Path Planning for Time-Optimal Information Collection

Size: px
Start display at page:

Download "Path Planning for Time-Optimal Information Collection"

Transcription

1 Path Planning for Time-Optimal Information Collection Andy Klesh University of Michigan April 2, 2008

2 Motivation

3 Motivation Problem Many Intelligence, Surveillance and Reconnaissance (ISR) Missions require autonomous vehicles to collect information.

4 Motivation Problem Many Intelligence, Surveillance and Reconnaissance (ISR) Missions require autonomous vehicles to collect information. Time is limited

5 Motivation Problem Many Intelligence, Surveillance and Reconnaissance (ISR) Missions require autonomous vehicles to collect information. Time is limited Many targets exist

6 Motivation Problem Many Intelligence, Surveillance and Reconnaissance (ISR) Missions require autonomous vehicles to collect information. Time is limited Many targets exist Enhance autonomous information collection through:

7 Motivation Problem Many Intelligence, Surveillance and Reconnaissance (ISR) Missions require autonomous vehicles to collect information. Time is limited Many targets exist Enhance autonomous information collection through: 1 Model the coupling between information collection and vehicle kinematics

8 Motivation Problem Many Intelligence, Surveillance and Reconnaissance (ISR) Missions require autonomous vehicles to collect information. Time is limited Many targets exist Enhance autonomous information collection through: 1 Model the coupling between information collection and vehicle kinematics 2 Exploit this interaction to form optimal flight paths

9 Related Work A Mathematical Theory of Communication, Shannon, 1948 Optimal Path Planning for Unmanned Combat Aerial Vehicles to Defeat Radar Tracking, Kabamba, Meerkov and Zeitz, 2006

10 Related Work A Mathematical Theory of Communication, Shannon, 1948 Optimal Path Planning for Unmanned Combat Aerial Vehicles to Defeat Radar Tracking, Kabamba, Meerkov and Zeitz, 2006 Path Planning for Cooperative Time-Optimal Information Collection, Klesh, Girard and Kabamba, ACC 2008, Accepted Real Time Path Planning for Time-Optimal Exploration, Klesh, Girard and Kabamba, AIAA GNC 2008, Accepted A Path Planning Framework for Autonomous Exploration, Klesh, Girard and Kabamba, CDC 2008, Submitted Autonomous Exploration and Remote Sensing, Klesh, Girard and Kabamba, CDC 2008 Invited Session, Submitted

11 Unanswered Questions Problem How can we improve the rate of information return from ISR missions?

12 Original Contributions

13 Original Contributions Formulate the exploration problem as the communication of information over a noisy channel

14 Original Contributions Formulate the exploration problem as the communication of information over a noisy channel Identify characteristics for information optimal flight paths

15 Outline 1 Motivation 2 UAV Exploration Models Problem Formulation Optimal Path Planning 3 Generalized Exploration 4 Information Constraints Isolated Objects Clustered Objects Application to Real-Time Controllers 5 Conclusions Future Work

16 The Exploration Problem Exploration The collection of information about objects of interest with known locations, where information is understood in the classical sense of Shannon as selection from a set. We do not seek to classify the object based on our acquired knowledge, merely collect information in a time-optimal way.

17 Communication and Exploration Object of Interest

18 Communication and Exploration Object of Interest Sensing Process

19 Communication and Exploration Object of Interest Sensing Process Signal

20 Communication and Exploration Object of Interest Sensing Process Signal Sensor

21 Communication and Exploration Object of Interest Sensing Process Signal Sensor Transmitter Noisy Channel Information Receiver

22 Communication and Exploration Object of Interest Sensing Process Signal Sensor Transmitter Noisy Channel Information Receiver Exploration Exploration can be viewed as a communication process where each object of interest is a transmitter, the explorer is the receiver, the sensing processes are noisy communication channels, and the sensor signals carry information that allows the explorer to identify the objects of interest.

23 Information Collection Model The rate of information received by the sensor: İ = W log 2 (1 + SNR) (1)

24 Information Collection Model The rate of information received by the sensor: İ = W log 2 (1 + SNR) (1) The signal-to-noise ratio of a signal with an active sensor: SNR = K 4 ((X A) 2 +(Y B) 2 ) 2 (2)

25 Information Collection Model The rate of information received by the sensor: İ = W log 2 (1 + SNR) (1) The signal-to-noise ratio of a signal with an active sensor: SNR = K 4 ((X A) 2 +(Y B) 2 ) 2 (2) The rate of information received about a given object: İ = W log 2 (1 + K 4 ((X A) 2 + (Y B) 2 ) 2 ) (3) where (A, B) is the Cartesian location of the object of interest.

26 Time-Optimal Exploration Problem Statement Find a flight path that minimizes the total flight time for a UAV to collect a specified amount of information about each object of interest in a given area. min t f, subject to I (t f ) 1 (4) ψ( )

27 Necessary Conditions States: X Rate: Y Rate: Information Rate: I j = i=1 x i = v cos(ψ i ), 1 i n y i = v sin(ψ i ), 1 i n n kj 4 w log 2 (1 + ((x i a j ) 2 + (y i b j ) 2 ) 2 ), 1 j m Optimality Condition: 0 = vλ yi cos(ψ i ) vλ xi sin(ψ i ), 1 i n

28 Necessary Conditions Costates: X Costate: λ xi = Y Costate: λ yi = m j=1 m j=1 Information Costate: where j = (1 + 4k 4 j w(x i a j )λ Ij ((x i a j ) 2 + (y i b j ) 2 ) 3 j, 1 i n 4k 4 j w(y i b j )λ Ij ((x i a j ) 2 + (y i b j ) 2 ) 3 j, 1 i n λ Ij = 0, 1 j m k 4 j ((x i a j ) 2 +(y i b j ) 2 ) 2 ), 1 j m

29 Single UAV 4.5 Time-Optimal Flight Path Y/l c (m) X/l c (m) Constant Velocity Constant Altitude Assumptions: Instantaneous Turns Non-redundant additive information

30 Optimal Path Planning Proposition 1 If the objects of interest are isolated, then the optimal flight paths consist of sequences of straight lines (far from the objects of interest) connected by short turns (near the objects of interest) Corollary 1.1 If in addition to being isolated, the objects of interest are poorly visible, then the problem becomes a multi-vehicle TSP (MTSP). Proposition 2 When the visibility of all the objects of interest approaches infinity, t f 0 and the lengths of paths traveled by the UAVs approach zero.

31 Generalized Exploration Kinematics: χ i = f i (u i ), 1 i n Informatics: I j = ρ j (χ 1,..., χ n, w 1,..., w n ), 1 j m where the functions ρ j, 1 j m satisfy: ρ j (χ 1,..., χ n, w 1,..., w n ) = 0, χ 1,..., χ n / D j, > 0, otherwise

32 Generalized Exploration States: X Rate: Information Rate: Optimality Condition: χ i = f (u i ), 1 i n I j = ρ j (χ 1,..., χ n, w 1,..., w n ), 1 j m f (u 0 = λ i ) χi u i, 1 i n

33 Generalized Exploration Costates: Position Costate: λ xi = m j=1 Information Costate: ρ(χ 1,..., χ n, w 1,..., w n ) λ Ij, 1 i n χ i λ Ij = 0, 1 j m

34 Generalized Exploration Control Rate Magnitude: u i = n ρ j (χ 1,..., χ n, w 1,..., w n ) f (u i) u i n ( ) d f (ui ) λ χi dt u i j=1 i=1

35 Generalized Exploration UAV Control Rate Magnitude: ψ i = 4k4 j λ I j w i (cos(ψ i )(b j y i )+sin(ψ i )(a j x i )) cos(ψ i ), 1 i n λ xi r 6

36 Information Constraints Two constraints are active

37 Information Constraints Two constraints are active These are critical objects

38 Information Constraints One active constraint

39 Information Constraints One active constraint One critical object

40 Information Constraints - Clustering One active constraint

41 Information Constraints - Clustering One active constraint One critical object

42 Information Constraints - Clustering Two active constraints

43 Information Constraints - Clustering Two active constraints Two critical objects

44 Clustered Objects Proposed Procedure: 1 Connect the spheres of influence with a greedy path

45 Clustered Objects Proposed Procedure: 1 Connect the spheres of influence with a greedy path 2 Evaluate information gain

46 Clustered Objects Proposed Procedure: 1 Connect the spheres of influence with a greedy path 2 Evaluate information gain 3 Those items with an information gain equal to 1 bit are critical objects

47 Clustered Objects Proposed Procedure: 1 Connect the spheres of influence with a greedy path 2 Evaluate information gain 3 Those items with an information gain equal to 1 bit are critical objects 4 Optimize path for critical objects

48 Parametric Study Parametric Study: Vary only K 1, the visibility of object 1 Examine flight paths

49 Parametric Study Radius of Closest Approach f (K) K 3 Parametric Study:

50 Conclusions 1 ISR missions seek information

51 Conclusions 1 ISR missions seek information 2 Autonomous exploration can be aided improved information return

52 Conclusions 1 ISR missions seek information 2 Autonomous exploration can be aided improved information return 3 The exploration problem can be expressed as the communication of information over a noisy channel

53 Conclusions 1 ISR missions seek information 2 Autonomous exploration can be aided improved information return 3 The exploration problem can be expressed as the communication of information over a noisy channel 4 Path-planning can be optimized to minimize the flight time required to obtain a specified amount of information

54 Conclusions 1 ISR missions seek information 2 Autonomous exploration can be aided improved information return 3 The exploration problem can be expressed as the communication of information over a noisy channel 4 Path-planning can be optimized to minimize the flight time required to obtain a specified amount of information Conclusion Autonomous exploration can be enhanced through optimal path planning

55 Future Work Investigate Exploration vs Exploitation Expand exploration formulation for cooperative vehicles

56 Thank you

Robotic Exploration with Non-Isotropic Sensors

Robotic Exploration with Non-Isotropic Sensors AIAA Guidance, Navigation, and Control Conference 10-13 August 2009, Chicago, Illinois AIAA 2009-6267 Robotic Exploration with Non-Isotropic Sensors Baro Hyun, Justin Jackson, Andrew Klesh, Anouck R. Girard,

More information

Energy-Aware Coverage Path Planning of UAVs

Energy-Aware Coverage Path Planning of UAVs Energy-Aware Coverage Path Planning of UAVs Carmelo Di Franco, Giorgio C. Buttazzo IWES 2016 20 September 2016 ReTiS Lab, TeCIP Institute Scuola superiore Sant Anna - Pisa About me I m Carmelo Di Franco

More information

An Evaluation of UAV Path Following Algorithms

An Evaluation of UAV Path Following Algorithms 213 European Control Conference (ECC) July 17-19, 213, Zürich, Switzerland. An Evaluation of UAV Following Algorithms P.B. Sujit, Srikanth Saripalli, J.B. Sousa Abstract following is the simplest desired

More information

Probability Map Building of Uncertain Dynamic Environments with Indistinguishable Obstacles

Probability Map Building of Uncertain Dynamic Environments with Indistinguishable Obstacles Probability Map Building of Uncertain Dynamic Environments with Indistinguishable Obstacles Myungsoo Jun and Raffaello D Andrea Sibley School of Mechanical and Aerospace Engineering Cornell University

More information

Cooperative Control Challenges for Aerial Vehicles

Cooperative Control Challenges for Aerial Vehicles Cooperative Control Challenges for Aerial Vehicles Gidance Reference + Model - Adaptive Control Baseline + + Airframe Atopilot Egene Lavretsky, Ph.D. Senior Technical Fellow Boeing Research & Technology

More information

Allocating Drones for Military Search

Allocating Drones for Military Search Allocating Drones for Military Search Anja Stein Supervisor: James Grant September 2, 2016 Anja Stein Allocating Drones for Military Search September 2, 2016 1 / 17 Motivation Unmanned Aerial Vehicles

More information

MULTIPLE UAV FORMATION RECONFIGURATION WITH COLLISION AVOIDANCE GUIDANCE VIA DIFFERENTIAL GEOMETRY CONCEPT

MULTIPLE UAV FORMATION RECONFIGURATION WITH COLLISION AVOIDANCE GUIDANCE VIA DIFFERENTIAL GEOMETRY CONCEPT MULTIPLE UAV FORMATION RECONFIGURATION WITH COLLISION AVOIDANCE GUIDANCE VIA DIFFERENTIAL GEOMETRY CONCEPT Joongbo Seo, Youdan Kim, A. Tsourdos, B. A. White Seoul National University, Seoul 151-744. Republic

More information

Nonlinear Landing Control for Quadrotor UAVs

Nonlinear Landing Control for Quadrotor UAVs Nonlinear Landing Control for Quadrotor UAVs Holger Voos University of Applied Sciences Ravensburg-Weingarten, Mobile Robotics Lab, D-88241 Weingarten Abstract. Quadrotor UAVs are one of the most preferred

More information

On Agreement Problems with Gossip Algorithms in absence of common reference frames

On Agreement Problems with Gossip Algorithms in absence of common reference frames On Agreement Problems with Gossip Algorithms in absence of common reference frames M. Franceschelli A. Gasparri mauro.franceschelli@diee.unica.it gasparri@dia.uniroma3.it Dipartimento di Ingegneria Elettrica

More information

Route-Planning for Real-Time Safety-Assured Autonomous Aircraft (RTS3A)

Route-Planning for Real-Time Safety-Assured Autonomous Aircraft (RTS3A) Route-Planning for Real-Time Safety-Assured Autonomous Aircraft (RTS3A) Raghvendra V. Cowlagi 1 Jeffrey T. Chambers 2 Nikola Baltadjiev 2 1 Worcester Polytechnic Institute, Worcester, MA. 2 Aurora Flight

More information

Vehicle Dynamic Control Allocation for Path Following Moritz Gaiser

Vehicle Dynamic Control Allocation for Path Following Moritz Gaiser Vehicle Dynamic Control Allocation for Path Following Moritz Gaiser INSTITUT FÜR THEORETISCHE ELEKTROTECHNIK UND SYSTEMOPTIMIERUNG (ITE) KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.ite.kit.edu

More information

Problem 1: Ship Path-Following Control System (35%)

Problem 1: Ship Path-Following Control System (35%) Problem 1: Ship Path-Following Control System (35%) Consider the kinematic equations: Figure 1: NTNU s research vessel, R/V Gunnerus, and Nomoto model: T ṙ + r = Kδ (1) with T = 22.0 s and K = 0.1 s 1.

More information

A Step Towards the Cognitive Radar: Target Detection under Nonstationary Clutter

A Step Towards the Cognitive Radar: Target Detection under Nonstationary Clutter A Step Towards the Cognitive Radar: Target Detection under Nonstationary Clutter Murat Akcakaya Department of Electrical and Computer Engineering University of Pittsburgh Email: akcakaya@pitt.edu Satyabrata

More information

We provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill.

We provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill. We provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill. 2.3.2. Steering control using point mass model: Open loop commands We consider

More information

Real-time trajectory generation technique for dynamic soaring UAVs

Real-time trajectory generation technique for dynamic soaring UAVs Real-time trajectory generation technique for dynamic soaring UAVs Naseem Akhtar James F Whidborne Alastair K Cooke Department of Aerospace Sciences, Cranfield University, Bedfordshire MK45 AL, UK. email:n.akhtar@cranfield.ac.uk

More information

Cellular-Enabled UAV Communication: Trajectory Optimization Under Connectivity Constraint

Cellular-Enabled UAV Communication: Trajectory Optimization Under Connectivity Constraint Cellular-Enabled UAV Communication: Trajectory Optimization Under Connectivity Constraint Shuowen Zhang, Yong Zeng, and Rui Zhang ECE Department, National University of Singapore. Email: {elezhsh,elezeng,elezhang}@nus.edu.sg

More information

Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision Processes

Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision Processes Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision Processes Wesam H. Al-Sabban 1,, Luis F. Gonzalez 1, Ryan N. Smith 2, Gordon F. Wyeth 2 Abstract Exploiting wind-energy

More information

Target Assignment for Integrated Search and Tracking by Active Robot Networks

Target Assignment for Integrated Search and Tracking by Active Robot Networks 28 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 19-23, 28 Target Assignment for Integrated Search and Tracking by Active Robot Networks Eric W. Frew, IEEE Member and

More information

Towards airborne seismic. Thomas Rapstine & Paul Sava

Towards airborne seismic. Thomas Rapstine & Paul Sava Towards airborne seismic Thomas Rapstine & Paul Sava Research goal measure a strong motion signal from an airborne platform 2 Proposed method Monitor ground motion from an UAV using cameras Unmanned Aerial

More information

Quadrotor Modeling and Control for DLO Transportation

Quadrotor Modeling and Control for DLO Transportation Quadrotor Modeling and Control for DLO Transportation Thesis dissertation Advisor: Prof. Manuel Graña Computational Intelligence Group University of the Basque Country (UPV/EHU) Donostia Jun 24, 2016 Abstract

More information

Mixed-Integer Nonlinear Programming Formulation of a UAV Path Optimization Problem

Mixed-Integer Nonlinear Programming Formulation of a UAV Path Optimization Problem Mixed-Integer Nonlinear Programming Formulation of a UAV Path Optimization Problem Shankarachary Ragi and Hans D. Mittelmann Abstract We present a mixed-integer nonlinear programming (MINLP) formulation

More information

Estimation of time to point of closest approach for collision avoidance and separation systems

Estimation of time to point of closest approach for collision avoidance and separation systems Loughborough University Institutional Repository Estimation of time to point of closest approach for collision avoidance and separation systems This item was submitted to Loughborough University's Institutional

More information

Provably Correct Persistent Surveillance for Unmanned Aerial Vehicles Subject to Charging Constraints

Provably Correct Persistent Surveillance for Unmanned Aerial Vehicles Subject to Charging Constraints Provably Correct Persistent Surveillance for Unmanned Aerial Vehicles Subject to Charging Constraints Kevin Leahy, Dingjiang Zhou, Cristian-Ioan Vasile, Konstantinos Oikonomopoulos, Mac Schwager, and Calin

More information

The Multiple Traveling Salesperson Problem on Regular Grids

The Multiple Traveling Salesperson Problem on Regular Grids Philipp Hungerländer Anna Jellen Stefan Jessenitschnig Lisa Knoblinger Manuel Lackenbucher Kerstin Maier September 10, 2018 Abstract In this work we analyze the multiple Traveling Salesperson Problem (mtsp)

More information

Monitoring using Heterogeneous Autonomous Agents

Monitoring using Heterogeneous Autonomous Agents Monitoring using Heterogeneous Autonomous Agents by Jonathan Las Fargeas A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Aerospace Engineering)

More information

Mathematical Modelling and Dynamics Analysis of Flat Multirotor Configurations

Mathematical Modelling and Dynamics Analysis of Flat Multirotor Configurations Mathematical Modelling and Dynamics Analysis of Flat Multirotor Configurations DENIS KOTARSKI, Department of Mechanical Engineering, Karlovac University of Applied Sciences, J.J. Strossmayera 9, Karlovac,

More information

Consensus Algorithms are Input-to-State Stable

Consensus Algorithms are Input-to-State Stable 05 American Control Conference June 8-10, 05. Portland, OR, USA WeC16.3 Consensus Algorithms are Input-to-State Stable Derek B. Kingston Wei Ren Randal W. Beard Department of Electrical and Computer Engineering

More information

Deconfliction Algorithms for a Pair of Constant Speed Unmanned Aerial Vehicles

Deconfliction Algorithms for a Pair of Constant Speed Unmanned Aerial Vehicles 1 Deconfliction Algorithms for a Pair of Constant Speed Unmanned Aerial Vehicles Prachya Panyakeow and Mehran Mesbahi University of Washington, Seattle, WA, 98195-2400, U.S.A Abstract This paper provides

More information

Formation Control of Nonholonomic Mobile Robots

Formation Control of Nonholonomic Mobile Robots Proceedings of the 6 American Control Conference Minneapolis, Minnesota, USA, June -6, 6 FrC Formation Control of Nonholonomic Mobile Robots WJ Dong, Yi Guo, and JA Farrell Abstract In this paper, formation

More information

Wind-field Reconstruction Using Flight Data

Wind-field Reconstruction Using Flight Data 28 American Control Conference Westin Seattle Hotel, Seattle, Washington, USA June 11-13, 28 WeC18.4 Wind-field Reconstruction Using Flight Data Harish J. Palanthandalam-Madapusi, Anouck Girard, and Dennis

More information

Decentralized Stabilization of Heterogeneous Linear Multi-Agent Systems

Decentralized Stabilization of Heterogeneous Linear Multi-Agent Systems 1 Decentralized Stabilization of Heterogeneous Linear Multi-Agent Systems Mauro Franceschelli, Andrea Gasparri, Alessandro Giua, and Giovanni Ulivi Abstract In this paper the formation stabilization problem

More information

Lecture 4. Capacity of Fading Channels

Lecture 4. Capacity of Fading Channels 1 Lecture 4. Capacity of Fading Channels Capacity of AWGN Channels Capacity of Fading Channels Ergodic Capacity Outage Capacity Shannon and Information Theory Claude Elwood Shannon (April 3, 1916 February

More information

Awareness-Based Decision Making for Search and Tracking

Awareness-Based Decision Making for Search and Tracking 28 American Control Conference Westin Seattle Hotel, Seattle, Washington, USA June 11-13, 28 ThC7.6 Awareness-Based Decision Making for Search and Tracking Y. Wang, I. I. Hussein, R. Scott Erwin Abstract

More information

UAV Coordinate Frames and Rigid Body Dynamics

UAV Coordinate Frames and Rigid Body Dynamics Brigham Young University BYU ScholarsArchive All Faculty Publications 24-- UAV oordinate Frames and Rigid Body Dynamics Randal Beard beard@byu.edu Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

More information

Wind-Energy based Path Planning For Unmanned Aerial Vehicles Using Markov Decision Processes

Wind-Energy based Path Planning For Unmanned Aerial Vehicles Using Markov Decision Processes Wind-Energy based Path Planning For Unmanned Aerial Vehicles Using Markov Decision Processes Wesam H. Al-Sabban, Luis F. Gonzalez and Ryan N. Smith Abstract Exploiting wind-energy is one possible way to

More information

Robust Model Predictive Control for Autonomous Vehicle/Self-Driving Cars

Robust Model Predictive Control for Autonomous Vehicle/Self-Driving Cars Robust Model Predictive Control for Autonomous Vehicle/Self-Driving Cars Che Kun Law, Darshit Dalal, Stephen Shearrow A robust Model Predictive Control (MPC) approach for controlling front steering of

More information

Motion of a Point. Figure 1 Dropped vehicle is rectilinear motion with constant acceleration. Figure 2 Time and distance to reach a speed of 6 m/sec

Motion of a Point. Figure 1 Dropped vehicle is rectilinear motion with constant acceleration. Figure 2 Time and distance to reach a speed of 6 m/sec Introduction Motion of a Point In this chapter, you begin the subject of kinematics (the study of the geometry of motion) by focusing on a single point or particle. You utilize different coordinate systems

More information

Orbit Determination of Satellite Formations. Terry Alfriend 9 th US Russian Space Surveillance Workshop

Orbit Determination of Satellite Formations. Terry Alfriend 9 th US Russian Space Surveillance Workshop Orbit Determination of Satellite Formations Terry Alfriend 9 th US Russian Space Surveillance Workshop Outline What is a Satellite Formation Types of Formations Proposed Approach for Orbit Determination

More information

UAV Control and Guidance for Autonomous Cooperative Tracking of a Moving Target

UAV Control and Guidance for Autonomous Cooperative Tracking of a Moving Target UAV Control and Guidance for Autonomous Cooperative Tracking of a Moving Target Richard Wise A research proposal submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

CLOSE RANGE ONE TO ONE AIR COMBAT MANEUVERING FOR AUTONOMOUS UAV

CLOSE RANGE ONE TO ONE AIR COMBAT MANEUVERING FOR AUTONOMOUS UAV 8 th ANKARA INTERNATIONAL AEROSPACE CONFERENCE AIAC-2015-046 10-12 September 2015 - METU, Ankara TURKEY CLOSE RANGE ONE TO ONE AIR COMBAT MANEUVERING FOR AUTONOMOUS UAV Mustafa KARLI 1 and Mehmet Önder

More information

Evaluation of different wind estimation methods in flight tests with a fixed-wing UAV

Evaluation of different wind estimation methods in flight tests with a fixed-wing UAV Evaluation of different wind estimation methods in flight tests with a fixed-wing UAV Julian Sören Lorenz February 5, 2018 Contents 1 Glossary 2 2 Introduction 3 3 Tested algorithms 3 3.1 Unfiltered Method

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 May 11(7): pages 126-131 Open Access Journal Computational Analysis

More information

THere are many sensing scenarios for which the target is

THere are many sensing scenarios for which the target is Adaptive Multi-Aspect Target Classification and Detection with Hidden Markov Models Shihao Ji, Xuejun Liao, Senior Member, IEEE, and Lawrence Carin, Fellow, IEEE Abstract Target detection and classification

More information

Autonomous Robotic Vehicles

Autonomous Robotic Vehicles Autonomous Robotic Vehicles Ground, Air, Undersea Jim Keller July 15, 2005 Types of Vehicles Ground Wheeled Tracked Legged Crawling/snake Air Fixed wing Powered gliders Rotary wing Flapping wing Morphing

More information

58th International Astronautical Congress, Hyderabad, India, September Copyright IAF/IAA. All rights reserved.

58th International Astronautical Congress, Hyderabad, India, September Copyright IAF/IAA. All rights reserved. 58th International Astronautical Congress, Hyderabad, India, 24-28 September 2007. Copyright IAF/IAA. All rights reserved. 58th International Astronautical Congress 2007 Andrew Klesh and Pierre Kabamba

More information

Waypoint Guidance for Small UAVs in Wind

Waypoint Guidance for Small UAVs in Wind Waypoint Guidance for Small UAVs in Wind John Osborne and Rolf Rysdyk University of Washington, Seattle, WA, 98115,USA I. abstract Wind is often ignored or only implicitly addressed in design of guidance

More information

Towards Reduced-Order Models for Online Motion Planning and Control of UAVs in the Presence of Wind

Towards Reduced-Order Models for Online Motion Planning and Control of UAVs in the Presence of Wind Towards Reduced-Order Models for Online Motion Planning and Control of UAVs in the Presence of Wind Ashray A. Doshi, Surya P. Singh and Adam J. Postula The University of Queensland, Australia {a.doshi,

More information

Distributed Estimation for Motion Coordination in an Unknown Spatially Varying Flowfield

Distributed Estimation for Motion Coordination in an Unknown Spatially Varying Flowfield Distributed Estimation for Motion Coordination in an Unknown Spatially Varying Flowfield Cameron K Peterson and Derek A Paley University of Maryland, College Park, MD, 742, USA I Introduction This note

More information

On the SIR s ( Signal -to- Interference -Ratio) in. Discrete-Time Autonomous Linear Networks

On the SIR s ( Signal -to- Interference -Ratio) in. Discrete-Time Autonomous Linear Networks On the SIR s ( Signal -to- Interference -Ratio) in arxiv:93.9v [physics.data-an] 9 Mar 9 Discrete-Time Autonomous Linear Networks Zekeriya Uykan Abstract In this letter, we improve the results in [5] by

More information

Comparison of Full-Duplex and Half-Duplex Modes with a Fixed Amplify-and-Forward Relay

Comparison of Full-Duplex and Half-Duplex Modes with a Fixed Amplify-and-Forward Relay Comparison of Full-Duplex and Half-Duplex Modes with a Fixed Amplify-and-Forward Relay Taneli Riihonen, Stefan Werner, and Risto Wichman Helsinki University of Technology, Finland IEEE WCNC, Budapest,

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

Trajectory tracking & Path-following control

Trajectory tracking & Path-following control Cooperative Control of Multiple Robotic Vehicles: Theory and Practice Trajectory tracking & Path-following control EECI Graduate School on Control Supélec, Feb. 21-25, 2011 A word about T Tracking and

More information

1 Introduction. 2 Successive Convexification Algorithm

1 Introduction. 2 Successive Convexification Algorithm 1 Introduction There has been growing interest in cooperative group robotics [], with potential applications in construction and assembly. Most of this research focuses on grounded or mobile manipulator

More information

Dynamic Data-Driven Adaptive Sampling and Monitoring of Big Spatial-Temporal Data Streams for Real-Time Solar Flare Detection

Dynamic Data-Driven Adaptive Sampling and Monitoring of Big Spatial-Temporal Data Streams for Real-Time Solar Flare Detection Dynamic Data-Driven Adaptive Sampling and Monitoring of Big Spatial-Temporal Data Streams for Real-Time Solar Flare Detection Dr. Kaibo Liu Department of Industrial and Systems Engineering University of

More information

Feature Extraction of Low Dimensional Sensor Returns for Autonomous Target Identification

Feature Extraction of Low Dimensional Sensor Returns for Autonomous Target Identification AIAA Guidance, Navigation and Control Conference and Exhibit 18-21 August 2008, Honolulu, Hawaii AIAA 2008-7236 Feature Extraction of Low Dimensional Sensor Returns for Autonomous Target Identification

More information

Dynamic-Fuzzy-Neural-Networks-Based Control of an Unmanned Aerial Vehicle

Dynamic-Fuzzy-Neural-Networks-Based Control of an Unmanned Aerial Vehicle Proceedings of the 7th World Congress The International Federation of Automatic Control Seoul, Korea, July 6-, 8 Dynamic-Fuzzy-Neural-Networks-Based Control of an Unmanned Aerial Vehicle Zhe Tang*, Meng

More information

Three-Dimensional Motion Coordination in a Time-Invariant Flowfield

Three-Dimensional Motion Coordination in a Time-Invariant Flowfield To appear in Proc. 48th IEEE CDC Three-Dimensional Motion Coordination in a Time-Invariant Flowfield Sonia Hernandez and Dere A. Paley Abstract Three-dimensional motion coordination in a flowfield has

More information

Localization and Circumnavigation of a Slowly Moving Target Using Bearing Measurements

Localization and Circumnavigation of a Slowly Moving Target Using Bearing Measurements Localization and Circumnavigation of a Slowly Moving Target Using Bearing Measurements Mohammad Deghat, Student Member, IEEE, Iman Shames, Member, IEEE, Brian D.O. Anderson, Life Fellow, IEEE, and Changbin

More information

Localization and Circumnavigation of a Slowly Moving Target Using Bearing Measurements

Localization and Circumnavigation of a Slowly Moving Target Using Bearing Measurements Localization and Circumnavigation of a Slowly Moving Target Using Bearing Measurements Mohammad Deghat, Student Member, IEEE, Iman Shames, Member, IEEE, Brian D.O. Anderson, Life Fellow, IEEE, and Changbin

More information

UAV Navigation: Airborne Inertial SLAM

UAV Navigation: Airborne Inertial SLAM Introduction UAV Navigation: Airborne Inertial SLAM Jonghyuk Kim Faculty of Engineering and Information Technology Australian National University, Australia Salah Sukkarieh ARC Centre of Excellence in

More information

Q1. (a) Explain what is meant by the gravitational potential at a point in a gravitational field (2)

Q1. (a) Explain what is meant by the gravitational potential at a point in a gravitational field (2) PhysicsAndMathsTutor.com 1 Q1. (a) Explain what is meant by the gravitational potential at a point in a gravitational field............. (2) (b) Use the following data to calculate the gravitational potential

More information

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n THE L 2 -HODGE THEORY AND REPRESENTATION ON R n BAISHENG YAN Abstract. We present an elementary L 2 -Hodge theory on whole R n based on the minimization principle of the calculus of variations and some

More information

Autonomous Navigation, Guidance and Control of Small 4-wheel Electric Vehicle

Autonomous Navigation, Guidance and Control of Small 4-wheel Electric Vehicle Journal of Asian Electric Vehicles, Volume 10, Number 1, June 01 Autonomous Navigation, Guidance and Control of Small 4-wheel Electric Vehicle Satoshi Suzuki International Young Researchers Empowerment

More information

UNIVERSITY OF DUBLIN

UNIVERSITY OF DUBLIN UNIVERSITY OF DUBLIN TRINITY COLLEGE FACULTY OF ENGINEERING, MATHEMATICS & SCIENCE SCHOOL OF ENGINEERING Electronic & Electrical Engineering Junior Sophister Engineering Trinity Term, 2015 Annual Examinations

More information

Shape Factor s Effect on a Dynamic Cleaners Swarm

Shape Factor s Effect on a Dynamic Cleaners Swarm Shape Factor s Effect on a Dynamic Cleaners Swarm Yaniv Altshuler 1, Israel A. Wagner 1,2, and Alfred M. Bruckstein 1 1 Computer Science Department, Technion, Haifa 32000 Israel {yanival, wagner, freddy}@cs.technion.ac.il

More information

CLF-based Tracking Control for UAV Kinematic Models with Saturation Constraints

CLF-based Tracking Control for UAV Kinematic Models with Saturation Constraints CDC3-IEEE45 CLF-based Tracking Control for UAV Kinematic Models with Saturation Constraints Wei Ren Randal W. Beard Department of Electrical and Computer Engineering Brigham Young University Provo, Utah

More information

Error Analysis in Multi-Agent Control Systems

Error Analysis in Multi-Agent Control Systems Error Analysis in Multi-Agent Control Systems Farzad Salehisadaghiani A Thesis in The Department of Electrical and Computer Engineering Presented in Partial Fulfillment of the Requirements for the Degree

More information

H inf. Loop Shaping Robust Control vs. Classical PI(D) Control: A case study on the Longitudinal Dynamics of Hezarfen UAV

H inf. Loop Shaping Robust Control vs. Classical PI(D) Control: A case study on the Longitudinal Dynamics of Hezarfen UAV Proceedings of the 2nd WSEAS International Conference on Dynamical Systems and Control, Bucharest, Romania, October 16-17, 2006 105 H inf. Loop Shaping Robust Control vs. Classical PI(D) Control: A case

More information

Target Tracking and Obstacle Avoidance for Multi-agent Systems

Target Tracking and Obstacle Avoidance for Multi-agent Systems International Journal of Automation and Computing 7(4), November 2010, 550-556 DOI: 10.1007/s11633-010-0539-z Target Tracking and Obstacle Avoidance for Multi-agent Systems Jing Yan 1 Xin-Ping Guan 1,2

More information

Design and modelling of an airship station holding controller for low cost satellite operations

Design and modelling of an airship station holding controller for low cost satellite operations AIAA Guidance, Navigation, and Control Conference and Exhibit 15-18 August 25, San Francisco, California AIAA 25-62 Design and modelling of an airship station holding controller for low cost satellite

More information

Path Planning for Autonomous Soaring MAVs in Urban Environments

Path Planning for Autonomous Soaring MAVs in Urban Environments Please select category below: Normal Paper Student Paper Young Engineer Paper Path Planning for Autonomous Soaring MAVs in Urban Environments C.S. Leung 1, M. Elbanhawi 1, A. Mohamed 1, R. Clothier 1,

More information

an expression, in terms of t, for the distance of the particle from O at time [3]

an expression, in terms of t, for the distance of the particle from O at time [3] HORIZON EDUCATION SINGAPORE Additional Mathematics Practice Questions: Kinematics Set 1 1 A particle moves in a straight line so that t seconds after passing through O, its velocity v cm s -1, is given

More information

Article Measuring Landscape Albedo Using Unmanned Aerial Vehicles

Article Measuring Landscape Albedo Using Unmanned Aerial Vehicles Article Measuring Landscape Albedo Using Unmanned Aerial Vehicles Chang Cao 1, *, Xuhui Lee 1,2, *, Joseph Muhlhausen 3, Laurent Bonneau 4 and Jiaping Xu 5 1 Yale-NUIST Center on Atmospheric Environment

More information

self-driving car technology introduction

self-driving car technology introduction self-driving car technology introduction slide 1 Contents of this presentation 1. Motivation 2. Methods 2.1 road lane detection 2.2 collision avoidance 3. Summary 4. Future work slide 2 Motivation slide

More information

Parametric Investigation of Hull Shaped Fuselage for an Amphibious UAV

Parametric Investigation of Hull Shaped Fuselage for an Amphibious UAV Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016 ICCFD9-2016-226 Parametric Investigation of Hull Shaped Fuselage for an Amphibious UAV Emre Sazak

More information

A Centralized Control Algorithm for Target Tracking with UAVs

A Centralized Control Algorithm for Target Tracking with UAVs A Centralized Control Algorithm for Tracing with UAVs Pengcheng Zhan, David W. Casbeer, A. Lee Swindlehurst Dept. of Elec. & Comp. Engineering, Brigham Young University, Provo, UT, USA, 8462 Telephone:

More information

Lecture 15: Thu Feb 28, 2019

Lecture 15: Thu Feb 28, 2019 Lecture 15: Thu Feb 28, 2019 Announce: HW5 posted Lecture: The AWGN waveform channel Projecting temporally AWGN leads to spatially AWGN sufficiency of projection: irrelevancy theorem in waveform AWGN:

More information

Cooperative Control and Mobile Sensor Networks

Cooperative Control and Mobile Sensor Networks Cooperative Control and Mobile Sensor Networks Cooperative Control, Part I, A-C Naomi Ehrich Leonard Mechanical and Aerospace Engineering Princeton University and Electrical Systems and Automation University

More information

DECENTRALIZED CONTROL OF NETWORKS OF UNCERTAIN DYNAMICAL SYSTEMS

DECENTRALIZED CONTROL OF NETWORKS OF UNCERTAIN DYNAMICAL SYSTEMS DECENTRALIZED CONTROL OF NETWORKS OF UNCERTAIN DYNAMICAL SYSTEMS By JUSTIN RICHARD KLOTZ A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Mechanics. In the Science Program, Mechanics contributes to the following program goals described in the Exit Profile:

Mechanics. In the Science Program, Mechanics contributes to the following program goals described in the Exit Profile: Mechanics Objectives: 00UR Discipline: Physics Ponderation: 3-2-3 Course Code: 203-NYA-05 Prerequisite: Sec. V Physics 534, Mathematics 536 (or equivalent) Course Credit: 2 2/3 Corequisite: 00UP (Calculus

More information

Nonlinear Filtering. With Polynomial Chaos. Raktim Bhattacharya. Aerospace Engineering, Texas A&M University uq.tamu.edu

Nonlinear Filtering. With Polynomial Chaos. Raktim Bhattacharya. Aerospace Engineering, Texas A&M University uq.tamu.edu Nonlinear Filtering With Polynomial Chaos Raktim Bhattacharya Aerospace Engineering, Texas A&M University uq.tamu.edu Nonlinear Filtering with PC Problem Setup. Dynamics: ẋ = f(x, ) Sensor Model: ỹ = h(x)

More information

OPTIMAL PATH PLANNING OF AN UNMANNED COMBAT AERIAL VEHICLE WITH OBSTACLE AVOIDANCE. A Thesis. presented to. the Faculty of the Graduate School

OPTIMAL PATH PLANNING OF AN UNMANNED COMBAT AERIAL VEHICLE WITH OBSTACLE AVOIDANCE. A Thesis. presented to. the Faculty of the Graduate School OPTIMAL PATH PLANNING OF AN UNMANNED COMBAT AERIAL VEHICLE WITH OBSTACLE AVOIDANCE A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia In Partial Fulfillment

More information

Probability of Cloud-Free-Line-of-Sight (PCFLOS) Derived From CloudSat and CALIPSO Cloud Observations

Probability of Cloud-Free-Line-of-Sight (PCFLOS) Derived From CloudSat and CALIPSO Cloud Observations Probability of Cloud-Free-Line-of-Sight (PCFLOS) Derived From CloudSat and CALIPSO Cloud Observations Donald L. Reinke, Thomas H. Vonder Haar Cooperative Institute for Research in the Atmosphere Colorado

More information

UAV Coordination for Autonomous Target Tracking

UAV Coordination for Autonomous Target Tracking UAV Coordination for Autonomous Target Tracking Richard A. Wise and Rolf T. Rysdyk Autonomous Flight Systems Laboratory University of Washington, Seattle, WA 9195 This report compares several different

More information

MAXIMUM A POSTERIORI ESTIMATION OF SIGNAL RANK. PO Box 1500, Edinburgh 5111, Australia. Arizona State University, Tempe AZ USA

MAXIMUM A POSTERIORI ESTIMATION OF SIGNAL RANK. PO Box 1500, Edinburgh 5111, Australia. Arizona State University, Tempe AZ USA MAXIMUM A POSTERIORI ESTIMATION OF SIGNAL RANK Songsri Sirianunpiboon Stephen D. Howard, Douglas Cochran 2 Defence Science Technology Organisation PO Box 500, Edinburgh 5, Australia 2 School of Mathematical

More information

AVIATR: Aerial Vehicle for In situ and Airborne Titan Reconnaissance

AVIATR: Aerial Vehicle for In situ and Airborne Titan Reconnaissance AVIATR: Aerial Vehicle for In situ and Airborne Titan Reconnaissance Jason W. Barnes Assistant Professor of Physics University of Idaho OPAG Meeting 2011 October 20 Pasadena, CA TSSM: Titan Saturn System

More information

Lesson 8 Kinematics V - Circular Motion

Lesson 8 Kinematics V - Circular Motion I. Circular Motion and Polar Coordinates Lesson 8 Kinematics V - Circular Motion A. Consider the motion of ball on a circle from point A to point B as shown below. We could describe the path of the ball

More information

4 An Introduction to Channel Coding and Decoding over BSC

4 An Introduction to Channel Coding and Decoding over BSC 4 An Introduction to Channel Coding and Decoding over BSC 4.1. Recall that channel coding introduces, in a controlled manner, some redundancy in the (binary information sequence that can be used at the

More information

INTELLIGENT AUTONOMY FOR MULTIPLE, COORDINATED UAVS

INTELLIGENT AUTONOMY FOR MULTIPLE, COORDINATED UAVS INTELLIGENT AUTONOMY FOR MULTIPLE, COORDINATED UAVS PRESENTED BY: Dr. Lora G. Weiss PRESENTED TO: The Institute for Computational Sciences The Pennsylvania State University January 31, 2005 COORDINATED

More information

Explorability of Noisy Scalar Fields

Explorability of Noisy Scalar Fields 011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) Orlando, FL, USA, December 1-15, 011 Explorability of Noisy Scalar Fields Wencen Wu and Fumin Zhang Abstract We

More information

kiteplane s length, wingspan, and height are 6 mm, 9 mm, and 24 mm, respectively, and it weighs approximately 4.5 kg. The kiteplane has three control

kiteplane s length, wingspan, and height are 6 mm, 9 mm, and 24 mm, respectively, and it weighs approximately 4.5 kg. The kiteplane has three control Small Unmanned Aerial Vehicle with Variable Geometry Delta Wing Koji Nakashima, Kazuo Okabe, Yasutaka Ohsima 2, Shuichi Tajima 2 and Makoto Kumon 2 Abstract The kiteplane that is considered in this paper

More information

Chapter 11. Path Manager. Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012,

Chapter 11. Path Manager. Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012, Chapter 11 Path Manager Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 212, Chapter 11, Slide 1 Control Architecture destination, obstacles map path planner waypoints status path

More information

Physics 2A (Fall 2012) Chapter 2: Motion in One Dimension

Physics 2A (Fall 2012) Chapter 2: Motion in One Dimension Physics 2A (Fall 2012) Chapter 2: Motion in One Dimension Whether you think you can or think you can t, you re usually right. Henry Ford It is our attitude at the beginning of a difficult task which, more

More information

Trajectory Optimization for Cellular-Connected UAV Under Outage Duration Constraint

Trajectory Optimization for Cellular-Connected UAV Under Outage Duration Constraint Trajectory Optimization for Cellular-Connected UAV Under Outage Duration Constraint Shuowen Zhang, Member, IEEE and Rui Zhang, Fellow, IEEE 1 arxiv:1901.04286v1 [cs.it] 14 Jan 2019 Abstract Enabling cellular

More information

Information Theory. Coding and Information Theory. Information Theory Textbooks. Entropy

Information Theory. Coding and Information Theory. Information Theory Textbooks. Entropy Coding and Information Theory Chris Williams, School of Informatics, University of Edinburgh Overview What is information theory? Entropy Coding Information Theory Shannon (1948): Information theory is

More information

Capacity of a Two-way Function Multicast Channel

Capacity of a Two-way Function Multicast Channel Capacity of a Two-way Function Multicast Channel 1 Seiyun Shin, Student Member, IEEE and Changho Suh, Member, IEEE Abstract We explore the role of interaction for the problem of reliable computation over

More information

ADMM and Fast Gradient Methods for Distributed Optimization

ADMM and Fast Gradient Methods for Distributed Optimization ADMM and Fast Gradient Methods for Distributed Optimization João Xavier Instituto Sistemas e Robótica (ISR), Instituto Superior Técnico (IST) European Control Conference, ECC 13 July 16, 013 Joint work

More information

Adaptive Robust Control (ARC) for an Altitude Control of a Quadrotor Type UAV Carrying an Unknown Payloads

Adaptive Robust Control (ARC) for an Altitude Control of a Quadrotor Type UAV Carrying an Unknown Payloads 2 th International Conference on Control, Automation and Systems Oct. 26-29, 2 in KINTEX, Gyeonggi-do, Korea Adaptive Robust Control (ARC) for an Altitude Control of a Quadrotor Type UAV Carrying an Unknown

More information

. Frobenius-Perron Operator ACC Workshop on Uncertainty Analysis & Estimation. Raktim Bhattacharya

. Frobenius-Perron Operator ACC Workshop on Uncertainty Analysis & Estimation. Raktim Bhattacharya .. Frobenius-Perron Operator 2014 ACC Workshop on Uncertainty Analysis & Estimation Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. uq.tamu.edu

More information