Bat flight

More information

PHY321 Homework Set 2

PHY321 Homework Set 2 PHY321 Homework Set 2 1. [5 pts] Consider the forces from the previous homework set, F A ( r )and F B ( r ), acting on a particle. The force components depend on position r of the particle according to

More information

Control of a Car-Like Vehicle with a Reference Model and Particularization

Control of a Car-Like Vehicle with a Reference Model and Particularization Control of a Car-Like Vehicle with a Reference Model and Particularization Luis Gracia Josep Tornero Department of Systems and Control Engineering Polytechnic University of Valencia Camino de Vera s/n,

More information

Simulation of an articulated tractor-implement-trailer model under the influence of lateral disturbances

Simulation of an articulated tractor-implement-trailer model under the influence of lateral disturbances Simulation of an articulated tractor-implement-trailer model under the influence of lateral disturbances K. W. Siew, J. Katupitiya and R. Eaton and H.Pota Abstract This paper presents the derivation of

More information

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations.

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations. Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations. May 6, 2009 Motivation Constitutive Equations EnKF algorithm Some results Method Navier Stokes equations

More information

Robotics & Automation. Lecture 25. Dynamics of Constrained Systems, Dynamic Control. John T. Wen. April 26, 2007

Robotics & Automation. Lecture 25. Dynamics of Constrained Systems, Dynamic Control. John T. Wen. April 26, 2007 Robotics & Automation Lecture 25 Dynamics of Constrained Systems, Dynamic Control John T. Wen April 26, 2007 Last Time Order N Forward Dynamics (3-sweep algorithm) Factorization perspective: causal-anticausal

More information

Robot Control Basics CS 685

Robot Control Basics CS 685 Robot Control Basics CS 685 Control basics Use some concepts from control theory to understand and learn how to control robots Control Theory general field studies control and understanding of behavior

More information

Line following of a mobile robot

Line following of a mobile robot Line following of a mobile robot May 18, 004 1 In brief... The project is about controlling a differential steering mobile robot so that it follows a specified track. Steering is achieved by setting different

More information

RELATIVE NAVIGATION FOR SATELLITES IN CLOSE PROXIMITY USING ANGLES-ONLY OBSERVATIONS

RELATIVE NAVIGATION FOR SATELLITES IN CLOSE PROXIMITY USING ANGLES-ONLY OBSERVATIONS (Preprint) AAS 12-202 RELATIVE NAVIGATION FOR SATELLITES IN CLOSE PROXIMITY USING ANGLES-ONLY OBSERVATIONS Hemanshu Patel 1, T. Alan Lovell 2, Ryan Russell 3, Andrew Sinclair 4 "Relative navigation using

More information

NONLINEAR PATH CONTROL FOR A DIFFERENTIAL DRIVE MOBILE ROBOT

NONLINEAR PATH CONTROL FOR A DIFFERENTIAL DRIVE MOBILE ROBOT NONLINEAR PATH CONTROL FOR A DIFFERENTIAL DRIVE MOBILE ROBOT Plamen PETROV Lubomir DIMITROV Technical University of Sofia Bulgaria Abstract. A nonlinear feedback path controller for a differential drive

More information

Controller Design and Position Estimation of a Unicycle Type Robot

Controller Design and Position Estimation of a Unicycle Type Robot Department of Mathematics and Computer Science Architecture of Information Systems Research Group Controller Design and Position Estimation of a Unicycle Type Robot Internship report Aniket Sharma DC 2017.015

More information

AUTOMOTIVE ENVIRONMENT SENSORS

AUTOMOTIVE ENVIRONMENT SENSORS AUTOMOTIVE ENVIRONMENT SENSORS Lecture 5. Localization BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Related concepts Concepts related to vehicles moving

More information

Multibody simulation

Multibody simulation Multibody simulation Dynamics of a multibody system (Newton-Euler formulation) Dimitar Dimitrov Örebro University June 8, 2012 Main points covered Newton-Euler formulation forward dynamics inverse dynamics

More information

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart Robotics Mobile Robotics State estimation, Bayes filter, odometry, particle filter, Kalman filter, SLAM, joint Bayes filter, EKF SLAM, particle SLAM, graph-based SLAM Marc Toussaint U Stuttgart DARPA Grand

More information

Analysis of Critical Speed Yaw Scuffs Using Spiral Curves

Analysis of Critical Speed Yaw Scuffs Using Spiral Curves Analysis of Critical Speed Yaw Scuffs Using Spiral Curves Jeremy Daily Department of Mechanical Engineering University of Tulsa PAPER #2012-01-0606 Presentation Overview Review of Critical Speed Yaw Analysis

More information

Autonomous Navigation, Guidance and Control of Small 4-wheel Electric Vehicle

Autonomous Navigation, Guidance and Control of Small 4-wheel Electric Vehicle Journal of Asian Electric Vehicles, Volume 10, Number 1, June 01 Autonomous Navigation, Guidance and Control of Small 4-wheel Electric Vehicle Satoshi Suzuki International Young Researchers Empowerment

More information

Design and modelling of an airship station holding controller for low cost satellite operations

Design and modelling of an airship station holding controller for low cost satellite operations AIAA Guidance, Navigation, and Control Conference and Exhibit 15-18 August 25, San Francisco, California AIAA 25-62 Design and modelling of an airship station holding controller for low cost satellite

More information

Localización Dinámica de Robots Móviles Basada en Filtrado de Kalman y Triangulación

Localización Dinámica de Robots Móviles Basada en Filtrado de Kalman y Triangulación Universidad Pública de Navarra 13 de Noviembre de 2008 Departamento de Ingeniería Mecánica, Energética y de Materiales Localización Dinámica de Robots Móviles Basada en Filtrado de Kalman y Triangulación

More information

Instrumentation Commande Architecture des Robots Evolués

Instrumentation Commande Architecture des Robots Evolués Instrumentation Commande Architecture des Robots Evolués Program 4a : Automatic Control, Robotics, Signal Processing Presentation General Orientation Research activities concern the modelling and control

More information

Rao-Blackwellized Particle Filtering for 6-DOF Estimation of Attitude and Position via GPS and Inertial Sensors

Rao-Blackwellized Particle Filtering for 6-DOF Estimation of Attitude and Position via GPS and Inertial Sensors Rao-Blackwellized Particle Filtering for 6-DOF Estimation of Attitude and Position via GPS and Inertial Sensors GRASP Laboratory University of Pennsylvania June 6, 06 Outline Motivation Motivation 3 Problem

More information

Trajectory tracking & Path-following control

Trajectory tracking & Path-following control Cooperative Control of Multiple Robotic Vehicles: Theory and Practice Trajectory tracking & Path-following control EECI Graduate School on Control Supélec, Feb. 21-25, 2011 A word about T Tracking and

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche

More information

Flight Test Results for Circular Path Following by Model Predictive Control

Flight Test Results for Circular Path Following by Model Predictive Control Preprints of the 19th World Congress The International Federation of Automatic Control Flight Test Results for Circular Path Following by Model Predictive Control Yoshiro Hamada Taro Tsukamoto Shinji Ishimoto

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 3 3.4 Differential Algebraic Systems 3.5 Integration of Differential Equations 1 Outline 3.4 Differential Algebraic Systems 3.4.1 Constrained Dynamics 3.4.2 First and Second

More information

MECH 3140 Final Project

MECH 3140 Final Project MECH 3140 Final Project Final presentation will be held December 7-8. The presentation will be the only deliverable for the final project and should be approximately 20-25 minutes with an additional 10

More information

Lateral Path-Following Control for Automated Vehicle Platoons

Lateral Path-Following Control for Automated Vehicle Platoons Lateral Path-Following Control for Automated Vehicle Platoons Master of Science Thesis Delft Center for Systems and Control Lateral Path-Following Control for Automated Vehicle Platoons Master of Science

More information

(W: 12:05-1:50, 50-N202)

(W: 12:05-1:50, 50-N202) 2016 School of Information Technology and Electrical Engineering at the University of Queensland Schedule of Events Week Date Lecture (W: 12:05-1:50, 50-N202) 1 27-Jul Introduction 2 Representing Position

More information

A Comparison of the EKF, SPKF, and the Bayes Filter for Landmark-Based Localization

A Comparison of the EKF, SPKF, and the Bayes Filter for Landmark-Based Localization A Comparison of the EKF, SPKF, and the Bayes Filter for Landmark-Based Localization and Timothy D. Barfoot CRV 2 Outline Background Objective Experimental Setup Results Discussion Conclusion 2 Outline

More information

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

The net force on a moving object is suddenly reduced to zero. As a consequence, the object The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

More information

Distributed Estimation for Motion Coordination in an Unknown Spatially Varying Flowfield

Distributed Estimation for Motion Coordination in an Unknown Spatially Varying Flowfield Distributed Estimation for Motion Coordination in an Unknown Spatially Varying Flowfield Cameron K Peterson and Derek A Paley University of Maryland, College Park, MD, 742, USA I Introduction This note

More information

EKF and SLAM. McGill COMP 765 Sept 18 th, 2017

EKF and SLAM. McGill COMP 765 Sept 18 th, 2017 EKF and SLAM McGill COMP 765 Sept 18 th, 2017 Outline News and information Instructions for paper presentations Continue on Kalman filter: EKF and extension to mapping Example of a real mapping system:

More information

Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer

Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer Oscar De Silva, George K.I. Mann and Raymond G. Gosine Faculty of Engineering and Applied Sciences, Memorial

More information

Robotics. Dynamics. Marc Toussaint U Stuttgart

Robotics. Dynamics. Marc Toussaint U Stuttgart Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler recursion, general robot dynamics, joint space control, reference trajectory

More information

Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 6 Physics, 4 th Edition James S. Walker Chapter 6 Applications of Newton s Laws Units of Chapter 6 Frictional Forces Strings and Springs Translational Equilibrium Connected Objects

More information

Electric Vehicle Lateral Dynamics Control based on Instantaneous Cornering Stiffness Estimation and an Efficient Allocation Scheme

Electric Vehicle Lateral Dynamics Control based on Instantaneous Cornering Stiffness Estimation and an Efficient Allocation Scheme Electric Vehicle Lateral Dynamics Control based on Instantaneous Cornering Stiffness Estimation and an Efficient Allocation Scheme A. Viehweider Y. Hori The University of Tokyo, Department of Advanced

More information

EXAMPLE: MODELING THE PT326 PROCESS TRAINER

EXAMPLE: MODELING THE PT326 PROCESS TRAINER CHAPTER 1 By Radu Muresan University of Guelph Page 1 EXAMPLE: MODELING THE PT326 PROCESS TRAINER The PT326 apparatus models common industrial situations in which temperature control is required in the

More information

Feedback Control of Spacecraft Rendezvous Maneuvers using Differential Drag

Feedback Control of Spacecraft Rendezvous Maneuvers using Differential Drag Feedback Control of Spacecraft Rendezvous Maneuvers using Differential Drag D. Pérez 1 and R. Bevilacqua Rensselaer Polytechnic Institute, Troy, New York, 1180 This work presents a feedback control strategy

More information

Trajectory-tracking control of a planar 3-RRR parallel manipulator

Trajectory-tracking control of a planar 3-RRR parallel manipulator Trajectory-tracking control of a planar 3-RRR parallel manipulator Chaman Nasa and Sandipan Bandyopadhyay Department of Engineering Design Indian Institute of Technology Madras Chennai, India Abstract

More information

Virtual Passive Controller for Robot Systems Using Joint Torque Sensors

Virtual Passive Controller for Robot Systems Using Joint Torque Sensors NASA Technical Memorandum 110316 Virtual Passive Controller for Robot Systems Using Joint Torque Sensors Hal A. Aldridge and Jer-Nan Juang Langley Research Center, Hampton, Virginia January 1997 National

More information

NONLINEAR CONTROLLER DESIGN FOR ACTIVE SUSPENSION SYSTEMS USING THE IMMERSION AND INVARIANCE METHOD

NONLINEAR CONTROLLER DESIGN FOR ACTIVE SUSPENSION SYSTEMS USING THE IMMERSION AND INVARIANCE METHOD NONLINEAR CONTROLLER DESIGN FOR ACTIVE SUSPENSION SYSTEMS USING THE IMMERSION AND INVARIANCE METHOD Ponesit Santhanapipatkul Watcharapong Khovidhungij Abstract: We present a controller design based on

More information

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202)

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) J = x θ τ = J T F 2018 School of Information Technology and Electrical Engineering at the University of Queensland Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) 1 23-Jul Introduction + Representing

More information

Output Feedback Control for Maneuvering Systems Using Observer Backstepping

Output Feedback Control for Maneuvering Systems Using Observer Backstepping Output Feedback Control for Maneuvering Systems Using Observer Backstepping Ivar-André F. Ihle 1 RogerSkjetne and Thor I. Fossen 13 Abstract An output feedback design for maneuvering systems is proposed

More information

Investigation of Steering Feedback Control Strategies for Steer-by-Wire Concept

Investigation of Steering Feedback Control Strategies for Steer-by-Wire Concept Master of Science Thesis in Electrical Engineering Department of Electrical Engineering, Linköping University, 2018 Investigation of Steering Feedback Control Strategies for Steer-by-Wire Concept Martin

More information

Real-time Motion Control of a Nonholonomic Mobile Robot with Unknown Dynamics

Real-time Motion Control of a Nonholonomic Mobile Robot with Unknown Dynamics Real-time Motion Control of a Nonholonomic Mobile Robot with Unknown Dynamics TIEMIN HU and SIMON X. YANG ARIS (Advanced Robotics & Intelligent Systems) Lab School of Engineering, University of Guelph

More information

Quaternion-Based Tracking Control Law Design For Tracking Mode

Quaternion-Based Tracking Control Law Design For Tracking Mode A. M. Elbeltagy Egyptian Armed forces Conference on small satellites. 2016 Logan, Utah, USA Paper objectives Introduction Presentation Agenda Spacecraft combined nonlinear model Proposed RW nonlinear attitude

More information

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

More information

Control of Mobile Robots Prof. Luca Bascetta

Control of Mobile Robots Prof. Luca Bascetta Control of Mobile Robots Prof. Luca Bascetta EXERCISE 1 1. Consider a wheel rolling without slipping on the horizontal plane, keeping the sagittal plane in the vertical direction. Write the expression

More information

Backstepping based approach for the combined longitudinal-lateral vehicle control

Backstepping based approach for the combined longitudinal-lateral vehicle control Intelligent Vehicles Symposium Alcalá de Henares, Spain, June 3-7, Backstepping based approach for the combined longitudinal-lateral vehicle control Lamri Nehaoua and Lydie Nouvelière Abstract This paper

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Sachin Patil Guest Lecture: CS287 Advanced Robotics Slides adapted from Pieter Abbeel, Alex Lee Outline Introduction to POMDPs Locally Optimal Solutions

More information

Modeling and Validation of a Complex Vehicle Dynamics Model for Real-time Applications

Modeling and Validation of a Complex Vehicle Dynamics Model for Real-time Applications Modeling and alidation of a Complex ehicle Dynamics Model for Real-time Applications Peter Riegl and Andreas Gaull Carissma, Ingolstadt Univ. of Applied Sciences, Esplanade 1, Ingolstadt, Germany peter.riegl@thi.de,

More information

Chapter 1. Introduction. 1.1 System Architecture

Chapter 1. Introduction. 1.1 System Architecture Chapter 1 Introduction 1.1 System Architecture The objective of this book is to prepare the reader to do research in the exciting and rapidly developing field of autonomous navigation, guidance, and control

More information

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING Elias F. Solorzano University of Toronto (Space Flight Laboratory) Toronto, ON (Canada) August 10 th, 2016 30 th AIAA/USU

More information

Robust Model Predictive Control for Autonomous Vehicle/Self-Driving Cars

Robust Model Predictive Control for Autonomous Vehicle/Self-Driving Cars Robust Model Predictive Control for Autonomous Vehicle/Self-Driving Cars Che Kun Law, Darshit Dalal, Stephen Shearrow A robust Model Predictive Control (MPC) approach for controlling front steering of

More information

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J. Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik Robot Dynamics Dr.-Ing. John Nassour 25.1.218 J.Nassour 1 Introduction Dynamics concerns the motion of bodies Includes Kinematics

More information

State Estimation for Nonlinear Systems using Restricted Genetic Optimization

State Estimation for Nonlinear Systems using Restricted Genetic Optimization State Estimation for Nonlinear Systems using Restricted Genetic Optimization Santiago Garrido, Luis Moreno, and Carlos Balaguer Universidad Carlos III de Madrid, Leganés 28911, Madrid (Spain) Abstract.

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Micro Aerial Vehicle Dynamics Dr. Kostas Alexis (CSE) Goal of this lecture The goal of this lecture is to derive the equations of motion that describe the motion of

More information

Dynamics 12e. Copyright 2010 Pearson Education South Asia Pte Ltd. Chapter 20 3D Kinematics of a Rigid Body

Dynamics 12e. Copyright 2010 Pearson Education South Asia Pte Ltd. Chapter 20 3D Kinematics of a Rigid Body Engineering Mechanics: Dynamics 12e Chapter 20 3D Kinematics of a Rigid Body Chapter Objectives Kinematics of a body subjected to rotation about a fixed axis and general plane motion. Relative-motion analysis

More information

DYNAMIC MODELLING AND IDENTIFICATION OF A CAR. Gentiane Venture* Wisama Khalil** Maxime Gautier** Philippe Bodson*

DYNAMIC MODELLING AND IDENTIFICATION OF A CAR. Gentiane Venture* Wisama Khalil** Maxime Gautier** Philippe Bodson* DYNAMIC MODELLING AND IDENTIFICATION OF A CAR Gentiane Venture* Wisama Khalil** Maxime Gautier** Philippe Bodson* *P.S.A. Peugeot Citroën Direction Plates-formes, Techniques et Achats Route de Gisy 78943

More information

String and robust stability of connected vehicle systems with delayed feedback

String and robust stability of connected vehicle systems with delayed feedback String and robust stability of connected vehicle systems with delayed feedback Gopal Krishna Kamath, Krishna Jagannathan and Gaurav Raina Department of Electrical Engineering Indian Institute of Technology

More information

Lecture 6: CS395T Numerical Optimization for Graphics and AI Line Search Applications

Lecture 6: CS395T Numerical Optimization for Graphics and AI Line Search Applications Lecture 6: CS395T Numerical Optimization for Graphics and AI Line Search Applications Qixing Huang The University of Texas at Austin huangqx@cs.utexas.edu 1 Disclaimer This note is adapted from Section

More information

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion Rectilinear Motion No. kill Done 1 Know that rectilinear motion means motion in 1D (i.e. along a straight line) Know that a body is a physical object 3 Know that a particle is an idealised body that has

More information

Chapter 11. Angular Momentum

Chapter 11. Angular Momentum Chapter 11 Angular Momentum Angular Momentum Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum. In analogy to the principle of conservation

More information

Single-track models of an A-double heavy vehicle combination

Single-track models of an A-double heavy vehicle combination Single-track models of an A-double heavy vehicle combination PETER NILSSON KRISTOFFER TAGESSON Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics Group

More information

Chapter 2 Review of Linear and Nonlinear Controller Designs

Chapter 2 Review of Linear and Nonlinear Controller Designs Chapter 2 Review of Linear and Nonlinear Controller Designs This Chapter reviews several flight controller designs for unmanned rotorcraft. 1 Flight control systems have been proposed and tested on a wide

More information

Virtual Measurements in Experimental Structural Analysis

Virtual Measurements in Experimental Structural Analysis in Experimental Structural Analysis Randall J. Allemang, PhD Structural Dynamics Research Lab University of Cincinnati Cincinnati, Ohio, USA 45221-0072 COBEM97 - Introduction What are virtual Measurements?

More information

Nonlinear Estimation Techniques for Impact Point Prediction of Ballistic Targets

Nonlinear Estimation Techniques for Impact Point Prediction of Ballistic Targets Nonlinear Estimation Techniques for Impact Point Prediction of Ballistic Targets J. Clayton Kerce a, George C. Brown a, and David F. Hardiman b a Georgia Tech Research Institute, Georgia Institute of Technology,

More information

What is flight dynamics? AE540: Flight Dynamics and Control I. What is flight control? Is the study of aircraft motion and its characteristics.

What is flight dynamics? AE540: Flight Dynamics and Control I. What is flight control? Is the study of aircraft motion and its characteristics. KING FAHD UNIVERSITY Department of Aerospace Engineering AE540: Flight Dynamics and Control I Instructor Dr. Ayman Hamdy Kassem What is flight dynamics? Is the study of aircraft motion and its characteristics.

More information

Rigorous Global Optimization of Impulsive Space Trajectories

Rigorous Global Optimization of Impulsive Space Trajectories Rigorous Global Optimization of Impulsive Space Trajectories P. Di Lizia, R. Armellin, M. Lavagna K. Makino, M. Berz Fourth International Workshop on Taylor Methods Boca Raton, December 16 19, 2006 Motivation

More information

H 2 Adaptive Control. Tansel Yucelen, Anthony J. Calise, and Rajeev Chandramohan. WeA03.4

H 2 Adaptive Control. Tansel Yucelen, Anthony J. Calise, and Rajeev Chandramohan. WeA03.4 1 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July, 1 WeA3. H Adaptive Control Tansel Yucelen, Anthony J. Calise, and Rajeev Chandramohan Abstract Model reference adaptive

More information

Department of Physics, Korea University Page 1 of 8

Department of Physics, Korea University Page 1 of 8 Name: Department: Student ID #: Notice +2 ( 1) points per correct (incorrect) answer No penalty for an unanswered question Fill the blank ( ) with ( ) if the statement is correct (incorrect) : corrections

More information