Optimal Multi-Robot Path Planning on Graphs: Structure, Complexity, Algorithms, and Applications

Size: px
Start display at page:

Download "Optimal Multi-Robot Path Planning on Graphs: Structure, Complexity, Algorithms, and Applications"

Transcription

1 Optimal Multi-Robot Path Planning on Graphs: Structure, Complexity, Algorithms, and Applications Jingjin Yu Computer Science Rutgers CASE 2016 Multi-Robot Workshop

2 Outline Problem Statement Structural Properties of Optimal Formulations Complexity of Non-Optimal Fomulations Complexity of Optimal Formulations General Graphs Planar Graphs An ILP Based Novel Solution Application to the Continuous Domain Conclusion The micromvp Platform

3 Problem Statement 1 2 X I 4 X G Forbidden moves G = (V, E) MPP Problem: (G, X I, X G ), solution: collision free P = {p 1,, p n } Optimality objectives (minimization): Max time (makespan): min max time(p i) P P p i P Total time: min σ p P P i P time(p i ) Max distance: min max length(p i) P P p i P Total distance: min σ p P P i P length(p i )

4 Applications

5 Structural Properties of Optimal Formulations Y-LaValle, Arxiv Clockwise Counterclockwise Makespan Total time x + 1 2x + 3 x + 4 x x Left path only Using right path Total distance 4x + 8 4x + 10 Total time 4x x x 4 4 x Theorem. A pair of the four MPP objectives on makespan, total time, max distance, and total distance demonstrates a Pareto-optimal structure.

6 Complexity of Non-Optimal Formulation Feasibility is not guaranteed Y-Rus, WAFR ? Theorem. Feasibility of MPP can be decided in linear time. Moreover, a solution for a feasible instance can be computed in cubic time. What about finding optimal solutions?

7 Intractability of Time Optimal MPP Theorem. Min Makespan MPP is NP-hard. Y-LaValle, AAAI 13 3SAT x 1 x 3 x 4 x 1 x 2 x 4 ( x 2 x 3 x 4 ) c 1 c 2 c 3 m = 3 clauses n = 4 variables Min Makespan MPP c 1 c 2 c 3 x 4 x 4 x 4 x 3 x 3 x 3 c 1 c 2 c 3 x 2 x 2 x 2 x 1 x 1 x 1 m

8 Intractability Distance Optimal MPP Y-LaValle, Arxiv NP-hardness of distance optimal MPP is slightly more tricky Theorem. MPP is NP-hard when optimizing min makespan, min total time, min max distance, and min total distance.

9 The Planar Case (G is Planar) Y, IEEE RA-L, 2016 Planar Monotone 3-SAT Planar MPP x 1 x 4 x 5 (x 2 x 3 ) x 1 x 2 x 3 x 3 x 4 x 5 c 1 c 2 c 3 c 4 c 3 c 4 c 2 c 1 c 3 c 2 c 4 c 1 Theorem. Optimal Planar MPP (PMPP) is NP-hard for min makespan, min total time, min max distance, and min total distance objectives.

10 Practical Implications Optimal MPP and PMPP are often NP-hard c 3 c 4 c 1 Polynomial time exact solution Polynomial time suboptimal solutions? Engineering the environment helps Two way, multi-lane roads Elevated intersections c 2 We offer rigorous, quantitative justifications of these phenomena through complexity theory c 3 c 2 c 1 c 4

11 Approaches Based on Discrete Search Discrete approaches are mostly A* based The global search space is G n Differ on the handling of robot interactions n independent robots: n G Local Repair A* (LRA*) [Zelinsky, IEEE TRA 92] Planning for each robot and resolving conflicts locally as they appear Windowed Hierarchical Cooperative A* (WHCA*) [Sliver, AIIDE 05] Local space-time window for handling multi-robot interactions IDA* based [Sharon-Stern-Felner-Sturtevant, AAAI 12] Iteratively handle more robot-robot interaction Maximum Group Size (MGS n ) [Standley-Korf, IJCAI 11] Grouping robots into larger bundles as necessary The authors pushed a highly effective implementation joint search space: G n Many additional approaches: [Ryan 08], [van Den Berg et al. 09], [Wagner- Choset 11], [Boyarski et al. 15],

12 An Integer Programming Based Novel Approach Key idea: time expansion Y-LaValle, WAFR 12 2 r 1 r 2 3, r 1 r 2 1 t = T=4 4 Theorem. Fixing a natural number T, a MPP instance admits a solution with at most T time steps if and only if the corresponding time-expanded network with T periods admits a solution consisting of disjoint paths.

13 ILP Approach: The Constraints Meet-on-vertex u v w 1 2 Meet-on-edge u v 1 2 u u v w v t t + 1 t t + 1 i (x uv,t,t+1 i + x vv,t,t+1 i + x wv,t,t+1 ) 1 i (x uv,t,t+1 i + x vu,t,t+1 ) 1 1 i n 1 i n

14 Algorithm for Min Makespan Y-LaValle, ICRA 13, TRO-16, in press, online n max x i,i, subject to i=1 e j, x i,j 1 i=1 v, x i,j = n e j δ + (v) e j δ (v) x i,j Pick an initial T Build the timeexpanded network No T = T + 1 Set up an ILP model Feasible? Run optimizer Yes Return the path set Additional heuristics Reachability analysis Divide and conquer Other objectives (total time, max distance, total distance)

15 Performance Makespan 24x18 grid, with some vertices randomly removed to simulate obstacles 44% robot density Exact solution Near-optimal solution

16 Performance Total Time and Total Distance Min Total Time Min Total Distance

17 We Can Solve Some Tough Problems states > 10 4 branching factor A 7-step min makespan plan

18 Generalization to Continuous Domain Y-Rus, ISRR 15 Lattice overlay Restore connectivity Snapping Trajectory planning Path smoothing

19 Conclusion Contributions Structure and complexity MPP and PMPP appear NP-hard in general Algorithmic solution Effective integer programming based solution approach Extensible to continuous problems Future work Algorithmic solutions for more realistic setup Continuously appearing start and goal locations Various constraints Effective environment design Almost planar design with guaranteed traffic throughput Planar graph for doing the same? Remove the ILP dependency

20 micromvp (micro Multi-Vehicle Platform) An open platform targeting robotics research and education Low cost (currently <$100 per vehicle, $100 for the sensing platform ) Easy assembly 20min to build a vehicle enabled by 3D printing 1 minute to setup the platform Small scale (in my backpack!) Suitable for deployment everywhere Open (very soon)

Optimal Target Assignment and Path Finding for Teams of Agents

Optimal Target Assignment and Path Finding for Teams of Agents Optimal Target Assignment and Path Finding for Teams of Agents Hang Ma Sven Koenig University of Southern California May 12, 2016 AAMAS, Singapore Multi-Agent Path Finding (MAPF) Find collision-free paths

More information

From Abstract Models to Executable Models for Multi-Agent Path Finding on Real Robots

From Abstract Models to Executable Models for Multi-Agent Path Finding on Real Robots From Abstract Models to Executable Models for Multi-Agent Path Finding on Real Robots Roman Barták Charles University, Czech Republic with contributions from Ivan Krasičenko, David Nohejl, Věra Škopková,

More information

Introduction to Computer Science and Programming for Astronomers

Introduction to Computer Science and Programming for Astronomers Introduction to Computer Science and Programming for Astronomers Lecture 8. István Szapudi Institute for Astronomy University of Hawaii March 7, 2018 Outline Reminder 1 Reminder 2 3 4 Reminder We have

More information

Lecture 10. Rigid Body Transformation & C-Space Obstacles. CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University

Lecture 10. Rigid Body Transformation & C-Space Obstacles. CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University CS 460/560 Introduction to Computational Robotics Fall 017, Rutgers University Lecture 10 Rigid Body Transformation & C-Space Obstacles Instructor: Jingjin Yu Outline Rigid body, links, and joints Task

More information

1 Primals and Duals: Zero Sum Games

1 Primals and Duals: Zero Sum Games CS 124 Section #11 Zero Sum Games; NP Completeness 4/15/17 1 Primals and Duals: Zero Sum Games We can represent various situations of conflict in life in terms of matrix games. For example, the game shown

More information

The complexity of acyclic subhypergraph problems

The complexity of acyclic subhypergraph problems The complexity of acyclic subhypergraph problems David Duris and Yann Strozecki Équipe de Logique Mathématique (FRE 3233) - Université Paris Diderot-Paris 7 {duris,strozecki}@logique.jussieu.fr Abstract.

More information

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013 Chapter 2 Reductions and NP CS 573: Algorithms, Fall 2013 August 29, 2013 2.1 Reductions Continued 2.1.1 The Satisfiability Problem SAT 2.1.1.1 Propositional Formulas Definition 2.1.1. Consider a set of

More information

Lecture 8: Kinematics: Path and Trajectory Planning

Lecture 8: Kinematics: Path and Trajectory Planning Lecture 8: Kinematics: Path and Trajectory Planning Concept of Configuration Space c Anton Shiriaev. 5EL158: Lecture 8 p. 1/20 Lecture 8: Kinematics: Path and Trajectory Planning Concept of Configuration

More information

P versus NP. Math 40210, Spring September 16, Math (Spring 2012) P versus NP September 16, / 9

P versus NP. Math 40210, Spring September 16, Math (Spring 2012) P versus NP September 16, / 9 P versus NP Math 40210, Spring 2012 September 16, 2012 Math 40210 (Spring 2012) P versus NP September 16, 2012 1 / 9 Properties of graphs A property of a graph is anything that can be described without

More information

Unit 1A: Computational Complexity

Unit 1A: Computational Complexity Unit 1A: Computational Complexity Course contents: Computational complexity NP-completeness Algorithmic Paradigms Readings Chapters 3, 4, and 5 Unit 1A 1 O: Upper Bounding Function Def: f(n)= O(g(n)) if

More information

NP-Hardness reductions

NP-Hardness reductions NP-Hardness reductions Definition: P is the class of problems that can be solved in polynomial time, that is n c for a constant c Roughly, if a problem is in P then it's easy, and if it's not in P then

More information

Linear Programming. Scheduling problems

Linear Programming. Scheduling problems Linear Programming Scheduling problems Linear programming (LP) ( )., 1, for 0 min 1 1 1 1 1 11 1 1 n i x b x a x a b x a x a x c x c x z i m n mn m n n n n! = + + + + + + = Extreme points x ={x 1,,x n

More information

Zebo Peng Embedded Systems Laboratory IDA, Linköping University

Zebo Peng Embedded Systems Laboratory IDA, Linköping University TDTS 01 Lecture 8 Optimization Heuristics for Synthesis Zebo Peng Embedded Systems Laboratory IDA, Linköping University Lecture 8 Optimization problems Heuristic techniques Simulated annealing Genetic

More information

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on 6117CIT - Adv Topics in Computing Sci at Nathan 1 Algorithms The intelligence behind the hardware Outline! Approximation Algorithms The class APX! Some complexity classes, like PTAS and FPTAS! Illustration

More information

Lecture 12 Combinatorial Planning in High Dimensions

Lecture 12 Combinatorial Planning in High Dimensions CS 460/560 Introduction to Computational Robotics Fall 017, Rutgers University Lecture 1 Combinatorial Planning in High Dimensions Instructor: Jingjin Yu Outline Review of combinatorial motion planning

More information

CSI 4105 MIDTERM SOLUTION

CSI 4105 MIDTERM SOLUTION University of Ottawa CSI 4105 MIDTERM SOLUTION Instructor: Lucia Moura Feb 6, 2010 10:00 am Duration: 1:50 hs Closed book Last name: First name: Student number: There are 4 questions and 100 marks total.

More information

Algorithms. NP -Complete Problems. Dong Kyue Kim Hanyang University

Algorithms. NP -Complete Problems. Dong Kyue Kim Hanyang University Algorithms NP -Complete Problems Dong Kyue Kim Hanyang University dqkim@hanyang.ac.kr The Class P Definition 13.2 Polynomially bounded An algorithm is said to be polynomially bounded if its worst-case

More information

Bicriterial Delay Management

Bicriterial Delay Management Universität Konstanz Bicriterial Delay Management Csaba Megyeri Konstanzer Schriften in Mathematik und Informatik Nr. 198, März 2004 ISSN 1430 3558 c Fachbereich Mathematik und Statistik c Fachbereich

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

Section 4.1 Polynomial Functions and Models. Copyright 2013 Pearson Education, Inc. All rights reserved

Section 4.1 Polynomial Functions and Models. Copyright 2013 Pearson Education, Inc. All rights reserved Section 4.1 Polynomial Functions and Models Copyright 2013 Pearson Education, Inc. All rights reserved 3 8 ( ) = + (a) f x 3x 4x x (b) ( ) g x 2 x + 3 = x 1 (a) f is a polynomial of degree 8. (b) g is

More information

Delay and Accessibility in Random Temporal Networks

Delay and Accessibility in Random Temporal Networks Delay and Accessibility in Random Temporal Networks 2nd Symposium on Spatial Networks Shahriar Etemadi Tajbakhsh September 13, 2017 Outline Z Accessibility in Deterministic Static and Temporal Networks

More information

CMSC 722, AI Planning. Planning and Scheduling

CMSC 722, AI Planning. Planning and Scheduling CMSC 722, AI Planning Planning and Scheduling Dana S. Nau University of Maryland 1:26 PM April 24, 2012 1 Scheduling Given: actions to perform set of resources to use time constraints» e.g., the ones computed

More information

Motion Planning in Partially Known Dynamic Environments

Motion Planning in Partially Known Dynamic Environments Motion Planning in Partially Known Dynamic Environments Movie Workshop Laas-CNRS, Toulouse (FR), January 7-8, 2005 Dr. Thierry Fraichard e-motion Team Inria Rhône-Alpes & Gravir-CNRS Laboratory Movie Workshop

More information

P versus NP. Math 40210, Fall November 10, Math (Fall 2015) P versus NP November 10, / 9

P versus NP. Math 40210, Fall November 10, Math (Fall 2015) P versus NP November 10, / 9 P versus NP Math 40210, Fall 2015 November 10, 2015 Math 40210 (Fall 2015) P versus NP November 10, 2015 1 / 9 Properties of graphs A property of a graph is anything that can be described without referring

More information

Single machine scheduling with forbidden start times

Single machine scheduling with forbidden start times 4OR manuscript No. (will be inserted by the editor) Single machine scheduling with forbidden start times Jean-Charles Billaut 1 and Francis Sourd 2 1 Laboratoire d Informatique Université François-Rabelais

More information

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, Notes 22 for CS 170

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, Notes 22 for CS 170 UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, 2003 Notes 22 for CS 170 1 NP-completeness of Circuit-SAT We will prove that the circuit satisfiability

More information

Approximation Basics

Approximation Basics Approximation Basics, Concepts, and Examples Xiaofeng Gao Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China Fall 2012 Special thanks is given to Dr. Guoqiang Li for

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

Advanced Combinatorial Optimization September 22, Lecture 4

Advanced Combinatorial Optimization September 22, Lecture 4 8.48 Advanced Combinatorial Optimization September 22, 2009 Lecturer: Michel X. Goemans Lecture 4 Scribe: Yufei Zhao In this lecture, we discuss some results on edge coloring and also introduce the notion

More information

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Definition: An Integer Linear Programming problem is an optimization problem of the form (ILP) min

More information

Task Coordination for Non-cooperative Planning Agents

Task Coordination for Non-cooperative Planning Agents Task Coordination for Non-cooperative Planning Agents Pieter Buzing 1, Adriaan ter Mors 1, Jeroen Valk 1 and Cees Witteveen 1,2 1 Faculty of Electrical Engineering, Mathematics and Computer Science, Delft

More information

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 3: Shortest paths and other stuff

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 3: Shortest paths and other stuff Institute of Operating Systems and Computer Networks Algorithms Group Network Algorithms Tutorial 3: Shortest paths and other stuff Christian Rieck Shortest paths: Dijkstra s algorithm 2 Dijkstra s algorithm

More information

1 Algebraic Methods. 1.1 Gröbner Bases Applied to SAT

1 Algebraic Methods. 1.1 Gröbner Bases Applied to SAT 1 Algebraic Methods In an algebraic system Boolean constraints are expressed as a system of algebraic equations or inequalities which has a solution if and only if the constraints are satisfiable. Equations

More information

Computational Complexity

Computational Complexity Computational Complexity Problems, instances and algorithms Running time vs. computational complexity General description of the theory of NP-completeness Problem samples 1 Computational Complexity What

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

Flows and Cuts. 1 Concepts. CS 787: Advanced Algorithms. Instructor: Dieter van Melkebeek

Flows and Cuts. 1 Concepts. CS 787: Advanced Algorithms. Instructor: Dieter van Melkebeek CS 787: Advanced Algorithms Flows and Cuts Instructor: Dieter van Melkebeek This lecture covers the construction of optimal flows and cuts in networks, their relationship, and some applications. It paves

More information

1. Introduction Recap

1. Introduction Recap 1. Introduction Recap 1. Tractable and intractable problems polynomial-boundness: O(n k ) 2. NP-complete problems informal definition 3. Examples of P vs. NP difference may appear only slightly 4. Optimization

More information

Polynomial kernels for constant-factor approximable problems

Polynomial kernels for constant-factor approximable problems 1 Polynomial kernels for constant-factor approximable problems Stefan Kratsch November 11, 2010 2 What do these problems have in common? Cluster Edge Deletion, Cluster Edge Editing, Edge Dominating Set,

More information

Solutions to Exercises

Solutions to Exercises 1/13 Solutions to Exercises The exercises referred to as WS 1.1(a), and so forth, are from the course book: Williamson and Shmoys, The Design of Approximation Algorithms, Cambridge University Press, 2011,

More information

Lecture 4: NP and computational intractability

Lecture 4: NP and computational intractability Chapter 4 Lecture 4: NP and computational intractability Listen to: Find the longest path, Daniel Barret What do we do today: polynomial time reduction NP, co-np and NP complete problems some examples

More information

On the Complexity of the Minimum Independent Set Partition Problem

On the Complexity of the Minimum Independent Set Partition Problem On the Complexity of the Minimum Independent Set Partition Problem T-H. Hubert Chan 1, Charalampos Papamanthou 2, and Zhichao Zhao 1 1 Department of Computer Science the University of Hong Kong {hubert,zczhao}@cs.hku.hk

More information

CSCI 1590 Intro to Computational Complexity

CSCI 1590 Intro to Computational Complexity CSCI 1590 Intro to Computational Complexity NP-Complete Languages John E. Savage Brown University February 2, 2009 John E. Savage (Brown University) CSCI 1590 Intro to Computational Complexity February

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 26 Computational Intractability Polynomial Time Reductions Sofya Raskhodnikova S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.1 What algorithms are

More information

Algorithms: COMP3121/3821/9101/9801

Algorithms: COMP3121/3821/9101/9801 NEW SOUTH WALES Algorithms: COMP3121/3821/9101/9801 Aleks Ignjatović School of Computer Science and Engineering University of New South Wales LECTURE 9: INTRACTABILITY COMP3121/3821/9101/9801 1 / 29 Feasibility

More information

Minimizing Total Delay in Fixed-Time Controlled Traffic Networks

Minimizing Total Delay in Fixed-Time Controlled Traffic Networks Minimizing Total Delay in Fixed-Time Controlled Traffic Networks Ekkehard Köhler, Rolf H. Möhring, and Gregor Wünsch Technische Universität Berlin, Institut für Mathematik, MA 6-1, Straße des 17. Juni

More information

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Many slides adapted from Jur van den Berg Outline POMDPs Separation Principle / Certainty Equivalence Locally Optimal

More information

Network Localization via Schatten Quasi-Norm Minimization

Network Localization via Schatten Quasi-Norm Minimization Network Localization via Schatten Quasi-Norm Minimization Anthony Man-Cho So Department of Systems Engineering & Engineering Management The Chinese University of Hong Kong (Joint Work with Senshan Ji Kam-Fung

More information

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Bounded Model Checking with SAT/SMT Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Recap: Symbolic Model Checking with BDDs Method used by most industrial strength model checkers:

More information

Chapter 3 Deterministic planning

Chapter 3 Deterministic planning Chapter 3 Deterministic planning In this chapter we describe a number of algorithms for solving the historically most important and most basic type of planning problem. Two rather strong simplifying assumptions

More information

Single Machine Problems Polynomial Cases

Single Machine Problems Polynomial Cases DM204, 2011 SCHEDULING, TIMETABLING AND ROUTING Lecture 2 Single Machine Problems Polynomial Cases Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline

More information

Integer Linear Programs

Integer Linear Programs Lecture 2: Review, Linear Programming Relaxations Today we will talk about expressing combinatorial problems as mathematical programs, specifically Integer Linear Programs (ILPs). We then see what happens

More information

Automata Theory CS Complexity Theory I: Polynomial Time

Automata Theory CS Complexity Theory I: Polynomial Time Automata Theory CS411-2015-17 Complexity Theory I: Polynomial Time David Galles Department of Computer Science University of San Francisco 17-0: Tractable vs. Intractable If a problem is recursive, then

More information

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015 CS 374: Algorithms & Models of Computation, Spring 2015 NP Completeness Lecture 23 November 19, 2015 Chandra & Lenny (UIUC) CS374 1 Spring 2015 1 / 37 Part I NP-Completeness Chandra & Lenny (UIUC) CS374

More information

SDP Relaxations for MAXCUT

SDP Relaxations for MAXCUT SDP Relaxations for MAXCUT from Random Hyperplanes to Sum-of-Squares Certificates CATS @ UMD March 3, 2017 Ahmed Abdelkader MAXCUT SDP SOS March 3, 2017 1 / 27 Overview 1 MAXCUT, Hardness and UGC 2 LP

More information

A Heuristic Algorithm for General Multiple Nonlinear Knapsack Problem

A Heuristic Algorithm for General Multiple Nonlinear Knapsack Problem A Heuristic Algorithm for General Multiple Nonlinear Knapsack Problem Luca Mencarelli mencarelli@lix.polytechnique.fr Poster Session: Oral Presentations Mixed-Integer Nonlinear Programming 2014 Carnegie

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Complexity Theory Umans Complexity Theory Lectures Lecture 1a: Problems and Languages Classify problems according to the computational resources required running time storage space parallelism randomness

More information

arxiv: v1 [cs.ds] 2 Oct 2018

arxiv: v1 [cs.ds] 2 Oct 2018 Contracting to a Longest Path in H-Free Graphs Walter Kern 1 and Daniël Paulusma 2 1 Department of Applied Mathematics, University of Twente, The Netherlands w.kern@twente.nl 2 Department of Computer Science,

More information

CSL 356: Analysis and Design of Algorithms. Ragesh Jaiswal CSE, IIT Delhi

CSL 356: Analysis and Design of Algorithms. Ragesh Jaiswal CSE, IIT Delhi CSL 356: Analysis and Design of Algorithms Ragesh Jaiswal CSE, IIT Delhi Computational Intractability NP and NP-completeness Computational Intractability: NP & NP-complete NP: A problem X is in NP if and

More information

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1 CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Goal: Evaluate the computational requirements (this course s focus: time) to solve

More information

Admin NP-COMPLETE PROBLEMS. Run-time analysis. Tractable vs. intractable problems 5/2/13. What is a tractable problem?

Admin NP-COMPLETE PROBLEMS. Run-time analysis. Tractable vs. intractable problems 5/2/13. What is a tractable problem? Admin Two more assignments No office hours on tomorrow NP-COMPLETE PROBLEMS Run-time analysis Tractable vs. intractable problems We ve spent a lot of time in this class putting algorithms into specific

More information

Determine the size of an instance of the minimum spanning tree problem.

Determine the size of an instance of the minimum spanning tree problem. 3.1 Algorithm complexity Consider two alternative algorithms A and B for solving a given problem. Suppose A is O(n 2 ) and B is O(2 n ), where n is the size of the instance. Let n A 0 be the size of the

More information

A Mixed-Integer Linear Program for the Traveling Salesman Problem with Structured Time Windows

A Mixed-Integer Linear Program for the Traveling Salesman Problem with Structured Time Windows A Mixed-Integer Linear Program for the Traveling Salesman Problem with Structured Time Windows Philipp Hungerländer Christian Truden 5th January 2017 Abstract In this extended abstract we introduce the

More information

Part Assembly Using Static and Dynamic Force Fields

Part Assembly Using Static and Dynamic Force Fields IEEE/RSJ Intl Conf on Intelligent Robots and Systems, Vol 2, p 1468 1474, 2000 Part Assembly Using Static and Dynamic Force Fields Jiangchun Luo Lydia Kavraki Department of Computer Science, Rice University

More information

Priority-based intersection management with kinodynamic constraints

Priority-based intersection management with kinodynamic constraints Priority-based intersection management with kinodynamic constraints Jean Gregoire, Silvère Bonnabel, Arnaud De La Fortelle To cite this version: Jean Gregoire, Silvère Bonnabel, Arnaud De La Fortelle.

More information

Logic, Optimization and Data Analytics

Logic, Optimization and Data Analytics Logic, Optimization and Data Analytics John Hooker Carnegie Mellon University United Technologies Research Center, Cork, Ireland August 2015 Thesis Logic and optimization have an underlying unity. Ideas

More information

Best-Case and Worst-Case Behavior of Greedy Best-First Search

Best-Case and Worst-Case Behavior of Greedy Best-First Search Best-Case and Worst-Case Behavior of Greedy Best-First Search Manuel Heusner, Thomas Keller and Malte Helmert University of Basel, Switzerland {manuel.heusner,tho.keller,malte.helmert}@unibas.ch Abstract

More information

Midterm II : Formal Languages, Automata, and Computability

Midterm II : Formal Languages, Automata, and Computability Midterm II 15-453: Formal Languages, Automata, and Computability Lenore Blum, Asa Frank, Aashish Jindia, and Andrew Smith April 8, 2014 Instructions: 1. Once the exam begins, write your name on each sheet.

More information

NP-Completeness. A language B is NP-complete iff B NP. This property means B is NP hard

NP-Completeness. A language B is NP-complete iff B NP. This property means B is NP hard NP-Completeness A language B is NP-complete iff B NP A NP A P B This property means B is NP hard 1 3SAT is NP-complete 2 Result Idea: B is known to be NP complete Use it to prove NP-Completeness of C IF

More information

Graph Theory and Optimization Computational Complexity (in brief)

Graph Theory and Optimization Computational Complexity (in brief) Graph Theory and Optimization Computational Complexity (in brief) Nicolas Nisse Inria, France Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France September 2015 N. Nisse Graph Theory

More information

LOCAL NAVIGATION. Dynamic adaptation of global plan to local conditions A.K.A. local collision avoidance and pedestrian models

LOCAL NAVIGATION. Dynamic adaptation of global plan to local conditions A.K.A. local collision avoidance and pedestrian models LOCAL NAVIGATION 1 LOCAL NAVIGATION Dynamic adaptation of global plan to local conditions A.K.A. local collision avoidance and pedestrian models 2 LOCAL NAVIGATION Why do it? Could we use global motion

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Chapter 26 Semidefinite Programming Zacharias Pitouras 1 Introduction LP place a good lower bound on OPT for NP-hard problems Are there other ways of doing this? Vector programs

More information

Robotics. Path Planning. Marc Toussaint U Stuttgart

Robotics. Path Planning. Marc Toussaint U Stuttgart Robotics Path Planning Path finding vs. trajectory optimization, local vs. global, Dijkstra, Probabilistic Roadmaps, Rapidly Exploring Random Trees, non-holonomic systems, car system equation, path-finding

More information

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam Limits to Approximability: When Algorithms Won't Help You Note: Contents of today s lecture won t be on the exam Outline Limits to Approximability: basic results Detour: Provers, verifiers, and NP Graph

More information

Coloring Fuzzy Graphs and Traffic Light Problem

Coloring Fuzzy Graphs and Traffic Light Problem The Journal of Mathematics and Computer Science Available online at http://www.tjmcs.com The Journal of Mathematics and Computer Science Vol.2 No.3 (2011) 431-435 Coloring Fuzzy Graphs and Traffic Light

More information

Approximability of Dense Instances of Nearest Codeword Problem

Approximability of Dense Instances of Nearest Codeword Problem Approximability of Dense Instances of Nearest Codeword Problem Cristina Bazgan 1, W. Fernandez de la Vega 2, Marek Karpinski 3 1 Université Paris Dauphine, LAMSADE, 75016 Paris, France, bazgan@lamsade.dauphine.fr

More information

P versus NP. Math 40210, Spring April 8, Math (Spring 2012) P versus NP April 8, / 9

P versus NP. Math 40210, Spring April 8, Math (Spring 2012) P versus NP April 8, / 9 P versus NP Math 40210, Spring 2014 April 8, 2014 Math 40210 (Spring 2012) P versus NP April 8, 2014 1 / 9 Properties of graphs A property of a graph is anything that can be described without referring

More information

Optimal Collision Avoidance and Formation Switching on Riemannian Manifolds 1

Optimal Collision Avoidance and Formation Switching on Riemannian Manifolds 1 Optimal Collision Avoidance and Formation Switching on Riemannian Manifolds Jianghai Hu and Shankar Sastry {jianghai,sastry}@eecs.berkeley.edu Department of Electrical Eng. & Comp. Science University of

More information

CHAPTER 3: INTEGER PROGRAMMING

CHAPTER 3: INTEGER PROGRAMMING CHAPTER 3: INTEGER PROGRAMMING Overview To this point, we have considered optimization problems with continuous design variables. That is, the design variables can take any value within a continuous feasible

More information

Plowing with Multiple Plows

Plowing with Multiple Plows Plowing with Multiple Plows A Variant of the Windy Postman Problem May 22, 2012 ODYSSEUS 2012 Benjamin Dussault, Bruce Golden, and Edward Wasil 1 Overview Background The Chinese Postman Problem and the

More information

Scheduling on Unrelated Parallel Machines. Approximation Algorithms, V. V. Vazirani Book Chapter 17

Scheduling on Unrelated Parallel Machines. Approximation Algorithms, V. V. Vazirani Book Chapter 17 Scheduling on Unrelated Parallel Machines Approximation Algorithms, V. V. Vazirani Book Chapter 17 Nicolas Karakatsanis, 2008 Description of the problem Problem 17.1 (Scheduling on unrelated parallel machines)

More information

COP 4531 Complexity & Analysis of Data Structures & Algorithms

COP 4531 Complexity & Analysis of Data Structures & Algorithms COP 4531 Complexity & Analysis of Data Structures & Algorithms Lecture 18 Reductions and NP-completeness Thanks to Kevin Wayne and the text authors who contributed to these slides Classify Problems According

More information

Pareto Optimality in Coalition Formation

Pareto Optimality in Coalition Formation Pareto Optimality in Coalition Formation Haris Aziz Felix Brandt Paul Harrenstein Technische Universität München IJCAI Workshop on Social Choice and Artificial Intelligence, July 16, 2011 1 / 21 Coalition

More information

15.083J/6.859J Integer Optimization. Lecture 2: Efficient Algorithms and Computational Complexity

15.083J/6.859J Integer Optimization. Lecture 2: Efficient Algorithms and Computational Complexity 15.083J/6.859J Integer Optimization Lecture 2: Efficient Algorithms and Computational Complexity 1 Outline Efficient algorithms Slide 1 Complexity The classes P and N P The classes N P-complete and N P-hard

More information

The NP-hardness of finding a directed acyclic graph for regular resolution

The NP-hardness of finding a directed acyclic graph for regular resolution The NP-hardness of finding a directed acyclic graph for regular resolution Samuel R. Buss Department of Mathematics University of California, San Diego La Jolla, CA 92093-0112, USA sbuss@math.ucsd.edu

More information

Worst-Case Solution Quality Analysis When Not Re-Expanding Nodes in Best-First Search

Worst-Case Solution Quality Analysis When Not Re-Expanding Nodes in Best-First Search Worst-Case Solution Quality Analysis When Not Re-Expanding Nodes in Best-First Search Richard Valenzano University of Alberta valenzan@ualberta.ca Nathan R. Sturtevant University of Denver sturtevant@cs.du.edu

More information

Projection in Logic, CP, and Optimization

Projection in Logic, CP, and Optimization Projection in Logic, CP, and Optimization John Hooker Carnegie Mellon University Workshop on Logic and Search Melbourne, 2017 Projection as a Unifying Concept Projection is a fundamental concept in logic,

More information

CS 6505, Complexity and Algorithms Week 7: NP Completeness

CS 6505, Complexity and Algorithms Week 7: NP Completeness CS 6505, Complexity and Algorithms Week 7: NP Completeness Reductions We have seen some problems in P and NP, and we ve talked about space complexity. The Space Hierarchy Theorem showed us that there are

More information

Lecture 18: Inapproximability of MAX-3-SAT

Lecture 18: Inapproximability of MAX-3-SAT CS 880: Advanced Complexity Theory 3/7/2008 Lecture 18: Inapproximability of MAX-3-SAT Instructor: Dieter van Melkebeek Scribe: Jeff Kinne In this lecture we prove a tight inapproximability result for

More information

Equitable and semi-equitable coloring of cubic graphs and its application in batch scheduling

Equitable and semi-equitable coloring of cubic graphs and its application in batch scheduling Equitable and semi-equitable coloring of cubic graphs and its application in batch scheduling Hanna Furmańczyk, Marek Kubale Abstract In the paper we consider the problems of equitable and semi-equitable

More information

Logic-based Benders Decomposition

Logic-based Benders Decomposition Logic-based Benders Decomposition A short Introduction Martin Riedler AC Retreat Contents 1 Introduction 2 Motivation 3 Further Notes MR Logic-based Benders Decomposition June 29 July 1 2 / 15 Basic idea

More information

Correctness of Dijkstra s algorithm

Correctness of Dijkstra s algorithm Correctness of Dijkstra s algorithm Invariant: When vertex u is deleted from the priority queue, d[u] is the correct length of the shortest path from the source s to vertex u. Additionally, the value d[u]

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 32. Propositional Logic: Local Search and Outlook Martin Wehrle Universität Basel April 29, 2016 Propositional Logic: Overview Chapter overview: propositional logic

More information

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle Directed Hamiltonian Cycle Chapter 8 NP and Computational Intractability Claim. G has a Hamiltonian cycle iff G' does. Pf. Suppose G has a directed Hamiltonian cycle Γ. Then G' has an undirected Hamiltonian

More information

Computational Intractability 2010/4/15. Lecture 2

Computational Intractability 2010/4/15. Lecture 2 Computational Intractability 2010/4/15 Professor: David Avis Lecture 2 Scribe:Naoki Hatta 1 P and NP 1.1 Definition of P and NP Decision problem it requires yes/no answer. Example: X is a set of strings.

More information

Complexity, P and NP

Complexity, P and NP Complexity, P and NP EECS 477 Lecture 21, 11/26/2002 Last week Lower bound arguments Information theoretic (12.2) Decision trees (sorting) Adversary arguments (12.3) Maximum of an array Graph connectivity

More information

Predicting the Performance of IDA* with Conditional Distributions

Predicting the Performance of IDA* with Conditional Distributions Predicting the Performance of IDA* with Conditional Distributions Uzi Zahavi Computer Science Bar-Ilan University Ramat-Gan, Israel 92500 zahaviu@cs.biu.ac.il Ariel Felner Information Systems Engineering

More information

A Hierarchical Model-based Optimization Control Method for Merging of Connected Automated Vehicles. Na Chen, Meng Wang, Tom Alkim, Bart van Arem

A Hierarchical Model-based Optimization Control Method for Merging of Connected Automated Vehicles. Na Chen, Meng Wang, Tom Alkim, Bart van Arem A Hierarchical Model-based Optimization Control Method for Merging of Connected Automated Vehicles Na Chen, Meng Wang, Tom Alkim, Bart van Arem 1 Background Vehicle-to-Vehicle communication Vehicle-to-Infrastructure

More information

Hamiltonian(t) - An Ant-Inspired Heuristic for Recognizing Hamiltonian Graphs

Hamiltonian(t) - An Ant-Inspired Heuristic for Recognizing Hamiltonian Graphs to appear in CEC 99 Hamiltonian(t) - An Ant-Inspired Heuristic for Recognizing Hamiltonian Graphs Israel A Wagner and Alfred M Bruckstein 3 IBM Haifa Research Lab, Matam, Haifa 395, Israel Department of

More information

CSCI3390-Lecture 16: NP-completeness

CSCI3390-Lecture 16: NP-completeness CSCI3390-Lecture 16: NP-completeness 1 Summary We recall the notion of polynomial-time reducibility. This is just like the reducibility we studied earlier, except that we require that the function mapping

More information