Topic 9 Potential fields: Follow your potential

Size: px
Start display at page:

Download "Topic 9 Potential fields: Follow your potential"

Transcription

1 Topic 9 Potential fields: Follow your potential

2 Path Planning B: Goal Find intermediate poses forming a path to the goal ) How can we find such paths? 2) Define pose and controls? Path on a graph: vertices - robot poses A: Start edges - traversable connection between poses (note edges are directed)

3 Approaches to path planning Search (fixed graph) DFS, BFS, Dijkstra, A* Search (build graph): Probabilistic Road Maps Rapidly-exploring Random Trees Optimization (local search): Potential fields, gradient descent

4 Potential field volcanic on fire Energy potential converges at goal heating up How do we define this potential? colder a little warmer cold

5 Potential Energy Energy stored in a physical system For objects acting only w.r.t. gravity PE = mass*height*gravity

6 Convergent Potentials let s call these attractor landscapes Start Start Goal Goal basin of attraction

7 2D potential navigation z: height indicates potential at location x = Start x d = Goal basin of attraction x-y plane: robot position

8 Cone Attractor x d = Goal Attractor Start w: weight (x d -x): direction x d -x : distance u = w(x d -x)/ x d -x x = Start Goal top view side view

9 Cone Attractor x d = Goal Attractor x d -x Start w: weight (x d -x): direction x d -x : distance (x d -x) u = w(x d -x)/ x d -x x = Start Goal top view side view

10 Cone Attractor x d = Goal Attractor x d -x Start w: weight (x d -x): direction x d -x : distance (x d -x) unit vector (x d -x)/ x d -x u = w(x d -x)/ x d -x x = Start Goal top view side view

11 Cone Attractor x d = Goal Attractor x d -x Start w: weight (x d -x): direction x d -x : distance (x d -x) unit vector (x d -x)/ x d -x u = w(x d -x)/ x d -x w x = Start Goal top view side view

12 Bowl Attractor x d = Goal Start u = exp(- x d -x /w) (x d -x) Goal x = Start top view side view

13 exp(-d/w) exp(-d/0) exp(-d/w) : influence of potential exp(-d/) exp(-d/0.5) exp(-d/.0) d = distance exp(-d/2)

14 Multiple potentials Output of potential field is a vector potential 2 (x) potential (x) How to combine or select between multiple potentials?

15 Multiple potentials i potential i (x) Output of potential field is a vector potential 2 (x) potential (x) Combine multiple potentials through vector summation u = i potential i (x) or u = potential (x)+ potential (x)

16 describe performance for this case Goal Current

17 describe performance for this case Goal Obstacles Repellors Current

18 describe performance for this case how do we deal with repellors? Goal Obstacles Repellors Current

19 Cone Repellor potential problems Obstacle Repellor Goal reverse direction u = w(x-x d )/ x d -x x = Start Start top view side view

20 Bowl Repellor Obstacle Repellor Goal u = exp(- x-x d /w) (x d -x) Start x = Start top view side view

21 describe performance for this case Goal Current

22 describe performance for this case Goal Current

23 describe performance for this case Goal Current

24 matlab example /course/cs48/pub/pfield.m How to address local minima?

25 [Prin. of Robot Motion] Wavefront planning Combine search with potential field Start: mark with 0 0 Goal: mark with 2

26 [Prin. of Robot Motion] Wavefront planning Obstacles: mark with 0

27 [Prin. of Robot Motion] Wavefront planning 0 BFS away from goal, mark depth unless

28 [Prin. of Robot Motion] Wavefront planning 0

29 [Prin. of Robot Motion] Wavefront planning 0

30 [Prin. of Robot Motion] Wavefront planning 0

31 [Prin. of Robot Motion] Wavefront planning 0

32 [Prin. of Robot Motion] Wavefront planning

33 [Prin. of Robot Motion] Wavefront planning Once start reached, follow potential to goal

Algorithms for Sensor-Based Robotics: Potential Functions

Algorithms for Sensor-Based Robotics: Potential Functions Algorithms for Sensor-Based Robotics: Potential Functions Computer Science 336 http://www.cs.jhu.edu/~hager/teaching/cs336 Professor Hager http://www.cs.jhu.edu/~hager The Basic Idea A really simple idea:

More information

MEM380 Applied Autonomous Robots I Fall BUG Algorithms Potential Fields

MEM380 Applied Autonomous Robots I Fall BUG Algorithms Potential Fields MEM380 Applied Autonomous Robots I Fall BUG Algorithms Potential Fields What s Special About Bugs? Many planning algorithms assume global knowledge Bug algorithms assume only local knowledge of the environment

More information

Neural networks III: The delta learning rule with semilinear activation function

Neural networks III: The delta learning rule with semilinear activation function Neural networks III: The delta learning rule with semilinear activation function The standard delta rule essentially implements gradient descent in sum-squared error for linear activation functions. We

More information

Lecture 8: Kinematics: Path and Trajectory Planning

Lecture 8: Kinematics: Path and Trajectory Planning Lecture 8: Kinematics: Path and Trajectory Planning Concept of Configuration Space c Anton Shiriaev. 5EL158: Lecture 8 p. 1/20 Lecture 8: Kinematics: Path and Trajectory Planning Concept of Configuration

More information

Graph Search Howie Choset

Graph Search Howie Choset Graph Search Howie Choset 16-11 Outline Overview of Search Techniques A* Search Graphs Collection of Edges and Nodes (Vertices) A tree Grids Stacks and Queues Stack: First in, Last out (FILO) Queue: First

More information

A population of fish is modeled by the logistic equation modified to account for harvesting: 4

A population of fish is modeled by the logistic equation modified to account for harvesting: 4 Partial solution key A population of fish is modeled by the logistic equation modified to account for harvesting: dddd dddd =.pp pp aa or equivalently dddd dddd = 6 pp + pp aa. What are the equilibrium

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC Markov chains Let S = {1, 2,..., N} be a finite set consisting of N states. A Markov chain Y 0, Y 1, Y 2,... is a sequence of random variables, with Y t S for all points in time

More information

Programming Robots in ROS Slides adapted from CMU, Harvard and TU Stuttgart

Programming Robots in ROS Slides adapted from CMU, Harvard and TU Stuttgart Programming Robots in ROS Slides adapted from CMU, Harvard and TU Stuttgart Path Planning Problem Given an initial configuration q_start and a goal configuration q_goal,, we must generate the best continuous

More information

Analysis of the Lennard-Jones-38 stochastic network

Analysis of the Lennard-Jones-38 stochastic network Analysis of the Lennard-Jones-38 stochastic network Maria Cameron Joint work with E. Vanden-Eijnden Lennard-Jones clusters Pair potential: V(r) = 4e(r -12 - r -6 ) 1. Wales, D. J., Energy landscapes: calculating

More information

Introduction to Mobile Robotics Probabilistic Sensor Models

Introduction to Mobile Robotics Probabilistic Sensor Models Introduction to Mobile Robotics Probabilistic Sensor Models Wolfram Burgard 1 Sensors for Mobile Robots Contact sensors: Bumpers Proprioceptive sensors Accelerometers (spring-mounted masses) Gyroscopes

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

A. The Hopfield Network. III. Recurrent Neural Networks. Typical Artificial Neuron. Typical Artificial Neuron. Hopfield Network.

A. The Hopfield Network. III. Recurrent Neural Networks. Typical Artificial Neuron. Typical Artificial Neuron. Hopfield Network. III. Recurrent Neural Networks A. The Hopfield Network 2/9/15 1 2/9/15 2 Typical Artificial Neuron Typical Artificial Neuron connection weights linear combination activation function inputs output net

More information

Manipulators. Robotics. Outline. Non-holonomic robots. Sensors. Mobile Robots

Manipulators. Robotics. Outline. Non-holonomic robots. Sensors. Mobile Robots Manipulators P obotics Configuration of robot specified by 6 numbers 6 degrees of freedom (DOF) 6 is the minimum number required to position end-effector arbitrarily. For dynamical systems, add velocity

More information

The Big Picture. Discuss Examples of unpredictability. Odds, Stanisław Lem, The New Yorker (1974) Chaos, Scientific American (1986)

The Big Picture. Discuss Examples of unpredictability. Odds, Stanisław Lem, The New Yorker (1974) Chaos, Scientific American (1986) The Big Picture Discuss Examples of unpredictability Odds, Stanisław Lem, The New Yorker (1974) Chaos, Scientific American (1986) Lecture 2: Natural Computation & Self-Organization, Physics 256A (Winter

More information

Machine Learning. Lecture 04: Logistic and Softmax Regression. Nevin L. Zhang

Machine Learning. Lecture 04: Logistic and Softmax Regression. Nevin L. Zhang Machine Learning Lecture 04: Logistic and Softmax Regression Nevin L. Zhang lzhang@cse.ust.hk Department of Computer Science and Engineering The Hong Kong University of Science and Technology This set

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Gross Motion Planning

Gross Motion Planning Gross Motion Planning...given a moving object, A, initially in an unoccupied region of freespace, s, a set of stationary objects, B i, at known locations, and a legal goal position, g, find a sequence

More information

MAE 598: Multi-Robot Systems Fall 2016

MAE 598: Multi-Robot Systems Fall 2016 MAE 598: Multi-Robot Systems Fall 2016 Instructor: Spring Berman spring.berman@asu.edu Assistant Professor, Mechanical and Aerospace Engineering Autonomous Collective Systems Laboratory http://faculty.engineering.asu.edu/acs/

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Chapter 10 Associative Memory Networks We are in for a surprise though!

Chapter 10 Associative Memory Networks We are in for a surprise though! We are in for a surprise though! 11 If we return to our calculated W based on the stored ξ and use x = (-1,1,-1,-1,-1,1) T as the input then we get the output y = (-1,1,-1,-1,-1,1) T, i.e. the same output

More information

Fundamentals of Metaheuristics

Fundamentals of Metaheuristics Fundamentals of Metaheuristics Part I - Basic concepts and Single-State Methods A seminar for Neural Networks Simone Scardapane Academic year 2012-2013 ABOUT THIS SEMINAR The seminar is divided in three

More information

CIS 390 Fall 2016 Robotics: Planning and Perception Final Review Questions

CIS 390 Fall 2016 Robotics: Planning and Perception Final Review Questions CIS 390 Fall 2016 Robotics: Planning and Perception Final Review Questions December 14, 2016 Questions Throughout the following questions we will assume that x t is the state vector at time t, z t is the

More information

Neural Networks Learning the network: Backprop , Fall 2018 Lecture 4

Neural Networks Learning the network: Backprop , Fall 2018 Lecture 4 Neural Networks Learning the network: Backprop 11-785, Fall 2018 Lecture 4 1 Recap: The MLP can represent any function The MLP can be constructed to represent anything But how do we construct it? 2 Recap:

More information

A. The Hopfield Network. III. Recurrent Neural Networks. Typical Artificial Neuron. Typical Artificial Neuron. Hopfield Network.

A. The Hopfield Network. III. Recurrent Neural Networks. Typical Artificial Neuron. Typical Artificial Neuron. Hopfield Network. Part 3A: Hopfield Network III. Recurrent Neural Networks A. The Hopfield Network 1 2 Typical Artificial Neuron Typical Artificial Neuron connection weights linear combination activation function inputs

More information

EARTH S ENERGY SOURCES

EARTH S ENERGY SOURCES EARTH S ENERGY SOURCES The geological processes that shape the Earth s surface are powered by two major sources of energy; geothermal heat from the Earth s interior and external energy from the sun. The

More information

Derivative and Integral: Some Concepts for Geodesy

Derivative and Integral: Some Concepts for Geodesy Derivative and Integral: Some Concepts for Geodesy James R. Clynch, 2003 I. Rates of Change (Derivatives) and Integrals There are many places in physics where the rates of change occur. This is the derivative

More information

Behavioral Data Mining. Lecture 7 Linear and Logistic Regression

Behavioral Data Mining. Lecture 7 Linear and Logistic Regression Behavioral Data Mining Lecture 7 Linear and Logistic Regression Outline Linear Regression Regularization Logistic Regression Stochastic Gradient Fast Stochastic Methods Performance tips Linear Regression

More information

Ngày 20 tháng 7 năm Discrete Optimization Graphs

Ngày 20 tháng 7 năm Discrete Optimization Graphs Discrete Optimization Graphs Ngày 20 tháng 7 năm 2011 Lecture 6: Graphs In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations. Lecture 6: Graphs

More information

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan Linear Regression CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis Regularization

More information

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan Linear Regression CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis

More information

( ) T. Reading. Lecture 22. Definition of Covariance. Imprinting Multiple Patterns. Characteristics of Hopfield Memory

( ) T. Reading. Lecture 22. Definition of Covariance. Imprinting Multiple Patterns. Characteristics of Hopfield Memory Part 3: Autonomous Agents /8/07 Reading Lecture 22 Flake, ch. 20 ( Genetics and Evolution ) /8/07 /8/07 2 Imprinting Multiple Patterns Let x, x 2,, x p be patterns to be imprinted Define the sum-of-outer-products

More information

Guest Lecture: Steering in Games. the. gamedesigninitiative at cornell university

Guest Lecture: Steering in Games. the. gamedesigninitiative at cornell university Guest Lecture: Pathfinding You are given Starting location A Goal location B Want valid path A to B Avoid impassible terrain Eschew hidden knowledge Want natural path A to B Reasonably short path Avoid

More information

The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance. Samuel Prentice and Nicholas Roy Presentation by Elaine Short

The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance. Samuel Prentice and Nicholas Roy Presentation by Elaine Short The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance Samuel Prentice and Nicholas Roy Presentation by Elaine Short 1 Outline" Motivation Review of PRM and EKF Factoring the

More information

Mathematical optimization

Mathematical optimization Optimization Mathematical optimization Determine the best solutions to certain mathematically defined problems that are under constrained determine optimality criteria determine the convergence of the

More information

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals Graphs of Antiderivatives - Unit #0 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation.

More information

Gravitational potential. Is this the same as gravitational potential energy?

Gravitational potential. Is this the same as gravitational potential energy? Gravitational potential Is this the same as gravitational potential energy? F = g = F m g = (-) GM R 2 g x = 4 3 πgρx Review GMm R2 force b/w two point masses gravitational field strength on Earth gravitational

More information

Neural Networks. Bishop PRML Ch. 5. Alireza Ghane. Feed-forward Networks Network Training Error Backpropagation Applications

Neural Networks. Bishop PRML Ch. 5. Alireza Ghane. Feed-forward Networks Network Training Error Backpropagation Applications Neural Networks Bishop PRML Ch. 5 Alireza Ghane Neural Networks Alireza Ghane / Greg Mori 1 Neural Networks Neural networks arise from attempts to model human/animal brains Many models, many claims of

More information

Motion Planning in Partially Known Dynamic Environments

Motion Planning in Partially Known Dynamic Environments Motion Planning in Partially Known Dynamic Environments Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 Dr. Thierry Fraichard e-motion Team Inria Rhône-Alpes & Gravir-CNRS Laboratory Movie Workshop

More information

Robotics. Path Planning. Marc Toussaint U Stuttgart

Robotics. Path Planning. Marc Toussaint U Stuttgart Robotics Path Planning Path finding vs. trajectory optimization, local vs. global, Dijkstra, Probabilistic Roadmaps, Rapidly Exploring Random Trees, non-holonomic systems, car system equation, path-finding

More information

A Tutorial On Backward Propagation Through Time (BPTT) In The Gated Recurrent Unit (GRU) RNN

A Tutorial On Backward Propagation Through Time (BPTT) In The Gated Recurrent Unit (GRU) RNN A Tutorial On Backward Propagation Through Time (BPTT In The Gated Recurrent Unit (GRU RNN Minchen Li Department of Computer Science The University of British Columbia minchenl@cs.ubc.ca Abstract In this

More information

General Theoretical Concepts Related to Multibody Dynamics

General Theoretical Concepts Related to Multibody Dynamics General Theoretical Concepts Related to Multibody Dynamics Before Getting Started Material draws on two main sources Ed Haug s book, available online: http://sbel.wisc.edu/courses/me751/2010/bookhaugpointers.htm

More information

Graphs of Antiderivatives, Substitution Integrals

Graphs of Antiderivatives, Substitution Integrals Unit #10 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation. The substitution

More information

Kinetic Theory. 84 minutes. 62 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments:

Kinetic Theory. 84 minutes. 62 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments: Kinetic Theory Name: Class: Date: Time: 84 minutes Marks: 62 marks Comments: Page 1 of 19 1 Which one of the following is not an assumption about the properties of particles in the simple kinetic theory?

More information

A harmonic function on a domain Ω R n is a function which satisfies Laplace s equation:

A harmonic function on a domain Ω R n is a function which satisfies Laplace s equation: Resistors, Markov Chains & Dynamic Path Planning John S. Zelek School of Engineering, Univ. of Guelph Guelph, ON, NG W, Canada. e-mail: jzelek@uoguelph.ca Abstract Dynamic planning involves continuously

More information

13 : Variational Inference: Loopy Belief Propagation

13 : Variational Inference: Loopy Belief Propagation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 13 : Variational Inference: Loopy Belief Propagation Lecturer: Eric P. Xing Scribes: Rajarshi Das, Zhengzhong Liu, Dishan Gupta 1 Introduction

More information

Capacity Estimation. Based on Joe Mitchell s slides

Capacity Estimation. Based on Joe Mitchell s slides Capacity Estimation Based on Joe Mitchell s slides Output: Capacity What is capacity? Estimate of number of aircraft that can be safely routed within a constrained airspace. Demand-driven capacity Sector-induced

More information

Unit #10 : Graphs of Antiderivatives, Substitution Integrals

Unit #10 : Graphs of Antiderivatives, Substitution Integrals Unit #10 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F(x) The guess-and-check method for anti-differentiation. The substitution

More information

Robot Mapping. Least Squares. Cyrill Stachniss

Robot Mapping. Least Squares. Cyrill Stachniss Robot Mapping Least Squares Cyrill Stachniss 1 Three Main SLAM Paradigms Kalman filter Particle filter Graphbased least squares approach to SLAM 2 Least Squares in General Approach for computing a solution

More information

AQA Physics Checklist

AQA Physics Checklist Topic 1. Energy Video: Energy changes in a system To understand the ways in which energy can be stored in a system and can be transferred from one energy store to another within a system To understand

More information

Logistic Regression. Stochastic Gradient Descent

Logistic Regression. Stochastic Gradient Descent Tutorial 8 CPSC 340 Logistic Regression Stochastic Gradient Descent Logistic Regression Model A discriminative probabilistic model for classification e.g. spam filtering Let x R d be input and y { 1, 1}

More information

Variational Bayesian Logistic Regression

Variational Bayesian Logistic Regression Variational Bayesian Logistic Regression Sargur N. University at Buffalo, State University of New York USA Topics in Linear Models for Classification Overview 1. Discriminant Functions 2. Probabilistic

More information

Robotics. Path Planning. University of Stuttgart Winter 2018/19

Robotics. Path Planning. University of Stuttgart Winter 2018/19 Robotics Path Planning Path finding vs. trajectory optimization, local vs. global, Dijkstra, Probabilistic Roadmaps, Rapidly Exploring Random Trees, non-holonomic systems, car system equation, path-finding

More information

Multidisciplinary System Design Optimization (MSDO)

Multidisciplinary System Design Optimization (MSDO) Multidisciplinary System Design Optimization (MSDO) Numerical Optimization II Lecture 8 Karen Willcox 1 Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Today s Topics Sequential

More information

The Whys of Weather Rain

The Whys of Weather Rain Non-fiction: The Whys of Weather - Rain The Whys of Weather Rain Why does it rain? The sky gets cloudy. Clouds get darker and darker. The sun disappears, and soon drops start falling from the sky. But

More information

Fire and Ice. The Fate of the Universe. Jon Thaler

Fire and Ice. The Fate of the Universe. Jon Thaler Fire and Ice The Fate of the Universe Jon Thaler Saturday Physics Honors Program Oct. 13, 2007 Some say the world will end in fire, Some say in ice. From what I've tasted of desire I hold with those who

More information

CSC321 Lecture 7: Optimization

CSC321 Lecture 7: Optimization CSC321 Lecture 7: Optimization Roger Grosse Roger Grosse CSC321 Lecture 7: Optimization 1 / 25 Overview We ve talked a lot about how to compute gradients. What do we actually do with them? Today s lecture:

More information

Linear Regression 1 / 25. Karl Stratos. June 18, 2018

Linear Regression 1 / 25. Karl Stratos. June 18, 2018 Linear Regression Karl Stratos June 18, 2018 1 / 25 The Regression Problem Problem. Find a desired input-output mapping f : X R where the output is a real value. x = = y = 0.1 How much should I turn my

More information

Clustering non-stationary data streams and its applications

Clustering non-stationary data streams and its applications Clustering non-stationary data streams and its applications Amr Abdullatif DIBRIS, University of Genoa, Italy amr.abdullatif@unige.it June 22th, 2016 Outline Introduction 1 Introduction 2 3 4 INTRODUCTION

More information

1 Introduction to Governing Equations 2 1a Methodology... 2

1 Introduction to Governing Equations 2 1a Methodology... 2 Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................

More information

Discrete Wiskunde II. Lecture 5: Shortest Paths & Spanning Trees

Discrete Wiskunde II. Lecture 5: Shortest Paths & Spanning Trees , 2009 Lecture 5: Shortest Paths & Spanning Trees University of Twente m.uetz@utwente.nl wwwhome.math.utwente.nl/~uetzm/dw/ Shortest Path Problem "#$%&'%()*%"()$#+,&- Given directed "#$%&'()*+,%+('-*.#/'01234564'.*,'7+"-%/8',&'5"4'84%#3

More information

CHAPTER 18 ELECTRIC POTENTIAL

CHAPTER 18 ELECTRIC POTENTIAL CHAPTER 18 ELECTRIC POTENTIAL BASIC CONCEPTS: ELECTRIC POTENTIAL ENERGY ELECTRIC POTENTIAL ELECTRIC POTENTIAL GRADIENT POTENTIAL DIFFERENCE POTENTIAL ENERGY 1 h PE = U = mgh Or PE U KE K And U + K = total

More information

v n+1 = v T + (v 0 - v T )exp(-[n +1]/ N )

v n+1 = v T + (v 0 - v T )exp(-[n +1]/ N ) Notes on Dynamical Systems (continued) 2. Maps The surprisingly complicated behavior of the physical pendulum, and many other physical systems as well, can be more readily understood by examining their

More information

ESS15 Lecture 10. Winds and weather The Coriolis force Global circulations of atmosphere & ocean Weather vs. Climate

ESS15 Lecture 10. Winds and weather The Coriolis force Global circulations of atmosphere & ocean Weather vs. Climate ESS15 Lecture 10 Winds and weather The Coriolis force Global circulations of atmosphere & ocean Weather vs. Climate Earth s energy imbalances, winds, and the global circulation of the atmopshere. Please

More information

Multi-robot Coverage and Exploration on Riemannian Manifolds with Boundary

Multi-robot Coverage and Exploration on Riemannian Manifolds with Boundary Multi-robot Coverage and Exploration on Riemannian Manifolds with Boundary Subhrajit Bhattacharya Robert Ghrist Vijay Kumar Abstract Multi-robot coverage and exploration are fundamental problems in robotics.

More information

Multiclass Logistic Regression

Multiclass Logistic Regression Multiclass Logistic Regression Sargur. Srihari University at Buffalo, State University of ew York USA Machine Learning Srihari Topics in Linear Classification using Probabilistic Discriminative Models

More information

CSC321 Lecture 8: Optimization

CSC321 Lecture 8: Optimization CSC321 Lecture 8: Optimization Roger Grosse Roger Grosse CSC321 Lecture 8: Optimization 1 / 26 Overview We ve talked a lot about how to compute gradients. What do we actually do with them? Today s lecture:

More information

Exploring the energy landscape

Exploring the energy landscape Exploring the energy landscape ChE210D Today's lecture: what are general features of the potential energy surface and how can we locate and characterize minima on it Derivatives of the potential energy

More information

IYGB Mathematical Methods 1

IYGB Mathematical Methods 1 IYGB Mathematical Methods Practice Paper A Time: 3 hours Candidates may use any non programmable, non graphical calculator which does not have the capability of storing data or manipulating algebraic expressions

More information

5 th Grade Force and Motion Study Guide

5 th Grade Force and Motion Study Guide Name: Date of Test: Vocabulary 5 th Grade Force and Motion Study Guide Motion- a change in position relative to a point of reference, a change in speed, or a change in distance. Point of Reference (Reference

More information

Searching in non-deterministic, partially observable and unknown environments

Searching in non-deterministic, partially observable and unknown environments Searching in non-deterministic, partially observable and unknown environments CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2017 Soleymani Artificial Intelligence:

More information

STUDY GUIDE - 6TH GRADE WEEK 12 CCA

STUDY GUIDE - 6TH GRADE WEEK 12 CCA 1. Which of the following statements about energy is true? STUDY GUIDE - 6TH GRADE WEEK 12 CCA A. Potential energy and kinetic energy are different names for the same kind of energy. B. Gravity has nothing

More information

Query Processing in Spatial Network Databases

Query Processing in Spatial Network Databases Temporal and Spatial Data Management Fall 0 Query Processing in Spatial Network Databases SL06 Spatial network databases Shortest Path Incremental Euclidean Restriction Incremental Network Expansion Spatial

More information

g(2, 1) = cos(2π) + 1 = = 9

g(2, 1) = cos(2π) + 1 = = 9 1. Let gx, y 2x 2 cos2πy 2 + y 2. You can use the fact that Dg2, 1 [8 2]. a Find an equation for the tangent plane to the graph z gx, y at the point 2, 1. There are two key parts to this problem. The first,

More information

Learning in State-Space Reinforcement Learning CIS 32

Learning in State-Space Reinforcement Learning CIS 32 Learning in State-Space Reinforcement Learning CIS 32 Functionalia Syllabus Updated: MIDTERM and REVIEW moved up one day. MIDTERM: Everything through Evolutionary Agents. HW 2 Out - DUE Sunday before the

More information

Sensors Fusion for Mobile Robotics localization. M. De Cecco - Robotics Perception and Action

Sensors Fusion for Mobile Robotics localization. M. De Cecco - Robotics Perception and Action Sensors Fusion for Mobile Robotics localization 1 Until now we ve presented the main principles and features of incremental and absolute (environment referred localization systems) could you summarize

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ and Center for Automated Learning and

More information

Period Three, Chaos and Fractals

Period Three, Chaos and Fractals Imperial, May 2012 The Sarkovskii Theorem Let us motivate the so-called Sarkovskii ordering on N 3 5 7 9 2 3 2 5 8 4 2 1. Let f : [0, 1] [0, 1] be continuous and consider successive iterates x n+1 = f

More information

Unit #10 : Graphs of Antiderivatives; Substitution Integrals

Unit #10 : Graphs of Antiderivatives; Substitution Integrals Unit #10 : Graphs of Antiderivatives; Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F(x) The guess-and-check method for anti-differentiation. The substitution

More information

Curriculum Area: Mathematics A Level - 2 year course (AQA) Year: 12. Aspire Learn Achieve

Curriculum Area: Mathematics A Level - 2 year course (AQA) Year: 12. Aspire Learn Achieve Topics Core 1 - Algebra Core 1 - Coordinate Geometry Core 1 - Differentiation Core 1 - Integration Year Curriculum - Use and manipulate surds - Quadratic functions and their graphs - The discriminant of

More information

Lecture 22: Graph-SLAM (2)

Lecture 22: Graph-SLAM (2) Lecture 22: Graph-SLAM (2) Dr. J.B. Hayet CENTRO DE INVESTIGACIÓN EN MATEMÁTICAS Abril 2014 J.B. Hayet Probabilistic robotics Abril 2014 1 / 35 Outline 1 Data association in Graph-SLAM 2 Improvements and

More information

Toward Online Probabilistic Path Replanning

Toward Online Probabilistic Path Replanning Toward Online Probabilistic Path Replanning R. Philippsen 1 B. Jensen 2 R. Siegwart 3 1 LAAS-CNRS, France 2 Singleton Technology, Switzerland 3 ASL-EPFL, Switzerland Workshop on Autonomous Robot Motion,

More information

Mock Exam Künstliche Intelligenz-1. Different problems test different skills and knowledge, so do not get stuck on one problem.

Mock Exam Künstliche Intelligenz-1. Different problems test different skills and knowledge, so do not get stuck on one problem. Name: Matriculation Number: Mock Exam Künstliche Intelligenz-1 January 9., 2017 You have one hour(sharp) for the test; Write the solutions to the sheet. The estimated time for solving this exam is 53 minutes,

More information

Activation Energy. Notes #22

Activation Energy. Notes #22 Activation Energy Notes #22 Energy (notes) All molecules store chemical-potential energy in the bonds between atoms Some molecules store more chemical energy than others Propane (the gas used in outdoor

More information

Falling Objects and Projectile Motion

Falling Objects and Projectile Motion Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave? accelerate, or speed constant? What if they have: different masses? different shapes?

More information

Hopfield Networks and Boltzmann Machines. Christian Borgelt Artificial Neural Networks and Deep Learning 296

Hopfield Networks and Boltzmann Machines. Christian Borgelt Artificial Neural Networks and Deep Learning 296 Hopfield Networks and Boltzmann Machines Christian Borgelt Artificial Neural Networks and Deep Learning 296 Hopfield Networks A Hopfield network is a neural network with a graph G = (U,C) that satisfies

More information

Protein Folding by Robotics

Protein Folding by Robotics Protein Folding by Robotics 1 TBI Winterseminar 2006 February 21, 2006 Protein Folding by Robotics 1 TBI Winterseminar 2006 February 21, 2006 Protein Folding by Robotics Probabilistic Roadmap Planning

More information

Machine Learning Basics III

Machine Learning Basics III Machine Learning Basics III Benjamin Roth CIS LMU München Benjamin Roth (CIS LMU München) Machine Learning Basics III 1 / 62 Outline 1 Classification Logistic Regression 2 Gradient Based Optimization Gradient

More information

Inference as Optimization

Inference as Optimization Inference as Optimization Sargur Srihari srihari@cedar.buffalo.edu 1 Topics in Inference as Optimization Overview Exact Inference revisited The Energy Functional Optimizing the Energy Functional 2 Exact

More information

BACKPROPAGATION. Neural network training optimization problem. Deriving backpropagation

BACKPROPAGATION. Neural network training optimization problem. Deriving backpropagation BACKPROPAGATION Neural network training optimization problem min J(w) w The application of gradient descent to this problem is called backpropagation. Backpropagation is gradient descent applied to J(w)

More information

Maximum Flow. Jie Wang. University of Massachusetts Lowell Department of Computer Science. J. Wang (UMass Lowell) Maximum Flow 1 / 27

Maximum Flow. Jie Wang. University of Massachusetts Lowell Department of Computer Science. J. Wang (UMass Lowell) Maximum Flow 1 / 27 Maximum Flow Jie Wang University of Massachusetts Lowell Department of Computer Science J. Wang (UMass Lowell) Maximum Flow 1 / 27 Flow Networks A flow network is a weighted digraph G = (V, E), where the

More information

Ocean Township High School Mathematics Department

Ocean Township High School Mathematics Department Algebra Summer Assignment Name Period Date Ocean Township High School Mathematics Department These are important topics from Algebra 1 that you must be comfortable doing before you can be successful in

More information

Neural Nets and Symbolic Reasoning Hopfield Networks

Neural Nets and Symbolic Reasoning Hopfield Networks Neural Nets and Symbolic Reasoning Hopfield Networks Outline The idea of pattern completion The fast dynamics of Hopfield networks Learning with Hopfield networks Emerging properties of Hopfield networks

More information

ACTIVITY 3 Introducing Energy Diagrams for Atoms

ACTIVITY 3 Introducing Energy Diagrams for Atoms Name: Class: SOLIDS & Visual Quantum Mechanics LIGHT ACTIVITY 3 Introducing Energy Diagrams for Atoms Goal Now that we have explored spectral properties of LEDs, incandescent lamps, and gas lamps, we will

More information

Chapter 4. The Laws of Motion

Chapter 4. The Laws of Motion Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not

More information

A* Search. 1 Dijkstra Shortest Path

A* Search. 1 Dijkstra Shortest Path A* Search Consider the eight puzzle. There are eight tiles numbered 1 through 8 on a 3 by three grid with nine locations so that one location is left empty. We can move by sliding a tile adjacent to the

More information

Translational Mechanical Systems

Translational Mechanical Systems Translational Mechanical Systems Basic (Idealized) Modeling Elements Interconnection Relationships -Physical Laws Derive Equation of Motion (EOM) - SDOF Energy Transfer Series and Parallel Connections

More information

Analysis of Algorithms. Outline. Single Source Shortest Path. Andres Mendez-Vazquez. November 9, Notes. Notes

Analysis of Algorithms. Outline. Single Source Shortest Path. Andres Mendez-Vazquez. November 9, Notes. Notes Analysis of Algorithms Single Source Shortest Path Andres Mendez-Vazquez November 9, 01 1 / 108 Outline 1 Introduction Introduction and Similar Problems General Results Optimal Substructure Properties

More information

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial =

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial = Practice Template K.E. = 1 2 mv2 P.E. height = mgh P.E. spring = 1 2 kx2 dw =! F! d! r = Fdr cosθ Energy Conservation T.E. initial = T.E. Final (1) Isolated system P.E. initial (2) Energy added E added

More information

ENERGY IN CHEMISTRY. R. Ashby Duplication by permission only.

ENERGY IN CHEMISTRY. R. Ashby Duplication by permission only. CH 11 TOPIC 28 CHANGING STATES OF MATTER 1 You have mastered this topic when you can: 1) define or describe: ENERGY, POTENTIAL ENERGY, KINETIC ENERGY & KINETIC MOLECULAR THEORY 2) define or describe HEAT

More information

Name: Unit 4 Benchmark Review

Name: Unit 4 Benchmark Review Name: Unit 4 Benchmark Review 1. During science class, Sophie measures the temperature of water every minute as it is heating. After a few minutes, the temperature is 82 C. How far below the boiling point

More information