Approximation Algorithms

Size: px
Start display at page:

Download "Approximation Algorithms"

Transcription

1 Approximation Algorithms Chapter 26 Semidefinite Programming Zacharias Pitouras 1

2 Introduction LP place a good lower bound on OPT for NP-hard problems Are there other ways of doing this? Vector programs provide another class of relaxations For problems expressed as strict quadratic programs Vector programs are equivalent to semidefinite programs Semidefinite programs can be solved in time polynomial in n and log(1/ε) A factor algorithm for MAX-CUT 2

3 Contents Strict quadratic programs and vector programs Properties of positive semidefinite matrices The semidefinite programming problem Randomized rounding algorithm Improving the guarantee for MAX-2SAT Notes 3

4 The maximum cut problem MAX-CUT Given an undirected graph G=(V,E), with edge weights w: E Q +, find a partition ( SS, ) of V so as to maximize the total weight of edges in this cut, i.e., edges that have one endpoint in S and one endpoint in S. 4

5 Strict quadratic programs and vector programs (1) A quadratic program is the problem of optimizing a quadratic function of integer valued variables, subject to quadratic constraints on these variables. Strict quadratic program: monomials of degree 0 or 2. Strict quadratic program for MAX-CUT: y i an indicator variable for vertex υ i with values +1 or -1. Partition, S = { υi yi = 1, } S = { υi yi = 1} If υ i and υ j on opposite sides, then yy i j = 1 and edge contributes w ij to objective function On the other hand, edge makes no contribution. 5

6 Strict quadratic programs and vector programs (2) An optimal solution to this program is a maximum cut in G. 1 maximize w 1 2 < 1 ( yy ) ij i j i j n 2 subject to yi 1, υi = V y i Z, υ V i 6

7 Strict quadratic programs and vector programs (3) This program relaxes to a vector program A vector program is defined over n vector variables in R n, say υ 1, υ 2,, υ n, and is the problem of optimizing a linear function of the inner products υ i. υ j for 1 i j n, subject to linear constraints on these inner products A vector program is obtained from a linear program by replacing each variable with an inner product of a pair of these vectors 7

8 Strict quadratic programs and vector programs (4) A strict quadratic program over n integer variables defines a vector program over n vector variables in R n Establish a correspondence between the n integer variables and the n vector variables, and replace each degree 2 term with the corresponding inner product y i. y j is replaced with υ i. υ j 8

9 Strict quadratic programs and vector programs (5) Vector program for MAX-CUT 1 maximize w < i j n ( υυ ) ij i j subject to υ υ = 1, υ i i i V n υi R, υi V 9

10 Strict quadratic programs and vector programs (6) Because of the constraint υ i. υ j =1, the vectors υ 1, υ 2,, υ n are constrained to lie on the n- dimensional sphere S n-1 Any feasible solution to the strict quadratic program of MAX-CUT yields a solution to the vector program ( y ) i,0,...,0 is assigned to υ The vector program corresponding to a strict quadratic program is a relaxation of the quadratic program providing an upper bound on OPT Vector programs are approximable to any desired degree of accuracy in polynomial time i 10

11 Properties of positive semidefinite matrices (1) Let A be a real, symmetric n n matrix Then A has real eigenvalues and has n linearly independent eigenvectors A is positive semidefinite if n T x R, x Ax 0 Theorem 26.3 Let A be a real symmetric n n matrix. Then the following are equivalent: n T 1. x R, x Ax 0 2. All eigenvalues of A are nonnegative 3. There is an n n real matrix W, such that A = W T W 11

12 Properties of positive semidefinite matrices (2) 12

13 Properties of positive semidefinite matrices (3) With Cholesky decomposition a real symmetric matrix can be decomposed in polynomial time as A = UΛU T, where Λ is a diagonal matrix whose diagonal entries are the eigenvalues of A A is positive semidefinite if all the entries of Λ are nonnegative giving a polynomial time test for positive semidefiniteness The decomposition WW T is not polynomial time computable, but can be approcimated The sum of two positive semidefinite matrices is also positive semidefinite Convex combination is also positive semidefinite 13

14 The semidefinite programming problem (1) Let Y be an n n matrix of real valued variables with y ij entry The semidefinite programming problem is the problem of maximizing a linear function of the y ij s, subject to linear constraints on them, and the additional constraint that Y be symmetric and positive semidefinite 14

15 The semidefinite programming problem (2) Denote by R n n the space of n n real matrices The trace of a matrix A is the sum of its diagonal entries and is denoted by tr(a) The Frobenius inner product of matrices A, B is defined to be T A B= tr( AB) = ab ij i= 1 j= 1 M n denotes the cone of symmetric n n real matrices For A M A denotes that A is pos. sem. n, 0 n n ij 15

16 The semidefinite programming problem (3) The general semidefinite programming problem, S: max imize C Y subject to D Y = d, 1 i k Y i 0, Y M n i 16

17 The semidefinite programming problem (4) A matrix satisfying all the constraints is a feasible solution and so is any convex combination of these solutions Let A be an infeasible point. Let C be another point. A hyperplane C Y b is called a seperating hyperplane for A if all feasible points satisfy it and point A does not Theorem 26.4 Let S be a semidefinite programming problem, and A be a point in R n n. We can determine in polynomial time, whether A is feasible for S and, if it is not, find a separating hyperplane. 17

18 The semidefinite programming problem (4) Proof: Testing for feasibility involves ensuring that A is symmetric and positive semidefinite and satisfies all the constraints. This can be done in polynomial time. If A is infeasible, a separating hyperplane is obtained as follows. If A is not symmetric, α ij > α ji for some i,j. Then y ij y ji is a separating hyperplane If A is not positive semidefinite, then it has a negative eigenvalue, say λ, and υ the corresponding eigenvector. Then, ( T) T υυ Y= υ Yυ 0 is a separating hyperplane. If any of the linear constraints is violated, it directly yields a separating hyperplane 18

19 The semidefinite programming problem (5) Let V be a vector program on n n-dimensional vector variables υ 1, υ 2,, υ n. Define the corresponding semidefinite program, S, over n 2 variables y ij, for 1 i,j n as follows: Replace each inner product υ i. υ j by the variable y ij. Require that matrix Y is symmetric and positive semidefinite Lemma 26.5 Vector program V is equivalent to semidefinite program S 19

20 The semidefinite programming problem (6) Proof: One must show that corresponding to each feasible solution to V, there is a feasible solution to S of the same objective function value and vice versa Let α 1,, α n be a feasible solution to V. Let W be the matrix whose columns are α 1,, α n Then it is easy to see that A=W T W is a feasible solution to S having the same objective function value Let A be a feasible solution to S. By theorem 26.3 there is a n n matrix W such that A=W T W. Let α 1,, α n be the columns of W. Then it is easy to see that α 1,, α n is a feasible solution to V having the same objective function value 20

21 The semidefinite programming problem (7) The semidefinite programming relaxation to MAX-CUT is: 1 maximize w 1 2 < 1 ( yy ) ij i j i j n 2 subject to yi 1, υi = V Y Y 0, M n 21

22 Randomized rounding algorithm (1) Assume we have an optimal solution to the vector program Let α 1,, α n be an optimal solution and let OPT υ denote its objective function value These vectors lie on the n-dimensional unit sphere S n-1 We need a cut ( SS, ) whose weight is a large fraction of OPT υ 22

23 Randomized rounding algorithm (2) Let θ ij denote the angle between vectors α i and α j. The contribution of this pair of vectors to OPT υ is, w ij 2 (1 cos θ ) ij The closer θ ij is to π, the larger the contribution will be Pick r to be a uniformly distributed vector on the unit sphere and let S = { υ a r 0} i i 23

24 Randomized rounding algorithm (3) Lemma 26.6 Pr[ υ i and υ j are separated]= θ ij /π Proof: Project r onto the plane containing α i and α j Now, vertices υ i and υ j will be separated iff the projection lies in one of the two arcs of angle θ ij. Since r has been picked from a spherically symmetric distribution, its projection will be a random direction in the plane. The lemma follows. 24

25 Randomized rounding algorithm (4) Lemma 26.7 Let x 1,, x n be picked independently from the normal distribution with mean 0 and unit standard 2 2 deviation. Let d = x xn Then, ( x /,..., / ) is a random vector on the unit 1 d xn d sphere. Algorithm 26.8 (MAX-CUT) 1. Solve vector program V. Let α 1,, α n be an optimal solution. 2. Pick r to be a uniformly distributed vector on the unit sphere. 3. Let S = υ a r 0 { } i i 25

26 Randomized rounding algorithm (5) Lemma 26.9 E[W] α*opt υ Corollary The integrality gap for vector relaxation is at least a> Theorem There is a randomized approximation algorithm for MAX-CUT achieving an approximation factor of

27 Improving the guarantee for MAX- 2SAT (1) MAX-2SAT is the restriction of MAX- SAT to formulae in which each clause contains at most two literals Already obtained a ¾ algorithm for that Semidefinite programming gives an improved algorithm Idea: convert the obvious quadratic program into a strict quadratic program 27

28 Improving the guarantee for MAX- 2SAT (2) To each Boolean variable x i introduce variable y i which is constrained to be either +1 or -1, for 1 i n. In addition introduce another variable y 0 which is also constrained to be either +1 or -1. x i is true if y i = y 0 and false otherwise The value υ(c) of clause C is defined to be 1 if C is satisfied and 0 otherwise For clauses containing only one literal 1+ yy 0 i 1 yy 0 υ( xi) = and υ( xi) = 2 2 i 28

29 Improving the guarantee for MAX- 2SAT (3) For a clause with 2 literals 1 yy1 yy 0 i 0 υ( xi xj) = 1 υ( xi) υ( xj) = ( 3 2 = + yy ) 0 i + yy 0 j yyy 0 i j 4 1+ yy 1+ yy 1 yy 0 i 0 j i j = j 29

30 Improving the guarantee for MAX- 2SAT (4) MAX-2SAT can be written as a strict quadratic program 0 < i j n ( + yy ) + b ( yy ) maximize α 1 1 ij i j ij i j 2 subject to i 1, 0 y = i n y Z, 0 i n i 30

31 Improving the guarantee for MAX- 2SAT (5) Corresponding vector program relaxation where vector variable υ i corresponds to y i 0 < i j n ( + ) + b ( ) maximize α 1 υ υ 1 υ υ ij i j ij i j subject to υi υj = 1, 0 i n n+ υ 1 i R, 0 i n 31

32 Improving the guarantee for MAX- 2SAT (6) The algorithm is similar to that for MAX- CUT Let α 0,, α n be an optimal solution. Pick a vector r uniformly distributed on the unit sphere in (n+1) dimensions and let y i = 1 iff r a 0 for 0 i n i This gives a truth assignment for the Boolean variables Let W be the random variable denoting the weight of this truth assignment 32

33 Improving the guarantee for MAX- 2SAT (7) Lemma E[W] α * OPT υ Proof: E[ ] W = 2 aij Pr[ yi = yj ] + bij Pr[ yi yj ] 0 < i j n let θ ij denote the angle between a i and a j θij a Pr[ y ] ( 1 cos ) i yj = θij and π 2 θij a Pr[ y ] 1 ( 1 cos ) i = yj = + θij π 2 Therefore, [ ] ( θ ) ( θ ) E W a aij 1+ cos ij + bij 1 cos ij = a OPTυ 0 < i j n 33

34 The END 34

Lecture Semidefinite Programming and Graph Partitioning

Lecture Semidefinite Programming and Graph Partitioning Approximation Algorithms and Hardness of Approximation April 16, 013 Lecture 14 Lecturer: Alantha Newman Scribes: Marwa El Halabi 1 Semidefinite Programming and Graph Partitioning In previous lectures,

More information

Lecture 17 (Nov 3, 2011 ): Approximation via rounding SDP: Max-Cut

Lecture 17 (Nov 3, 2011 ): Approximation via rounding SDP: Max-Cut CMPUT 675: Approximation Algorithms Fall 011 Lecture 17 (Nov 3, 011 ): Approximation via rounding SDP: Max-Cut Lecturer: Mohammad R. Salavatipour Scribe: based on older notes 17.1 Approximation Algorithm

More information

Lecture 21 (Oct. 24): Max Cut SDP Gap and Max 2-SAT

Lecture 21 (Oct. 24): Max Cut SDP Gap and Max 2-SAT CMPUT 67: Approximation Algorithms Fall 014 Lecture 1 Oct. 4): Max Cut SDP Gap and Max -SAT Lecturer: Zachary Friggstad Scribe: Chris Martin 1.1 Near-Tight Analysis of the Max Cut SDP Recall the Max Cut

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization April 6, 2018 1 / 34 This material is covered in the textbook, Chapters 9 and 10. Some of the materials are taken from it. Some of

More information

SDP Relaxations for MAXCUT

SDP Relaxations for MAXCUT SDP Relaxations for MAXCUT from Random Hyperplanes to Sum-of-Squares Certificates CATS @ UMD March 3, 2017 Ahmed Abdelkader MAXCUT SDP SOS March 3, 2017 1 / 27 Overview 1 MAXCUT, Hardness and UGC 2 LP

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Basics and SOS Fernando Mário de Oliveira Filho Campos do Jordão, 2 November 23 Available at: www.ime.usp.br/~fmario under talks Conic programming V is a real vector space h, i

More information

Introduction to Semidefinite Programming I: Basic properties a

Introduction to Semidefinite Programming I: Basic properties a Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut MFO seminar on Semidefinite Programming May 30, 2010 Semidefinite

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Lecture 10. Semidefinite Programs and the Max-Cut Problem Max Cut

Lecture 10. Semidefinite Programs and the Max-Cut Problem Max Cut Lecture 10 Semidefinite Programs and the Max-Cut Problem In this class we will finally introduce the content from the second half of the course title, Semidefinite Programs We will first motivate the discussion

More information

Lecture 20: Goemans-Williamson MAXCUT Approximation Algorithm. 2 Goemans-Williamson Approximation Algorithm for MAXCUT

Lecture 20: Goemans-Williamson MAXCUT Approximation Algorithm. 2 Goemans-Williamson Approximation Algorithm for MAXCUT CS 80: Introduction to Complexity Theory 0/03/03 Lecture 20: Goemans-Williamson MAXCUT Approximation Algorithm Instructor: Jin-Yi Cai Scribe: Christopher Hudzik, Sarah Knoop Overview First, we outline

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.85J / 8.5J Advanced Algorithms Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.5/6.85 Advanced Algorithms

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

Convex and Semidefinite Programming for Approximation

Convex and Semidefinite Programming for Approximation Convex and Semidefinite Programming for Approximation We have seen linear programming based methods to solve NP-hard problems. One perspective on this is that linear programming is a meta-method since

More information

Lecture 8: The Goemans-Williamson MAXCUT algorithm

Lecture 8: The Goemans-Williamson MAXCUT algorithm IU Summer School Lecture 8: The Goemans-Williamson MAXCUT algorithm Lecturer: Igor Gorodezky The Goemans-Williamson algorithm is an approximation algorithm for MAX-CUT based on semidefinite programming.

More information

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3 MI 6.97 Algebraic techniques and semidefinite optimization February 4, 6 Lecture 3 Lecturer: Pablo A. Parrilo Scribe: Pablo A. Parrilo In this lecture, we will discuss one of the most important applications

More information

Lecture: Examples of LP, SOCP and SDP

Lecture: Examples of LP, SOCP and SDP 1/34 Lecture: Examples of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn Acknowledgement:

More information

Grothendieck s Inequality

Grothendieck s Inequality Grothendieck s Inequality Leqi Zhu 1 Introduction Let A = (A ij ) R m n be an m n matrix. Then A defines a linear operator between normed spaces (R m, p ) and (R n, q ), for 1 p, q. The (p q)-norm of A

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Introduction to Matrix Algebra August 18, 2010 1 Vectors 1.1 Notations A p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the line. When p

More information

Approximation Preserving Reductions

Approximation Preserving Reductions Approximation Preserving Reductions - Memo Summary - AP-reducibility - L-reduction technique - Complete problems - Examples: MAXIMUM CLIQUE, MAXIMUM INDEPENDENT SET, MAXIMUM 2-SAT, MAXIMUM NAE 3-SAT, MAXIMUM

More information

Acyclic Semidefinite Approximations of Quadratically Constrained Quadratic Programs

Acyclic Semidefinite Approximations of Quadratically Constrained Quadratic Programs Acyclic Semidefinite Approximations of Quadratically Constrained Quadratic Programs Raphael Louca & Eilyan Bitar School of Electrical and Computer Engineering American Control Conference (ACC) Chicago,

More information

Lectures 6, 7 and part of 8

Lectures 6, 7 and part of 8 Lectures 6, 7 and part of 8 Uriel Feige April 26, May 3, May 10, 2015 1 Linear programming duality 1.1 The diet problem revisited Recall the diet problem from Lecture 1. There are n foods, m nutrients,

More information

Scheduling on Unrelated Parallel Machines. Approximation Algorithms, V. V. Vazirani Book Chapter 17

Scheduling on Unrelated Parallel Machines. Approximation Algorithms, V. V. Vazirani Book Chapter 17 Scheduling on Unrelated Parallel Machines Approximation Algorithms, V. V. Vazirani Book Chapter 17 Nicolas Karakatsanis, 2008 Description of the problem Problem 17.1 (Scheduling on unrelated parallel machines)

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.854J / 18.415J Advanced Algorithms Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advanced

More information

Linear Programming. Scheduling problems

Linear Programming. Scheduling problems Linear Programming Scheduling problems Linear programming (LP) ( )., 1, for 0 min 1 1 1 1 1 11 1 1 n i x b x a x a b x a x a x c x c x z i m n mn m n n n n! = + + + + + + = Extreme points x ={x 1,,x n

More information

Summer School: Semidefinite Optimization

Summer School: Semidefinite Optimization Summer School: Semidefinite Optimization Christine Bachoc Université Bordeaux I, IMB Research Training Group Experimental and Constructive Algebra Haus Karrenberg, Sept. 3 - Sept. 7, 2012 Duality Theory

More information

16.1 L.P. Duality Applied to the Minimax Theorem

16.1 L.P. Duality Applied to the Minimax Theorem CS787: Advanced Algorithms Scribe: David Malec and Xiaoyong Chai Lecturer: Shuchi Chawla Topic: Minimax Theorem and Semi-Definite Programming Date: October 22 2007 In this lecture, we first conclude our

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

Handout 6: Some Applications of Conic Linear Programming

Handout 6: Some Applications of Conic Linear Programming ENGG 550: Foundations of Optimization 08 9 First Term Handout 6: Some Applications of Conic Linear Programming Instructor: Anthony Man Cho So November, 08 Introduction Conic linear programming CLP, and

More information

1 Positive definiteness and semidefiniteness

1 Positive definiteness and semidefiniteness Positive definiteness and semidefiniteness Zdeněk Dvořák May 9, 205 For integers a, b, and c, let D(a, b, c) be the diagonal matrix with + for i =,..., a, D i,i = for i = a +,..., a + b,. 0 for i = a +

More information

Lecture 6,7 (Sept 27 and 29, 2011 ): Bin Packing, MAX-SAT

Lecture 6,7 (Sept 27 and 29, 2011 ): Bin Packing, MAX-SAT ,7 CMPUT 675: Approximation Algorithms Fall 2011 Lecture 6,7 (Sept 27 and 29, 2011 ): Bin Pacing, MAX-SAT Lecturer: Mohammad R. Salavatipour Scribe: Weitian Tong 6.1 Bin Pacing Problem Recall the bin pacing

More information

8 Approximation Algorithms and Max-Cut

8 Approximation Algorithms and Max-Cut 8 Approximation Algorithms and Max-Cut 8. The Max-Cut problem Unless the widely believed P N P conjecture is false, there is no polynomial algorithm that can solve all instances of an NP-hard problem.

More information

Notes on the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre by M. Laurent, December 13, 2012

Notes on the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre by M. Laurent, December 13, 2012 Notes on the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre by M. Laurent, December 13, 2012 We present the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre

More information

Approximations for MAX-SAT Problem

Approximations for MAX-SAT Problem Approximations for MAX-SAT Problem Chihao Zhang BASICS, Shanghai Jiao Tong University Oct. 23, 2012 Chihao Zhang (BASICS@SJTU) Approximations for MAX-SAT Problem Oct. 23, 2012 1 / 16 The Weighted MAX-SAT

More information

Approximations for MAX-SAT Problem

Approximations for MAX-SAT Problem Approximations for MAX-SAT Problem Chihao Zhang BASICS, Shanghai Jiao Tong University Oct. 23, 2012 Chihao Zhang (BASICS@SJTU) Approximations for MAX-SAT Problem Oct. 23, 2012 1 / 16 The Weighted MAX-SAT

More information

Symmetric matrices and dot products

Symmetric matrices and dot products Symmetric matrices and dot products Proposition An n n matrix A is symmetric iff, for all x, y in R n, (Ax) y = x (Ay). Proof. If A is symmetric, then (Ax) y = x T A T y = x T Ay = x (Ay). If equality

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

Basic Concepts in Matrix Algebra

Basic Concepts in Matrix Algebra Basic Concepts in Matrix Algebra An column array of p elements is called a vector of dimension p and is written as x p 1 = x 1 x 2. x p. The transpose of the column vector x p 1 is row vector x = [x 1

More information

Mathematics 530. Practice Problems. n + 1 }

Mathematics 530. Practice Problems. n + 1 } Department of Mathematical Sciences University of Delaware Prof. T. Angell October 19, 2015 Mathematics 530 Practice Problems 1. Recall that an indifference relation on a partially ordered set is defined

More information

Convex relaxation. In example below, we have N = 6, and the cut we are considering

Convex relaxation. In example below, we have N = 6, and the cut we are considering Convex relaxation The art and science of convex relaxation revolves around taking a non-convex problem that you want to solve, and replacing it with a convex problem which you can actually solve the solution

More information

Asymptotic Polynomial-Time Approximation (APTAS) and Randomized Approximation Algorithms

Asymptotic Polynomial-Time Approximation (APTAS) and Randomized Approximation Algorithms Approximation Algorithms Asymptotic Polynomial-Time Approximation (APTAS) and Randomized Approximation Algorithms Jens Egeblad November 29th, 2006 Agenda First lesson (Asymptotic Approximation): Bin-Packing

More information

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source

More information

This property turns out to be a general property of eigenvectors of a symmetric A that correspond to distinct eigenvalues as we shall see later.

This property turns out to be a general property of eigenvectors of a symmetric A that correspond to distinct eigenvalues as we shall see later. 34 To obtain an eigenvector x 2 0 2 for l 2 = 0, define: B 2 A - l 2 I 2 = È 1, 1, 1 Î 1-0 È 1, 0, 0 Î 1 = È 1, 1, 1 Î 1. To transform B 2 into an upper triangular matrix, subtract the first row of B 2

More information

1 The independent set problem

1 The independent set problem ORF 523 Lecture 11 Spring 2016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Tuesday, March 29, 2016 When in doubt on the accuracy of these notes, please cross chec with the instructor

More information

There are two types of problems:

There are two types of problems: Np-complete Introduction: There are two types of problems: Two classes of algorithms: Problems whose time complexity is polynomial: O(logn), O(n), O(nlogn), O(n 2 ), O(n 3 ) Examples: searching, sorting,

More information

Integer Programming Methods LNMB

Integer Programming Methods LNMB Integer Programming Methods LNMB 2017 2018 Dion Gijswijt homepage.tudelft.nl/64a8q/intpm/ Dion Gijswijt Intro IntPM 2017-2018 1 / 24 Organisation Webpage: homepage.tudelft.nl/64a8q/intpm/ Book: Integer

More information

Positive Semi-definite programing and applications for approximation

Positive Semi-definite programing and applications for approximation Combinatorial Optimization 1 Positive Semi-definite programing and applications for approximation Guy Kortsarz Combinatorial Optimization 2 Positive Sem-Definite (PSD) matrices, a definition Note that

More information

Lecture 12 : Graph Laplacians and Cheeger s Inequality

Lecture 12 : Graph Laplacians and Cheeger s Inequality CPS290: Algorithmic Foundations of Data Science March 7, 2017 Lecture 12 : Graph Laplacians and Cheeger s Inequality Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Graph Laplacian Maybe the most beautiful

More information

Lecture 13 March 7, 2017

Lecture 13 March 7, 2017 CS 224: Advanced Algorithms Spring 2017 Prof. Jelani Nelson Lecture 13 March 7, 2017 Scribe: Hongyao Ma Today PTAS/FPTAS/FPRAS examples PTAS: knapsack FPTAS: knapsack FPRAS: DNF counting Approximation

More information

THE EIGENVALUE PROBLEM

THE EIGENVALUE PROBLEM THE EIGENVALUE PROBLEM Let A be an n n square matrix. If there is a number λ and a column vector v 0 for which Av = λv then we say λ is an eigenvalue of A and v is an associated eigenvector. Note that

More information

Advanced Algorithms 南京大学 尹一通

Advanced Algorithms 南京大学 尹一通 Advanced Algorithms 南京大学 尹一通 LP-based Algorithms LP rounding: Relax the integer program to LP; round the optimal LP solution to a nearby feasible integral solution. The primal-dual schema: Find a pair

More information

SEMIDEFINITE PROGRAM BASICS. Contents

SEMIDEFINITE PROGRAM BASICS. Contents SEMIDEFINITE PROGRAM BASICS BRIAN AXELROD Abstract. A introduction to the basics of Semidefinite programs. Contents 1. Definitions and Preliminaries 1 1.1. Linear Algebra 1 1.2. Convex Analysis (on R n

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Notes by Bernd Sturmfels for the lecture on June 26, 208, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra The transition from linear algebra to nonlinear algebra has

More information

An Approximation Algorithm for MAX-2-SAT with Cardinality Constraint

An Approximation Algorithm for MAX-2-SAT with Cardinality Constraint An Approximation Algorithm for MAX-2-SAT with Cardinality Constraint Thomas Hofmeister Informatik 2, Universität Dortmund, 44221 Dortmund, Germany th01@ls2.cs.uni-dortmund.de Abstract. We present a randomized

More information

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009 LMI MODELLING 4. CONVEX LMI MODELLING Didier HENRION LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ Universidad de Valladolid, SP March 2009 Minors A minor of a matrix F is the determinant of a submatrix

More information

Real Symmetric Matrices and Semidefinite Programming

Real Symmetric Matrices and Semidefinite Programming Real Symmetric Matrices and Semidefinite Programming Tatsiana Maskalevich Abstract Symmetric real matrices attain an important property stating that all their eigenvalues are real. This gives rise to many

More information

Bare minimum on matrix algebra. Psychology 588: Covariance structure and factor models

Bare minimum on matrix algebra. Psychology 588: Covariance structure and factor models Bare minimum on matrix algebra Psychology 588: Covariance structure and factor models Matrix multiplication 2 Consider three notations for linear combinations y11 y1 m x11 x 1p b11 b 1m y y x x b b n1

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 P and NP P: The family of problems that can be solved quickly in polynomial time.

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016 U.C. Berkeley CS294: Spectral Methods and Expanders Handout Luca Trevisan February 29, 206 Lecture : ARV In which we introduce semi-definite programming and a semi-definite programming relaxation of sparsest

More information

Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then

Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then 1. x S is a global minimum point of f over S if f (x) f (x ) for any x S. 2. x S

More information

Lecture 8 : Eigenvalues and Eigenvectors

Lecture 8 : Eigenvalues and Eigenvectors CPS290: Algorithmic Foundations of Data Science February 24, 2017 Lecture 8 : Eigenvalues and Eigenvectors Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Hermitian Matrices It is simpler to begin with

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 2

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 2 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 2 Instructor: Farid Alizadeh Scribe: Xuan Li 9/17/2001 1 Overview We survey the basic notions of cones and cone-lp and give several

More information

1 T 1 = where 1 is the all-ones vector. For the upper bound, let v 1 be the eigenvector corresponding. u:(u,v) E v 1(u)

1 T 1 = where 1 is the all-ones vector. For the upper bound, let v 1 be the eigenvector corresponding. u:(u,v) E v 1(u) CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh (rezab@stanford.edu) Final Review Session 03/20/17 1. Let G = (V, E) be an unweighted, undirected graph. Let λ 1 be the maximum eigenvalue

More information

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION henrion

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION   henrion COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS Didier HENRION www.laas.fr/ henrion October 2006 Geometry of LMI sets Given symmetric matrices F i we want to characterize the shape in R n of the LMI set F

More information

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018 MATH 57: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 18 1 Global and Local Optima Let a function f : S R be defined on a set S R n Definition 1 (minimizers and maximizers) (i) x S

More information

7. Symmetric Matrices and Quadratic Forms

7. Symmetric Matrices and Quadratic Forms Linear Algebra 7. Symmetric Matrices and Quadratic Forms CSIE NCU 1 7. Symmetric Matrices and Quadratic Forms 7.1 Diagonalization of symmetric matrices 2 7.2 Quadratic forms.. 9 7.4 The singular value

More information

Convex relaxation. In example below, we have N = 6, and the cut we are considering

Convex relaxation. In example below, we have N = 6, and the cut we are considering Convex relaxation The art and science of convex relaxation revolves around taking a non-convex problem that you want to solve, and replacing it with a convex problem which you can actually solve the solution

More information

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 2003 2003.09.02.10 6. The Positivstellensatz Basic semialgebraic sets Semialgebraic sets Tarski-Seidenberg and quantifier elimination Feasibility

More information

Lecture 4. 1 FPTAS - Fully Polynomial Time Approximation Scheme

Lecture 4. 1 FPTAS - Fully Polynomial Time Approximation Scheme Theory of Computer Science to Msc Students, Spring 2007 Lecturer: Dorit Aharonov Lecture 4 Scribe: Ram Bouobza & Yair Yarom Revised: Shahar Dobzinsi, March 2007 1 FPTAS - Fully Polynomial Time Approximation

More information

Linear Algebra - Part II

Linear Algebra - Part II Linear Algebra - Part II Projection, Eigendecomposition, SVD (Adapted from Sargur Srihari s slides) Brief Review from Part 1 Symmetric Matrix: A = A T Orthogonal Matrix: A T A = AA T = I and A 1 = A T

More information

An 0.5-Approximation Algorithm for MAX DICUT with Given Sizes of Parts

An 0.5-Approximation Algorithm for MAX DICUT with Given Sizes of Parts An 0.5-Approximation Algorithm for MAX DICUT with Given Sizes of Parts Alexander Ageev Refael Hassin Maxim Sviridenko Abstract Given a directed graph G and an edge weight function w : E(G) R +, themaximumdirectedcutproblem(max

More information

Lec. 2: Approximation Algorithms for NP-hard Problems (Part II)

Lec. 2: Approximation Algorithms for NP-hard Problems (Part II) Limits of Approximation Algorithms 28 Jan, 2010 (TIFR) Lec. 2: Approximation Algorithms for NP-hard Problems (Part II) Lecturer: Prahladh Harsha Scribe: S. Ajesh Babu We will continue the survey of approximation

More information

Near-Optimal Algorithms for Maximum Constraint Satisfaction Problems

Near-Optimal Algorithms for Maximum Constraint Satisfaction Problems Near-Optimal Algorithms for Maximum Constraint Satisfaction Problems Moses Charikar Konstantin Makarychev Yury Makarychev Princeton University Abstract In this paper we present approximation algorithms

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review EE 227A: Convex Optimization and Applications January 19 Lecture 2: Linear Algebra Review Lecturer: Mert Pilanci Reading assignment: Appendix C of BV. Sections 2-6 of the web textbook 1 2.1 Vectors 2.1.1

More information

Critical Reading of Optimization Methods for Logical Inference [1]

Critical Reading of Optimization Methods for Logical Inference [1] Critical Reading of Optimization Methods for Logical Inference [1] Undergraduate Research Internship Department of Management Sciences Fall 2007 Supervisor: Dr. Miguel Anjos UNIVERSITY OF WATERLOO Rajesh

More information

Lecture 7: Positive Semidefinite Matrices

Lecture 7: Positive Semidefinite Matrices Lecture 7: Positive Semidefinite Matrices Rajat Mittal IIT Kanpur The main aim of this lecture note is to prepare your background for semidefinite programming. We have already seen some linear algebra.

More information

1 Strict local optimality in unconstrained optimization

1 Strict local optimality in unconstrained optimization ORF 53 Lecture 14 Spring 016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, April 14, 016 When in doubt on the accuracy of these notes, please cross check with the instructor s

More information

Copositive matrices and periodic dynamical systems

Copositive matrices and periodic dynamical systems Extreme copositive matrices and periodic dynamical systems Weierstrass Institute (WIAS), Berlin Optimization without borders Dedicated to Yuri Nesterovs 60th birthday February 11, 2016 and periodic dynamical

More information

1 Review: symmetric matrices, their eigenvalues and eigenvectors

1 Review: symmetric matrices, their eigenvalues and eigenvectors Cornell University, Fall 2012 Lecture notes on spectral methods in algorithm design CS 6820: Algorithms Studying the eigenvalues and eigenvectors of matrices has powerful consequences for at least three

More information

Theory of Computation Chapter 9

Theory of Computation Chapter 9 0-0 Theory of Computation Chapter 9 Guan-Shieng Huang May 12, 2003 NP-completeness Problems NP: the class of languages decided by nondeterministic Turing machine in polynomial time NP-completeness: Cook

More information

Nonconvex Quadratic Programming: Return of the Boolean Quadric Polytope

Nonconvex Quadratic Programming: Return of the Boolean Quadric Polytope Nonconvex Quadratic Programming: Return of the Boolean Quadric Polytope Kurt M. Anstreicher Dept. of Management Sciences University of Iowa Seminar, Chinese University of Hong Kong, October 2009 We consider

More information

Lecture 20: LP Relaxation and Approximation Algorithms. 1 Introduction. 2 Vertex Cover problem. CSCI-B609: A Theorist s Toolkit, Fall 2016 Nov 8

Lecture 20: LP Relaxation and Approximation Algorithms. 1 Introduction. 2 Vertex Cover problem. CSCI-B609: A Theorist s Toolkit, Fall 2016 Nov 8 CSCI-B609: A Theorist s Toolkit, Fall 2016 Nov 8 Lecture 20: LP Relaxation and Approximation Algorithms Lecturer: Yuan Zhou Scribe: Syed Mahbub Hafiz 1 Introduction When variables of constraints of an

More information

Topics in Theoretical Computer Science April 08, Lecture 8

Topics in Theoretical Computer Science April 08, Lecture 8 Topics in Theoretical Computer Science April 08, 204 Lecture 8 Lecturer: Ola Svensson Scribes: David Leydier and Samuel Grütter Introduction In this lecture we will introduce Linear Programming. It was

More information

The maximal stable set problem : Copositive programming and Semidefinite Relaxations

The maximal stable set problem : Copositive programming and Semidefinite Relaxations The maximal stable set problem : Copositive programming and Semidefinite Relaxations Kartik Krishnan Department of Mathematical Sciences Rensselaer Polytechnic Institute Troy, NY 12180 USA kartis@rpi.edu

More information

1 Last time: least-squares problems

1 Last time: least-squares problems MATH Linear algebra (Fall 07) Lecture Last time: least-squares problems Definition. If A is an m n matrix and b R m, then a least-squares solution to the linear system Ax = b is a vector x R n such that

More information

Convex Optimization in Classification Problems

Convex Optimization in Classification Problems New Trends in Optimization and Computational Algorithms December 9 13, 2001 Convex Optimization in Classification Problems Laurent El Ghaoui Department of EECS, UC Berkeley elghaoui@eecs.berkeley.edu 1

More information

Math Matrix Algebra

Math Matrix Algebra Math 44 - Matrix Algebra Review notes - (Alberto Bressan, Spring 7) sec: Orthogonal diagonalization of symmetric matrices When we seek to diagonalize a general n n matrix A, two difficulties may arise:

More information

IE418 Integer Programming

IE418 Integer Programming IE418: Integer Programming Department of Industrial and Systems Engineering Lehigh University 23rd February 2005 The Ingredients Some Easy Problems The Hard Problems Computational Complexity The ingredients

More information

MATRIX ALGEBRA. or x = (x 1,..., x n ) R n. y 1 y 2. x 2. x m. y m. y = cos θ 1 = x 1 L x. sin θ 1 = x 2. cos θ 2 = y 1 L y.

MATRIX ALGEBRA. or x = (x 1,..., x n ) R n. y 1 y 2. x 2. x m. y m. y = cos θ 1 = x 1 L x. sin θ 1 = x 2. cos θ 2 = y 1 L y. as Basics Vectors MATRIX ALGEBRA An array of n real numbers x, x,, x n is called a vector and it is written x = x x n or x = x,, x n R n prime operation=transposing a column to a row Basic vector operations

More information

Linear Algebra: Characteristic Value Problem

Linear Algebra: Characteristic Value Problem Linear Algebra: Characteristic Value Problem . The Characteristic Value Problem Let < be the set of real numbers and { be the set of complex numbers. Given an n n real matrix A; does there exist a number

More information

Absolute value equations

Absolute value equations Linear Algebra and its Applications 419 (2006) 359 367 www.elsevier.com/locate/laa Absolute value equations O.L. Mangasarian, R.R. Meyer Computer Sciences Department, University of Wisconsin, 1210 West

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

On the efficient approximability of constraint satisfaction problems

On the efficient approximability of constraint satisfaction problems On the efficient approximability of constraint satisfaction problems July 13, 2007 My world Max-CSP Efficient computation. P Polynomial time BPP Probabilistic Polynomial time (still efficient) NP Non-deterministic

More information

Lecture 5 : Projections

Lecture 5 : Projections Lecture 5 : Projections EE227C. Lecturer: Professor Martin Wainwright. Scribe: Alvin Wan Up until now, we have seen convergence rates of unconstrained gradient descent. Now, we consider a constrained minimization

More information

Duality of LPs and Applications

Duality of LPs and Applications Lecture 6 Duality of LPs and Applications Last lecture we introduced duality of linear programs. We saw how to form duals, and proved both the weak and strong duality theorems. In this lecture we will

More information

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle Directed Hamiltonian Cycle Chapter 8 NP and Computational Intractability Claim. G has a Hamiltonian cycle iff G' does. Pf. Suppose G has a directed Hamiltonian cycle Γ. Then G' has an undirected Hamiltonian

More information

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP:

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: Solving the MWT Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: max subject to e i E ω i x i e i C E x i {0, 1} x i C E 1 for all critical mixed cycles

More information

Eigenvectors Via Graph Theory

Eigenvectors Via Graph Theory Eigenvectors Via Graph Theory Jennifer Harris Advisor: Dr. David Garth October 3, 2009 Introduction There is no problem in all mathematics that cannot be solved by direct counting. -Ernst Mach The goal

More information

The Difference Between 5 5 Doubly Nonnegative and Completely Positive Matrices

The Difference Between 5 5 Doubly Nonnegative and Completely Positive Matrices The Difference Between 5 5 Doubly Nonnegative and Completely Positive Matrices Sam Burer and Kurt M. Anstreicher University of Iowa Mirjam Dür TU Darmstadt IMA Hot Topics Workshop, November 2008 Consider

More information