Autonomous navigation of unicycle robots using MPC

Size: px
Start display at page:

Download "Autonomous navigation of unicycle robots using MPC"

Transcription

1 Autonomous navigation of unicycle robots using MPC M. Farina Dipartimento di Elettronica e Informazione Politecnico di Milano 7 June 26

2 Outline Model and feedback linearization Goals and constraints Some experimental results Marcello Farina MPC control of unicycle robots 2

3 Outline Model and feedback linearization Goals and constraints Some experimental results Marcello Farina MPC control of unicycle robots 3

4 Model and feedback linearization y U θ v x U = v cos θ ቐy U = v sin θ θ = ω Our first goal is to find a way to linearize the system s dynamics or, in a way, to force the system to behave as a linear system. x U We resort to feedback linearization. Two different approaches can be taken. Marcello Farina MPC control of unicycle robots 4

5 Model and feedback linearization first approach x U = v cos θ y U = v sin θ θ = ω v = a x U = v x y U = v y v x = cos θv v sin θ θ = cos θa v sin θ ω v y = sin θv + v cos θ θ = sin θa + v cos θ ω We define x U = v x y U = v y v x = a x v y = a y Inputs of the linearized model a x = cos θa v sin θ ω a y = sin θa + v cos θ ω a cos θ = ω sin θ = v cos θ v sin θ and the model becomes v sin θ v cos θ v sin θ a x cos θ a y a x a y Real inputs of the unicycle Marcello Farina MPC control of unicycle robots 5

6 Model and feedback linearization first approach a x a y v v cos θ sin θ v sin θ cos θ a x a y a ω x U = v cos θ y U = v sin θ θ = ω v = a x U y U θ, v a x a y x U = v x y U = v y v x = a x v y = a y x U y U Marcello Farina MPC control of unicycle robots 6

7 Model and feedback linearization first approach Feedback-linearized model: x U = v x y U = v y v x = a x v y = a y Discrete time feedback-linearized model (sampling time τ) x U (k + ) τ x U (k) τ 2 /2 v x (k + ) = v x (k) y U (k + ) τ + τ a x (k) y U (k) τ 2 /2 a y (k) v y (k + ) v y (k) τ Output: position x t + = Ax t + Bu(t) x U (k) y U (k) = Marcello Farina MPC control of unicycle robots 7 x U (k) v x (k) y U (k) v y (k) = Cx(k)

8 Model and feedback linearization second approach y U ε θ v P x U = v cos θ ቐy U = v sin θ θ = ω x P = x U + ε cos θ y P = y U + ε sin θ x U x P = x U ε sin θ θ = v cos θ ωε sin θ y P = y U + ε cos θ θ = v sin θ + ωε cos θ Marcello Farina MPC control of unicycle robots 8

9 Model and feedback linearization second approach ቊ x P = v cos θ ωε sin θ y P = v sin θ + ωε cos θ We define v x = v cos θ ωε sin θ v y = v sin θ + ωε cos θ and the model becomes x P = v y y P = v y Inputs of the linearized model v ω = ε cos θ = sin θ ε cos θ sin θ ε sin θ ε cos θ ε sin θ v x cos θ v y v x v y Real inputs of the unicycle Marcello Farina MPC control of unicycle robots 9

10 Model and feedback linearization second approach v x v y ε ε cos θ sin θ ε sin θ cos θ v x v y v ω x U = v cos θ ቐy U = v sin θ θ = ω x P y P θ a x a y x P = v y y P = v y x U y U Marcello Farina MPC control of unicycle robots

11 Model and feedback linearization second approach Feedback-linearized model: ቊ x P = v x y P = v y Discrete time feedback-linearized model (sampling time τ) x U (k + ) y U (k + ) = x U (k) y U (k) + τ τ v x (k) v y (k) x t + = Ax t + Bu(t) Output: position (i.e., the whole state) y(k) = x U (k) y U (k) = Cx(k) Marcello Farina MPC control of unicycle robots

12 Outline Model and feedback linearization Goals and constraints Some experimental results Marcello Farina MPC control of unicycle robots 2

13 Goals and constraints With any feedback linearization approach we obtain the linear model x k + = Ax k + Bu(k) y k = Cx k position We aim to solve the simplest problem, i.e., the parking problem Starting point Goal Marcello Farina MPC control of unicycle robots 3

14 Goals and constraints To fulfill this, we must include, in the MPC problem, the following ingredients: Constraints: Collision avoidance constraints with respect to external walls Fixed obstacle avoidance constraints If more vehicles are included, inter-robot collision avoidance constraints Constraints for fulfilling operational limitations (e.g., maximum speed, etc) Cost function: For approaching the goal position To prevent deadlock solutions with fixed obstacles Proper terminal cost function and terminal constraints for guaranteeing recursive feasibility. Marcello Farina MPC control of unicycle robots 4

15 Collision avoidance constraints with respect to external walls Goal If the red area is polytopic and convex, we can write the corresponding constraint as follows: A area y(k) b area A area Cx(k) b area Marcello Farina MPC control of unicycle robots 5

16 Collision avoidance constraints with respect to (fixed) obstacles Goal The problem is that, to avoid obstacles of this type, the «free area» is not convex, and so we cannot express the problem using constraints of the type: A coll avoidance y(k) b coll avoidance Marcello Farina MPC control of unicycle robots 6

17 Collision avoidance constraints with respect to (fixed) obstacles Steps:. Assume that it is possible to circumscribe each obstacle with a polytope with L sides (better if L is large). The interior of the obstacle can be represented as A obst y b obst L inequalities, all satisfied 2. Note that a collision-free point is such that at least one of the above L inequalities is violated, i.e., at least one of the elements of the vector ρ = A obst y b obst is positive Marcello Farina MPC control of unicycle robots 7

18 Collision avoidance constraints with respect to (fixed) obstacles Example The interior of the square is y characterized by L=4 inequalities (intersection of half planes) - x x x x - y y y Pick an external point, e.g., ( x, ҧ തy)=(.5,2). Which inequalities are violated? The vector ρ = xҧ തy = has two positive entries. This is the «most violated». Marcello Farina MPC control of unicycle robots 8

19 Collision avoidance constraints with respect to (fixed) obstacles 3. In the MPC context, we can take advantage of the fact that, at time t, the optimal collision-free trajectory computed at the previous time instant t- is available, i.e., u t t, u t t,, u(t + N 2 t ) x t t,, x(t + N t ) y t t,, y(t + N t ) Feasible inputs States Positions y t t y t + N t Since the trajectory is collision-free, for all k=t,,t+n-, at least one entry of the vector ρ k t = A obst y(k t ) b obst is positive. We select the corresponding constraint to be enforced (at time t) on y(k). Marcello Farina MPC control of unicycle robots 9

20 Collision avoidance constraints with respect to (fixed) obstacles y k t This convex set defines the constraint for y(k) in the optimization problem solved at time t. Formally: We compute, for all k=t,,t+n- the vector ρ k t = A obst y(k t ) b obst We select iҧ such that the entry ρ iҧ k t ρ i k t, i=,,l. We impose only the constraint A obst, iҧ y(k) b obst, iҧ Marcello Farina MPC control of unicycle robots 2

21 Collision avoidance constraints with respect to (fixed) obstacles goal agent obstacle Marcello Farina MPC control of unicycle robots 2

22 Inter-robot collision avoidance constraints If two vehicles are present, we aim to generate collision-free trajectories. We exploit communication! Each agent is regarded, by the other agent, as a moving obstacle. The «most violated» constraint is selected (similarly to the previous case) based on the collision-free trajectory predicted at the previous optimization step. Each agent is allowed to move towards the constraint half the distance, to avoid collision. Marcello Farina MPC control of unicycle robots 22

23 Operational limitations Consider, for example, the feedback-linearized model obtained with the first approach, i.e., x U (k + ) v x (k + ) y U (k + ) v y (k + ) = τ τ x U (k) v x (k) y U (k) v y (k) + τ 2 /2 τ τ 2 /2 τ a x (k) a y (k) Velocities (in x and y directions) are states Accelerations (in x and y directions) are inputs Constraints on these variables may be used to enforce constraints on the longitudinal speed v. Constraints on these variables may be used to enforce constraints on the longitudinal acceleration a. Marcello Farina MPC control of unicycle robots 23

24 Operational limitations We want to enforce: v M v v M This can be done, for example, by imposing: v y θ v v x v M 2 v x(k) v M 2 v M 2 v y(k) v M 2 x(k) v M 2 Marcello Farina MPC control of unicycle robots 24

25 Operational limitations We want to enforce: a M a a M This can be done, for example, by imposing: a y θ a a x a M 2 a x(k) a M 2 a M 2 a y(k) a M 2 u(k) a M 2 Marcello Farina MPC control of unicycle robots 25

26 Cost function for approaching the goal position The goal position is തy G. The naive approach consists in minimizing, at time t, the following cost function: J = t+n k=t y k തy 2 G Q + u(k) 2 2 R + x t + N xҧ G P where xҧ G = തy G,x തy G,y (we aim to rest at the goal) Marcello Farina MPC control of unicycle robots 26

27 Cost function for approaching the goal position However, assume that, in N steps not all the trajectory to the goal can be covered Point that can be reached in N steps In such case is more reasonable to define temporary goals Marcello Farina MPC control of unicycle robots 27

28 Cost function for approaching the goal position An alternative approach, indeed, consists in the tracking one: t+n J= k=t y k y G (t) Q 2 + u(k) R 2 + x t + N x G (t) P 2 + γ y G t തy G 2 temporary goal (for the whole trajectory), additional degree of freedom Other approaches can be taken depending also on the specific problem at hand (parking, trajectory tracking, etc.) Marcello Farina MPC control of unicycle robots 28

29 Cost function to prevent deadlock solutions with fixed obstacles So far collision avoidance is enforced just by using hard constraints.? Deadlock situations may occurr! Without additional terms, the cost function pushes the robot towards the bottleneck An additional «force» is necessary to circumnavigate the obstacle Temporary goals can be set using the theory of vortex fields Marcello Farina MPC control of unicycle robots 29

30 Cost function to prevent deadlock solutions with fixed obstacles Two words on vortex fields If obstacles «generate» repulsive fields local minima (i.e., bottlenecks) may occur Instead, if repulsive forces are «rotated», i.e., they are directed in tangent direction with respect to the obstacle, circumnavigation is guaranteed. A fictitious goal x VF (t) is generated in the direction of the vector field and an additive term x k x VF (t) 2 appears in the stage cost Marcello Farina MPC control of unicycle robots 3

31 Terminal constraints Assume again that, in N steps, not all the trajectory to the goal can be covered Terminal point Recursive fesibility can be compromized if this point is not in a «safe region» Marcello Farina MPC control of unicycle robots 3

32 Terminal constraints In regulation problems, the «safe region» is a region is characterized by the fact that, by using the auxiliary control law, we go towards the goal without colliding with obstacles or other vehicles and without violating the operational constraints That s not possible in this case! Marcello Farina MPC control of unicycle robots 32

33 Terminal constraints To guarantee theoretical properties we may rely on the «tracking» approach, with terminal point. Basically, we require that, after N steps, we may be able to stop at the intermediate goal, defined as the further degree of freedom for our MPC optimization problem. This is cast as the linear equality terminal constraint: x t + N = x G (t) Marcello Farina MPC control of unicycle robots 33

34 Goals and constraints - summary Ingredients: Constraints: Collision avoidance constraints with respect to external walls Fixed obstacle avoidance constraints If more vehicles are included, inter-robot collision avoidance constraints Constraints for fulfilling operational limitations (e.g., maximum speed, etc) Cost function: For approaching the goal position To prevent deadlock solutions with fixed obstacles Proper terminal cost function and terminal constraints for guaranteeing recursive feasibility. Linear inequality (time invariant) constraint Linear inequality (time-varying) constraint Linear inequality (time-varying) constraint Linear inequality (time invariant) constraint Quadratic cost function Quadratic additive terms Linear equality constraint Marcello Farina MPC control of unicycle robots 34

35 Outline Model and feedback linearization Goals and constraints Some experimental results Marcello Farina MPC control of unicycle robots 35

36 Some experimental results Marcello Farina MPC control of unicycle robots 36

37 Some experimental results Marcello Farina MPC control of unicycle robots 37

38 Some experimental results Marcello Farina MPC control of unicycle robots 38

Decentralized and distributed control

Decentralized and distributed control Decentralized and distributed control Centralized control for constrained discrete-time systems M. Farina 1 G. Ferrari Trecate 2 1 Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB) Politecnico

More information

Decentralized and distributed control

Decentralized and distributed control Decentralized and distributed control Constrained distributed control for discrete-time systems M. Farina 1 G. Ferrari Trecate 2 1 Dipartimento di Elettronica e Informazione (DEI) Politecnico di Milano,

More information

Control of Mobile Robots

Control of Mobile Robots Control of Mobile Robots Regulation and trajectory tracking Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Organization and

More information

Giulio Betti, Marcello Farina and Riccardo Scattolini

Giulio Betti, Marcello Farina and Riccardo Scattolini 1 Dipartimento di Elettronica e Informazione, Politecnico di Milano Rapporto Tecnico 2012.29 An MPC algorithm for offset-free tracking of constant reference signals Giulio Betti, Marcello Farina and Riccardo

More information

EE C128 / ME C134 Feedback Control Systems

EE C128 / ME C134 Feedback Control Systems EE C128 / ME C134 Feedback Control Systems Lecture Additional Material Introduction to Model Predictive Control Maximilian Balandat Department of Electrical Engineering & Computer Science University of

More information

Cooperative Motion Control of Multiple Autonomous Marine

Cooperative Motion Control of Multiple Autonomous Marine Cooperative Motion Control of Multiple Autonomous Marine Collision Avoidance in Dynamic Environments EECI Graduate School on Control Supélec, Feb. 21-25, 2011 Outline Motivation/Objectives Cooperative

More information

Scenario Optimization for Robust Design

Scenario Optimization for Robust Design Scenario Optimization for Robust Design foundations and recent developments Giuseppe Carlo Calafiore Dipartimento di Elettronica e Telecomunicazioni Politecnico di Torino ITALY Learning for Control Workshop

More information

MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem

MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem Pulemotov, September 12, 2012 Unit Outline Goal 1: Outline linear

More information

Continuous Curvature Path Generation Based on Bézier Curves for Autonomous Vehicles

Continuous Curvature Path Generation Based on Bézier Curves for Autonomous Vehicles Continuous Curvature Path Generation Based on Bézier Curves for Autonomous Vehicles Ji-wung Choi, Renwick E. Curry, Gabriel Hugh Elkaim Abstract In this paper we present two path planning algorithms based

More information

TRAJECTORY PLANNING FOR AUTOMATED YIELDING MANEUVERS

TRAJECTORY PLANNING FOR AUTOMATED YIELDING MANEUVERS TRAJECTORY PLANNING FOR AUTOMATED YIELDING MANEUVERS, Mattias Brännström, Erik Coelingh, and Jonas Fredriksson Funded by: FFI strategic vehicle research and innovation ITRL conference Why automated maneuvers?

More information

Distributed Receding Horizon Control of Cost Coupled Systems

Distributed Receding Horizon Control of Cost Coupled Systems Distributed Receding Horizon Control of Cost Coupled Systems William B. Dunbar Abstract This paper considers the problem of distributed control of dynamically decoupled systems that are subject to decoupled

More information

Penalty and Barrier Methods General classical constrained minimization problem minimize f(x) subject to g(x) 0 h(x) =0 Penalty methods are motivated by the desire to use unconstrained optimization techniques

More information

Smooth Path Generation Based on Bézier Curves for Autonomous Vehicles

Smooth Path Generation Based on Bézier Curves for Autonomous Vehicles Smooth Path Generation Based on Bézier Curves for Autonomous Vehicles Ji-wung Choi, Renwick E. Curry, Gabriel Hugh Elkaim Abstract In this paper we present two path planning algorithms based on Bézier

More information

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES Danlei Chu Tongwen Chen Horacio J Marquez Department of Electrical and Computer Engineering University of Alberta Edmonton

More information

Methods and applications of distributed and decentralized Model Predictive Control

Methods and applications of distributed and decentralized Model Predictive Control thesis_main 2014/1/26 15:56 page 1 #1 Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Doctoral Programme in Information Technology Methods and applications of distributed

More information

Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis

Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis Eduardo N. Gonçalves, Reinaldo M. Palhares, and Ricardo H. C. Takahashi Abstract This paper presents an algorithm for

More information

ESC794: Special Topics: Model Predictive Control

ESC794: Special Topics: Model Predictive Control ESC794: Special Topics: Model Predictive Control Nonlinear MPC Analysis : Part 1 Reference: Nonlinear Model Predictive Control (Ch.3), Grüne and Pannek Hanz Richter, Professor Mechanical Engineering Department

More information

arxiv: v1 [cs.sy] 20 Dec 2017

arxiv: v1 [cs.sy] 20 Dec 2017 Adaptive model predictive control for constrained, linear time varying systems M Tanaskovic, L Fagiano, and V Gligorovski arxiv:171207548v1 [cssy] 20 Dec 2017 1 Introduction This manuscript contains technical

More information

EXPERIMENTAL ANALYSIS OF COLLECTIVE CIRCULAR MOTION FOR MULTI-VEHICLE SYSTEMS. N. Ceccarelli, M. Di Marco, A. Garulli, A.

EXPERIMENTAL ANALYSIS OF COLLECTIVE CIRCULAR MOTION FOR MULTI-VEHICLE SYSTEMS. N. Ceccarelli, M. Di Marco, A. Garulli, A. EXPERIMENTAL ANALYSIS OF COLLECTIVE CIRCULAR MOTION FOR MULTI-VEHICLE SYSTEMS N. Ceccarelli, M. Di Marco, A. Garulli, A. Giannitrapani DII - Dipartimento di Ingegneria dell Informazione Università di Siena

More information

Distributed and Real-time Predictive Control

Distributed and Real-time Predictive Control Distributed and Real-time Predictive Control Melanie Zeilinger Christian Conte (ETH) Alexander Domahidi (ETH) Ye Pu (EPFL) Colin Jones (EPFL) Challenges in modern control systems Power system: - Frequency

More information

4F3 - Predictive Control

4F3 - Predictive Control 4F3 Predictive Control - Lecture 3 p 1/21 4F3 - Predictive Control Lecture 3 - Predictive Control with Constraints Jan Maciejowski jmm@engcamacuk 4F3 Predictive Control - Lecture 3 p 2/21 Constraints on

More information

Fast proximal gradient methods

Fast proximal gradient methods L. Vandenberghe EE236C (Spring 2013-14) Fast proximal gradient methods fast proximal gradient method (FISTA) FISTA with line search FISTA as descent method Nesterov s second method 1 Fast (proximal) gradient

More information

Learning Model Predictive Control for Iterative Tasks: A Computationally Efficient Approach for Linear System

Learning Model Predictive Control for Iterative Tasks: A Computationally Efficient Approach for Linear System Learning Model Predictive Control for Iterative Tasks: A Computationally Efficient Approach for Linear System Ugo Rosolia Francesco Borrelli University of California at Berkeley, Berkeley, CA 94701, USA

More information

Theory in Model Predictive Control :" Constraint Satisfaction and Stability!

Theory in Model Predictive Control : Constraint Satisfaction and Stability! Theory in Model Predictive Control :" Constraint Satisfaction and Stability Colin Jones, Melanie Zeilinger Automatic Control Laboratory, EPFL Example: Cessna Citation Aircraft Linearized continuous-time

More information

Least Squares Based Self-Tuning Control Systems: Supplementary Notes

Least Squares Based Self-Tuning Control Systems: Supplementary Notes Least Squares Based Self-Tuning Control Systems: Supplementary Notes S. Garatti Dip. di Elettronica ed Informazione Politecnico di Milano, piazza L. da Vinci 32, 2133, Milan, Italy. Email: simone.garatti@polimi.it

More information

Optimal Control Theory SF 2852

Optimal Control Theory SF 2852 Optimal Control Theory SF 2852 Johan Karlsson Optimization and Systems Theory, Department of Mathematics Royal Institute of Technology (KTH) Spring 2017 Optimal Control Theory SF 2852 1 Course information

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Riccardo Falconi Dipartimento di Elettronica, Informatica e Sistemistica (DEIS) Universita di Bologna email: riccardo.falconi@unibo.it Riccardo Falconi (DEIS) Introduction

More information

Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides. Department of Chemical Engineering University of California, Los Angeles

Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides. Department of Chemical Engineering University of California, Los Angeles HYBRID PREDICTIVE OUTPUT FEEDBACK STABILIZATION OF CONSTRAINED LINEAR SYSTEMS Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides Department of Chemical Engineering University of California,

More information

ECE7850 Lecture 8. Nonlinear Model Predictive Control: Theoretical Aspects

ECE7850 Lecture 8. Nonlinear Model Predictive Control: Theoretical Aspects ECE7850 Lecture 8 Nonlinear Model Predictive Control: Theoretical Aspects Model Predictive control (MPC) is a powerful control design method for constrained dynamical systems. The basic principles and

More information

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018 Linear System Theory Wonhee Kim Lecture 1 March 7, 2018 1 / 22 Overview Course Information Prerequisites Course Outline What is Control Engineering? Examples of Control Systems Structure of Control Systems

More information

4F3 - Predictive Control

4F3 - Predictive Control 4F3 Predictive Control - Lecture 2 p 1/23 4F3 - Predictive Control Lecture 2 - Unconstrained Predictive Control Jan Maciejowski jmm@engcamacuk 4F3 Predictive Control - Lecture 2 p 2/23 References Predictive

More information

Politecnico di Torino. Porto Institutional Repository

Politecnico di Torino. Porto Institutional Repository Politecnico di Torino Porto Institutional Repository [Proceeding] Model Predictive Control of stochastic LPV Systems via Random Convex Programs Original Citation: GC Calafiore; L Fagiano (2012) Model Predictive

More information

WE propose the tracking trajectory control of a tricycle

WE propose the tracking trajectory control of a tricycle Proceedings of the International MultiConference of Engineers and Computer Scientists 7 Vol I, IMECS 7, March - 7, 7, Hong Kong Trajectory Tracking Controller Design for A Tricycle Robot Using Piecewise

More information

4F3 - Predictive Control

4F3 - Predictive Control 4F3 Predictive Control - Discrete-time systems p. 1/30 4F3 - Predictive Control Discrete-time State Space Control Theory For reference only Jan Maciejowski jmm@eng.cam.ac.uk 4F3 Predictive Control - Discrete-time

More information

A Control Matching-based Predictive Approach to String Stable Vehicle Platooning

A Control Matching-based Predictive Approach to String Stable Vehicle Platooning Preprints of the 19th World Congress The International Federation of Automatic Control Cape Town, South Africa. August 24-29, 214 A Control Matching-based Predictive Approach to String Stable Vehicle Platooning

More information

Lyapunov Stability Theory

Lyapunov Stability Theory Lyapunov Stability Theory Peter Al Hokayem and Eduardo Gallestey March 16, 2015 1 Introduction In this lecture we consider the stability of equilibrium points of autonomous nonlinear systems, both in continuous

More information

Path Planning based on Bézier Curve for Autonomous Ground Vehicles

Path Planning based on Bézier Curve for Autonomous Ground Vehicles Path Planning based on Bézier Curve for Autonomous Ground Vehicles Ji-wung Choi Computer Engineering Department University of California Santa Cruz Santa Cruz, CA95064, US jwchoi@soe.ucsc.edu Renwick Curry

More information

1 Introduction. 2 Successive Convexification Algorithm

1 Introduction. 2 Successive Convexification Algorithm 1 Introduction There has been growing interest in cooperative group robotics [], with potential applications in construction and assembly. Most of this research focuses on grounded or mobile manipulator

More information

A Stable Block Model Predictive Control with Variable Implementation Horizon

A Stable Block Model Predictive Control with Variable Implementation Horizon American Control Conference June 8-,. Portland, OR, USA WeB9. A Stable Block Model Predictive Control with Variable Implementation Horizon Jing Sun, Shuhao Chen, Ilya Kolmanovsky Abstract In this paper,

More information

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method.

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method. Optimization Unconstrained optimization One-dimensional Multi-dimensional Newton s method Basic Newton Gauss- Newton Quasi- Newton Descent methods Gradient descent Conjugate gradient Constrained optimization

More information

Modelling and Control of Dynamic Systems. Stability of Linear Systems. Sven Laur University of Tartu

Modelling and Control of Dynamic Systems. Stability of Linear Systems. Sven Laur University of Tartu Modelling and Control of Dynamic Systems Stability of Linear Systems Sven Laur University of Tartu Motivating Example Naive open-loop control r[k] Controller Ĉ[z] u[k] ε 1 [k] System Ĝ[z] y[k] ε 2 [k]

More information

Constrained Optimization and Distributed Computation Based Car-Following Control of A Connected and Autonomous Vehicle Platoon

Constrained Optimization and Distributed Computation Based Car-Following Control of A Connected and Autonomous Vehicle Platoon Constrained Optimization and Distributed Computation Based Car-Following Control of A Connected and Autonomous Vehicle Platoon Siyuan Gong a, Jinglai Shen b, Lili Du a ldu3@iit.edu a: Illinois Institute

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 14: Controllability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 14: Controllability p.1/23 Outline

More information

A motion planner for nonholonomic mobile robots

A motion planner for nonholonomic mobile robots A motion planner for nonholonomic mobile robots Miguel Vargas Material taken form: J. P. Laumond, P. E. Jacobs, M. Taix, R. M. Murray. A motion planner for nonholonomic mobile robots. IEEE Transactions

More information

arxiv: v1 [cs.sy] 21 Oct 2018

arxiv: v1 [cs.sy] 21 Oct 2018 Safe Adaptive Cruise Control with Road Grade Preview and V2V Communication Roya Firoozi, Shima Nazari, Jacopo Guanetti, Ryan O Gorman, Francesco Borrelli arxiv:1810.09000v1 [cs.sy] 21 Oct 2018 Abstract

More information

Control of Mobile Robots Prof. Luca Bascetta

Control of Mobile Robots Prof. Luca Bascetta Control of Mobile Robots Prof. Luca Bascetta EXERCISE 1 1. Consider a wheel rolling without slipping on the horizontal plane, keeping the sagittal plane in the vertical direction. Write the expression

More information

Introduction to Dynamic Path Inversion

Introduction to Dynamic Path Inversion Dipartimento di ingegneria dell Informazione Università di Parma Dottorato di Ricerca in Tecnologie dell Informazione a.a. 2005/2006 Introduction to Dynamic Path Aurelio PIAZZI DII, Università di Parma

More information

Online Model Predictive Torque Control for Permanent Magnet Synchronous Motors

Online Model Predictive Torque Control for Permanent Magnet Synchronous Motors Online Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini, Daniele Bernardini, Alberto Bemporad and Stephen Levijoki ODYS Srl General Motors Company 2015 IEEE International

More information

Posture regulation for unicycle-like robots with. prescribed performance guarantees

Posture regulation for unicycle-like robots with. prescribed performance guarantees Posture regulation for unicycle-like robots with prescribed performance guarantees Martina Zambelli, Yiannis Karayiannidis 2 and Dimos V. Dimarogonas ACCESS Linnaeus Center and Centre for Autonomous Systems,

More information

Discrete-time linear systems

Discrete-time linear systems Automatic Control Discrete-time linear systems Prof. Alberto Bemporad University of Trento Academic year 2-2 Prof. Alberto Bemporad (University of Trento) Automatic Control Academic year 2-2 / 34 Introduction

More information

Prediktivno upravljanje primjenom matematičkog programiranja

Prediktivno upravljanje primjenom matematičkog programiranja Prediktivno upravljanje primjenom matematičkog programiranja Doc. dr. sc. Mato Baotić Fakultet elektrotehnike i računarstva Sveučilište u Zagrebu www.fer.hr/mato.baotic Outline Application Examples PredictiveControl

More information

Lecture 8 Receding Horizon Temporal Logic Planning & Finite-State Abstraction

Lecture 8 Receding Horizon Temporal Logic Planning & Finite-State Abstraction Lecture 8 Receding Horizon Temporal Logic Planning & Finite-State Abstraction Ufuk Topcu Nok Wongpiromsarn Richard M. Murray AFRL, 26 April 2012 Contents of the lecture: Intro: Incorporating continuous

More information

Robotics I. February 6, 2014

Robotics I. February 6, 2014 Robotics I February 6, 214 Exercise 1 A pan-tilt 1 camera sensor, such as the commercial webcams in Fig. 1, is mounted on the fixed base of a robot manipulator and is used for pointing at a (point-wise)

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 6.4/43 Principles of Autonomy and Decision Making Lecture 8: (Mixed-Integer) Linear Programming for Vehicle Routing and Motion Planning Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute

More information

Lecture 8: Kinematics: Path and Trajectory Planning

Lecture 8: Kinematics: Path and Trajectory Planning Lecture 8: Kinematics: Path and Trajectory Planning Concept of Configuration Space c Anton Shiriaev. 5EL158: Lecture 8 p. 1/20 Lecture 8: Kinematics: Path and Trajectory Planning Concept of Configuration

More information

Course on Model Predictive Control Part II Linear MPC design

Course on Model Predictive Control Part II Linear MPC design Course on Model Predictive Control Part II Linear MPC design Gabriele Pannocchia Department of Chemical Engineering, University of Pisa, Italy Email: g.pannocchia@diccism.unipi.it Facoltà di Ingegneria,

More information

Moving Mass Actuated Missile Control Using Convex Optimization Techniques

Moving Mass Actuated Missile Control Using Convex Optimization Techniques Moving Mass Actuated Missile Control Using Convex Optimization echniques Sesha Sai Vaddi Optimal Synthesis, 868 San-Antonio Road, Palo Alto, CA, 9433, USA his paper deals with the control of a moving mass

More information

Control of industrial robots. Centralized control

Control of industrial robots. Centralized control Control of industrial robots Centralized control Prof. Paolo Rocco (paolo.rocco@polimi.it) Politecnico di Milano ipartimento di Elettronica, Informazione e Bioingegneria Introduction Centralized control

More information

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems ELEC4631 s Lecture 2: Dynamic Control Systems 7 March 2011 Overview of dynamic control systems Goals of Controller design Autonomous dynamic systems Linear Multi-input multi-output (MIMO) systems Bat flight

More information

Exam in TMA4180 Optimization Theory

Exam in TMA4180 Optimization Theory Norwegian University of Science and Technology Department of Mathematical Sciences Page 1 of 11 Contact during exam: Anne Kværnø: 966384 Exam in TMA418 Optimization Theory Wednesday May 9, 13 Tid: 9. 13.

More information

Control System Design

Control System Design ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and Discrete-Time Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science

More information

Module 03 Linear Systems Theory: Necessary Background

Module 03 Linear Systems Theory: Necessary Background Module 03 Linear Systems Theory: Necessary Background Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

CONSTRAINED MODEL PREDICTIVE CONTROL ON CONVEX POLYHEDRON STOCHASTIC LINEAR PARAMETER VARYING SYSTEMS. Received October 2012; revised February 2013

CONSTRAINED MODEL PREDICTIVE CONTROL ON CONVEX POLYHEDRON STOCHASTIC LINEAR PARAMETER VARYING SYSTEMS. Received October 2012; revised February 2013 International Journal of Innovative Computing, Information and Control ICIC International c 2013 ISSN 1349-4198 Volume 9, Number 10, October 2013 pp 4193 4204 CONSTRAINED MODEL PREDICTIVE CONTROL ON CONVEX

More information

EML5311 Lyapunov Stability & Robust Control Design

EML5311 Lyapunov Stability & Robust Control Design EML5311 Lyapunov Stability & Robust Control Design 1 Lyapunov Stability criterion In Robust control design of nonlinear uncertain systems, stability theory plays an important role in engineering systems.

More information

CONTROL OF THE NONHOLONOMIC INTEGRATOR

CONTROL OF THE NONHOLONOMIC INTEGRATOR June 6, 25 CONTROL OF THE NONHOLONOMIC INTEGRATOR R. N. Banavar (Work done with V. Sankaranarayanan) Systems & Control Engg. Indian Institute of Technology, Bombay Mumbai -INDIA. banavar@iitb.ac.in Outline

More information

Introduction to Model Predictive Control. Dipartimento di Elettronica e Informazione

Introduction to Model Predictive Control. Dipartimento di Elettronica e Informazione Introduction to Model Predictive Control Riccardo Scattolini Riccardo Scattolini Dipartimento di Elettronica e Informazione Finite horizon optimal control 2 Consider the system At time k we want to compute

More information

IMPROVED MPC DESIGN BASED ON SATURATING CONTROL LAWS

IMPROVED MPC DESIGN BASED ON SATURATING CONTROL LAWS IMPROVED MPC DESIGN BASED ON SATURATING CONTROL LAWS D. Limon, J.M. Gomes da Silva Jr., T. Alamo and E.F. Camacho Dpto. de Ingenieria de Sistemas y Automática. Universidad de Sevilla Camino de los Descubrimientos

More information

arxiv: v4 [cs.sy] 20 Dec 2013

arxiv: v4 [cs.sy] 20 Dec 2013 Plug-and-Play Model Predictive Control based on robust control invariant sets Stefano Riverso, Marcello Farina, and Giancarlo Ferrari-Trecate arxiv:121.6927v4 [cs.sy] 2 Dec 213 Dipartimento di Ingegneria

More information

Average Consensus with Prescribed Performance Guarantees for Multi-agent Double-Integrator Systems

Average Consensus with Prescribed Performance Guarantees for Multi-agent Double-Integrator Systems Average Consensus with Prescribed Performance Guarantees for Multi-agent Double-Integrator Systems LUCA MACELLARI Master s Degree Project Stockholm, Sweden February, 25 XR-EE-RT 25:2 Average Consensus

More information

Target Localization and Circumnavigation Using Bearing Measurements in 2D

Target Localization and Circumnavigation Using Bearing Measurements in 2D Target Localization and Circumnavigation Using Bearing Measurements in D Mohammad Deghat, Iman Shames, Brian D. O. Anderson and Changbin Yu Abstract This paper considers the problem of localization and

More information

Dynamic Inversion Design II

Dynamic Inversion Design II Lecture 32 Dynamic Inversion Design II Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Topics Summary of Dynamic Inversion Design Advantages Issues

More information

NONLINEAR PATH CONTROL FOR A DIFFERENTIAL DRIVE MOBILE ROBOT

NONLINEAR PATH CONTROL FOR A DIFFERENTIAL DRIVE MOBILE ROBOT NONLINEAR PATH CONTROL FOR A DIFFERENTIAL DRIVE MOBILE ROBOT Plamen PETROV Lubomir DIMITROV Technical University of Sofia Bulgaria Abstract. A nonlinear feedback path controller for a differential drive

More information

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 1/5 Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 2/5 Time-varying Systems ẋ = f(t, x) f(t, x) is piecewise continuous in t and locally Lipschitz in x for all t

More information

Automatic Control Motion planning

Automatic Control Motion planning Automatic Control Motion planning (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Motivations 2 Electric motors are used in many different applications,

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 15: Nonlinear Systems and Lyapunov Functions Overview Our next goal is to extend LMI s and optimization to nonlinear

More information

Lecture 2: Controllability of nonlinear systems

Lecture 2: Controllability of nonlinear systems DISC Systems and Control Theory of Nonlinear Systems 1 Lecture 2: Controllability of nonlinear systems Nonlinear Dynamical Control Systems, Chapter 3 See www.math.rug.nl/ arjan (under teaching) for info

More information

An Introduction to Model-based Predictive Control (MPC) by

An Introduction to Model-based Predictive Control (MPC) by ECE 680 Fall 2017 An Introduction to Model-based Predictive Control (MPC) by Stanislaw H Żak 1 Introduction The model-based predictive control (MPC) methodology is also referred to as the moving horizon

More information

ESC794: Special Topics: Model Predictive Control

ESC794: Special Topics: Model Predictive Control ESC794: Special Topics: Model Predictive Control Discrete-Time Systems Hanz Richter, Professor Mechanical Engineering Department Cleveland State University Discrete-Time vs. Sampled-Data Systems A continuous-time

More information

The HJB-POD approach for infinite dimensional control problems

The HJB-POD approach for infinite dimensional control problems The HJB-POD approach for infinite dimensional control problems M. Falcone works in collaboration with A. Alla, D. Kalise and S. Volkwein Università di Roma La Sapienza OCERTO Workshop Cortona, June 22,

More information

Vision-based range estimation via Immersion and Invariance for robot formation control

Vision-based range estimation via Immersion and Invariance for robot formation control Vision-based range estimation via Immersion and Invariance for robot formation control Fabio Morbidi, Gian Luca Mariottini, Domenico Prattichizzo Abstract The paper introduces a new vision-based range

More information

Solving Deterministic Models

Solving Deterministic Models Solving Deterministic Models Shanghai Dynare Workshop Sébastien Villemot CEPREMAP October 27, 2013 Sébastien Villemot (CEPREMAP) Solving Deterministic Models October 27, 2013 1 / 42 Introduction Deterministic

More information

Readiness in Formation Control of Multi-Robot System

Readiness in Formation Control of Multi-Robot System Readiness in Formation Control of Multi-Robot System Zhihao Xu (Univ. of Würzburg) Hiroaki Kawashima (Kyoto Univ.) Klaus Schilling (Univ. of Würzburg) Motivation Scenario: Vehicles maintain an equally

More information

AC&ST AUTOMATIC CONTROL AND SYSTEM THEORY SYSTEMS AND MODELS. Claudio Melchiorri

AC&ST AUTOMATIC CONTROL AND SYSTEM THEORY SYSTEMS AND MODELS. Claudio Melchiorri C. Melchiorri (DEI) Automatic Control & System Theory 1 AUTOMATIC CONTROL AND SYSTEM THEORY SYSTEMS AND MODELS Claudio Melchiorri Dipartimento di Ingegneria dell Energia Elettrica e dell Informazione (DEI)

More information

OPTIMAL CONTROL OF SWITCHING SURFACES IN HYBRID DYNAMIC SYSTEMS. Mauro Boccadoro Magnus Egerstedt,1 Yorai Wardi,1

OPTIMAL CONTROL OF SWITCHING SURFACES IN HYBRID DYNAMIC SYSTEMS. Mauro Boccadoro Magnus Egerstedt,1 Yorai Wardi,1 OPTIMAL CONTROL OF SWITCHING SURFACES IN HYBRID DYNAMIC SYSTEMS Mauro Boccadoro Magnus Egerstedt,1 Yorai Wardi,1 boccadoro@diei.unipg.it Dipartimento di Ingegneria Elettronica e dell Informazione Università

More information

Second Order Sliding Mode Control for Nonlinear Affine Systems with Quantized Uncertainty

Second Order Sliding Mode Control for Nonlinear Affine Systems with Quantized Uncertainty Second Order Sliding Mode Control for Nonlinear Affine Systems with Quantized Uncertainty Gian Paolo Incremona a, Michele Cucuzzella b, Antonella Ferrara b a Dipartimento di Elettronica, Informazione e

More information

Lecture 24: August 28

Lecture 24: August 28 10-725: Optimization Fall 2012 Lecture 24: August 28 Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Jiaji Zhou,Tinghui Zhou,Kawa Cheung Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Tracking and Set-Point VFO Control for an Articulated Mobile Robot with On-Axle Hitched Trailer

Tracking and Set-Point VFO Control for an Articulated Mobile Robot with On-Axle Hitched Trailer 2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 10-12, 2009 WeB07.6 Tracking and Set-Point VFO Control for an Articulated Mobile Robot with On-Axle Hitched Trailer Maciej

More information

Instrumentation Commande Architecture des Robots Evolués

Instrumentation Commande Architecture des Robots Evolués Instrumentation Commande Architecture des Robots Evolués Program 4a : Automatic Control, Robotics, Signal Processing Presentation General Orientation Research activities concern the modelling and control

More information

A Distributed Feedback Motion Planning Protocol for Multiple Unicycle Agents of Different Classes

A Distributed Feedback Motion Planning Protocol for Multiple Unicycle Agents of Different Classes IEEE TRANSACTIONS ON A Distributed Feedback Motion Planning Protocol for Multiple Unicycle Agents of Different Classes Dimitra Panagou Abstract This paper presents a novel feedback method for the motion

More information

CHAPTER 6 FAST OUTPUT SAMPLING CONTROL TECHNIQUE

CHAPTER 6 FAST OUTPUT SAMPLING CONTROL TECHNIQUE 80 CHAPTER 6 FAST OUTPUT SAMPLING CONTROL TECHNIQUE 6.1 GENERAL In this chapter a control strategy for hyperthermia system is developed using fast output sampling feedback control law which is a type of

More information

Efficient robust optimization for robust control with constraints Paul Goulart, Eric Kerrigan and Danny Ralph

Efficient robust optimization for robust control with constraints Paul Goulart, Eric Kerrigan and Danny Ralph Efficient robust optimization for robust control with constraints p. 1 Efficient robust optimization for robust control with constraints Paul Goulart, Eric Kerrigan and Danny Ralph Efficient robust optimization

More information

Homework Solution # 3

Homework Solution # 3 ECSE 644 Optimal Control Feb, 4 Due: Feb 17, 4 (Tuesday) Homework Solution # 3 1 (5%) Consider the discrete nonlinear control system in Homework # For the optimal control and trajectory that you have found

More information

On the stability of nonholonomic multi-vehicle formation

On the stability of nonholonomic multi-vehicle formation Abstract On the stability of nonholonomic multi-vehicle formation Lotfi Beji 1, Mohamed Anouar ElKamel 1, Azgal Abichou 2 1 University of Evry (IBISC EA 4526), 40 rue du Pelvoux, 91020 Evry Cedex, France

More information

EN Applied Optimal Control Lecture 8: Dynamic Programming October 10, 2018

EN Applied Optimal Control Lecture 8: Dynamic Programming October 10, 2018 EN530.603 Applied Optimal Control Lecture 8: Dynamic Programming October 0, 08 Lecturer: Marin Kobilarov Dynamic Programming (DP) is conerned with the computation of an optimal policy, i.e. an optimal

More information

Navigation Functions for Convex Potentials in a Space with Convex Obstacles

Navigation Functions for Convex Potentials in a Space with Convex Obstacles Navigation Functions for Convex Potentials in a Space with Convex Obstacles Santiago Paternain, Daniel E. Koditsche and Alejandro Ribeiro This paper considers cases where the configuration space is not

More information

Economic and Distributed Model Predictive Control: Recent Developments in Optimization-Based Control

Economic and Distributed Model Predictive Control: Recent Developments in Optimization-Based Control SICE Journal of Control, Measurement, and System Integration, Vol. 10, No. 2, pp. 039 052, March 2017 Economic and Distributed Model Predictive Control: Recent Developments in Optimization-Based Control

More information

DISCRETE-TIME TIME-VARYING ROBUST STABILIZATION FOR SYSTEMS IN POWER FORM. Dina Shona Laila and Alessandro Astolfi

DISCRETE-TIME TIME-VARYING ROBUST STABILIZATION FOR SYSTEMS IN POWER FORM. Dina Shona Laila and Alessandro Astolfi DISCRETE-TIME TIME-VARYING ROBUST STABILIZATION FOR SYSTEMS IN POWER FORM Dina Shona Laila and Alessandro Astolfi Electrical and Electronic Engineering Department Imperial College, Exhibition Road, London

More information

IEOR 265 Lecture 14 (Robust) Linear Tube MPC

IEOR 265 Lecture 14 (Robust) Linear Tube MPC IEOR 265 Lecture 14 (Robust) Linear Tube MPC 1 LTI System with Uncertainty Suppose we have an LTI system in discrete time with disturbance: x n+1 = Ax n + Bu n + d n, where d n W for a bounded polytope

More information

Control Hierarchies and Tropical Algebras

Control Hierarchies and Tropical Algebras Control Hierarchies and Tropical Algebras Jörg Raisch 1,2, Xavier David-Henriet 1,2,3, Tom Brunsch 1,3, Laurent Hardouin 3 1 Fachgebiet Regelungssysteme Fakultät Elektrotechnik und Informatik, TU Berlin

More information