Deep Generative Models

Size: px
Start display at page:

Download "Deep Generative Models"

Transcription

1 Deep Generative Models Durk Kingma Max Welling Deep Probabilistic Models Worksop Wednesday, 1st of Oct, 2014 D.P. Kingma

2 Deep generative models Transformations between Bayes nets and Neural nets Transformation between Bayes nets and Neural Nets. ICML 14 Deep generative models of images Auto-Encoding Variational Bayes, ICLR 14! Semi-Supervised Learning wit Deep Generative Models NIPS 14; wit Sakir & Danilo (Deepmind)

3 Part 1: Transformations between Bayes nets and Neural nets

4 Neural Nets and Deep Generative Models (1) Directed latent variables models Can model complex (multimodal) distributions over observed variables Feedforward neural nets: Typically used for learning a single conditional: log p(y x) = f(x,y) e.g. Classification/regression wit deep net But: not good for modelling complex distributions, e.g. multi-modal distributions

5 Neural Nets and Deep Generative Models (2) Natural idea: neural nets as components of deep latent-variable models! Learn complex distributions over data Inner loop of learning requires posterior inference!! Exact inference is intractable Efficient gradient-based approximate inference metods: Stocastic Variational inference (biased but fast) [Hoffman & Blei 2012] [Kingma & Welling 2013] [Deepmind 2014] Sampling-based metods (unbiased but slower), e.g. HMC Can we increase te efficiency of gradient-based p(z x) =p(x, posterior z)/p(x) inference? p(z x) / p(x, z) r z log p(z x) =r z log p(x, z)

6 Idea: Reparameterizations (Gaussian example) Centered form (CP) Differentiable Non-Centered Form (DNCP) p (z pa) =N (z; µ, 2 I) µ = f (pa) (e.g. neural net) N (0, I) ez = f (pa)+ Neural net perspective: idden unit wit injected noise

7 Idea: Reparameterizations Centered form (CP) Differentiable Non-Centered Form (DNCP) p (z pa) p( ) z = g(pa,, ) Neural net perspective: idden unit wit injected noise

8 Reparameterizations Can be performed for a broad class of distributions

9 So: we ave a coice Wic form to use for learning / inference?

10 Posterior correlation analysis (1) Squared posterior correlation ρ 2! second-order metric of posterior dependency between pair of latent variables A and B

11 Posterior correlation analysis (2) Squared correlations for CP:!! Squared correlations for DNCP:

12 Posterior correlation analysis (3) Inequality: all terms cancel wit very simple result: 2 pa(z) i,z > 2 pa(z) i,, 2 z pa(z) < 2 z c(z) i.e., DNCP leads to more efficient inference wen latent variable 'z' is more strongly bound to its parents ten to its cildren

13 Posterior correlation analysis (4) beauty-and-beast pair Disney

14 2D linear-gaussian posterior example σz = 50 σz = 1 σz = 0.02 z = 50 ( 0.00) z =1( 0.41) z =0.02 ( 1.00) z2 z 1 z = 50 ( 0.58) z 1 e2 e2 z2 z2 z =1( 0.41) z 1 z = 0.02 ( 0.01) e2 e 1 e 1 e 1

15 Robust HMC Sampler Proposal distribution is mix between two proposal distributions:! Were we use ρ = 0.5 in experiments

16 Experiment: HMC sampling wit Dynamic Bayesian network (DBN)

17 Autocorrelation results on DBN

18 Part 2: Te Variational Auto-Encoder

19 Deep latent variable model z p(z) x p(x z)

20 Monte Carlo EM

21 Monte Carlo EM - End result

22 MAP inference wit L-BFGS

23 Te Variational Auto-Encoder (ICLR 14) Q P q(z x) z z p(z) ep(x) x x p(x z) L = D KL (ep(x)q(z x) p(x, z)) apple log p(x)

24 { { { Wy is tis an auto-encoder? Reparameterized Q(z x) P(x z) ε x z x L = D KL (ep(x)q(z x) p(x, z)) = E ep(x) Ep( ) [log p(x z) + log p(z) log q(z x)] Reconstruction error Regularization terms! (dictated by te bound)

25 Variational Auto-Encoder trained on MNIST (2D Latent space)

26 3D latent space

27 Labeled faces in te wild

28 Labeled faces in te wild

29 Semi-supervised learning wit deep generative models ( Model 2.5 )

30 Approac 1 DLGM / VAE as feature extractor for semi-supervised classifier Q P q(z x) z z p(z) ep(x) x x p(x z) L = D KL (ep(x)q(z x) p(x, z))

31 Approac 2 DLGM / VAE as regularizer of neural net classifier Q P q(y x)q(z x, y) y z y z p(y)p(z) ep(x) x x p(x y, z) L = E epl (x,y) [log q(y x)] + L reg L reg = D KL ( ep l (x, y)q(z x, y) p(x, y, z) ) D KL ( ep u (x)q(y x)q(z x, y) p(x, y, z) )

32 Approac 3 Q P y z2 y z2 z1 z1 x x

33 Results Table 1: Bencmark results of semi-supervised classification on MNIST wit few labels. N labeled NN CNN TSVM EmbNN CAE MTC M1 M2 M * (± 0.25) (± 1.71) 3.54 (± 0.03) * 5.72 (± 0.049) 4.94 (± 0.13) 2.85 (± 0.1) * 4.24 (± 0.07) 3.60 (± 0.56) 2.76 (± 0.30) * 3.49 (± 0.04) 3.92 (± 0.63) 2.63 (± 0.24)

34 Analogic reasoning (will improve)

35 Next steps SSL on larger images SVHN, CIFAR-10 (tis NIPS paper) Imagenet (Future papers) SSL on video s Youtube Applications of anagogic reasoning

36 Tanks!

37 RMSProp Initialization: m 0 v 0 Update parameters(w, g) : m 1 g +(1 1) m v 2 g 2 +(1 2) v w w m/ p v

38 Estimation based on exp. mov. avg. Assume: g is a random variable Goal: from exponential moving averages of i.i.d. draws gi, estimate moments E[g] and E[g 2 ] m t = 1 g t +(1 1) m t 1 tx = 1 (1 1) t i g i (As function of past samples) i=1 " E [m t ]=E 1 # tx (1 1) t i g i (Taking expectations) i=1 = E [g] 1 tx (1 1) t i (Because i.i.d.) i=1 = E [g] (1 (1 1) t ) (Furter simplification)

39 Fixed RMSProp (AdaM) Initialization: m 0 v 0 Update parameters(w, g) : m 1 g +(1 1) m v 2 g 2 +(1 2) v w w t m/ p v were t = p 1 (1 2) t /(1 (1 1) t )

40 VAE, 10 epocs β1 = 1 β1 = 0.1 β2 = 0.01 β2 = β2 = More like AdaGrad (infinite memory)

41 VAE, 100 epocs β1 = 1 β1 = 0.1 β2 = 0.01 β2 = β2 = More like AdaGrad (infinite memory)

42 Now possible: Interpolation between Adagrad and RMSProp Initialization: m 0 v 0 Update parameters(w, g) : m 1 g +(1 1) m v 2 g 2 +(1 2) p v w w t m/ t v were t = p 1 (1 2) t /(1 (1 1) t ) Tis algoritm AdaGrad wen β1 = 1 and β2 = ε (infinitesimal)

Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning

Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning Diederik (Durk) Kingma Danilo J. Rezende (*) Max Welling Shakir Mohamed (**) Stochastic Gradient Variational Inference Bayesian

More information

Deep Variational Inference. FLARE Reading Group Presentation Wesley Tansey 9/28/2016

Deep Variational Inference. FLARE Reading Group Presentation Wesley Tansey 9/28/2016 Deep Variational Inference FLARE Reading Group Presentation Wesley Tansey 9/28/2016 What is Variational Inference? What is Variational Inference? Want to estimate some distribution, p*(x) p*(x) What is

More information

Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes Auto-Encoding Variational Bayes Diederik P Kingma, Max Welling June 18, 2018 Diederik P Kingma, Max Welling Auto-Encoding Variational Bayes June 18, 2018 1 / 39 Outline 1 Introduction 2 Variational Lower

More information

Variational Autoencoders

Variational Autoencoders Variational Autoencoders Recap: Story so far A classification MLP actually comprises two components A feature extraction network that converts the inputs into linearly separable features Or nearly linearly

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS

REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS Worshop trac - ICLR 207 REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS Chris Cremer, Quaid Morris & David Duvenaud Department of Computer Science University of Toronto {ccremer,duvenaud}@cs.toronto.edu

More information

Reading Group on Deep Learning Session 4 Unsupervised Neural Networks

Reading Group on Deep Learning Session 4 Unsupervised Neural Networks Reading Group on Deep Learning Session 4 Unsupervised Neural Networks Jakob Verbeek & Daan Wynen 206-09-22 Jakob Verbeek & Daan Wynen Unsupervised Neural Networks Outline Autoencoders Restricted) Boltzmann

More information

Natural Gradients via the Variational Predictive Distribution

Natural Gradients via the Variational Predictive Distribution Natural Gradients via the Variational Predictive Distribution Da Tang Columbia University datang@cs.columbia.edu Rajesh Ranganath New York University rajeshr@cims.nyu.edu Abstract Variational inference

More information

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014 Learning with Noisy Labels Kate Niehaus Reading group 11-Feb-2014 Outline Motivations Generative model approach: Lawrence, N. & Scho lkopf, B. Estimating a Kernel Fisher Discriminant in the Presence of

More information

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement Simon Leglaive 1 Laurent Girin 1,2 Radu Horaud 1 1: Inria Grenoble Rhône-Alpes 2: Univ. Grenoble Alpes, Grenoble INP,

More information

Unsupervised Learning

Unsupervised Learning CS 3750 Advanced Machine Learning hkc6@pitt.edu Unsupervised Learning Data: Just data, no labels Goal: Learn some underlying hidden structure of the data P(, ) P( ) Principle Component Analysis (Dimensionality

More information

Lecture 14: Deep Generative Learning

Lecture 14: Deep Generative Learning Generative Modeling CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 14: Deep Generative Learning Density estimation Reconstructing probability density function using samples Bohyung Han

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 10-708 Probabilistic Graphical Models Homework 3 (v1.1.0) Due Apr 14, 7:00 PM Rules: 1. Homework is due on the due date at 7:00 PM. The homework should be submitted via Gradescope. Solution to each problem

More information

Evaluating the Variance of

Evaluating the Variance of Evaluating the Variance of Likelihood-Ratio Gradient Estimators Seiya Tokui 2 Issei Sato 2 3 Preferred Networks 2 The University of Tokyo 3 RIKEN ICML 27 @ Sydney Task: Gradient estimation for stochastic

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) September 26 & October 3, 2017 Section 1 Preliminaries Kullback-Leibler divergence KL divergence (continuous case) p(x) andq(x) are two density distributions. Then the KL-divergence is defined as Z KL(p

More information

Variational Autoencoder

Variational Autoencoder Variational Autoencoder Göker Erdo gan August 8, 2017 The variational autoencoder (VA) [1] is a nonlinear latent variable model with an efficient gradient-based training procedure based on variational

More information

Distributed Bayesian Learning with Stochastic Natural-gradient EP and the Posterior Server

Distributed Bayesian Learning with Stochastic Natural-gradient EP and the Posterior Server Distributed Bayesian Learning with Stochastic Natural-gradient EP and the Posterior Server in collaboration with: Minjie Xu, Balaji Lakshminarayanan, Leonard Hasenclever, Thibaut Lienart, Stefan Webb,

More information

Natural Language Understanding. Recap: probability, language models, and feedforward networks. Lecture 12: Recurrent Neural Networks and LSTMs

Natural Language Understanding. Recap: probability, language models, and feedforward networks. Lecture 12: Recurrent Neural Networks and LSTMs Natural Language Understanding Lecture 12: Recurrent Neural Networks and LSTMs Recap: probability, language models, and feedforward networks Simple Recurrent Networks Adam Lopez Credits: Mirella Lapata

More information

Backpropagation Through

Backpropagation Through Backpropagation Through Backpropagation Through Backpropagation Through Will Grathwohl Dami Choi Yuhuai Wu Geoff Roeder David Duvenaud Where do we see this guy? L( ) =E p(b ) [f(b)] Just about everywhere!

More information

Bayesian Semi-supervised Learning with Deep Generative Models

Bayesian Semi-supervised Learning with Deep Generative Models Bayesian Semi-supervised Learning with Deep Generative Models Jonathan Gordon Department of Engineering Cambridge University jg801@cam.ac.uk José Miguel Hernández-Lobato Department of Engineering Cambridge

More information

Minimizing D(Q,P) def = Q(h)

Minimizing D(Q,P) def = Q(h) Inference Lecture 20: Variational Metods Kevin Murpy 29 November 2004 Inference means computing P( i v), were are te idden variables v are te visible variables. For discrete (eg binary) idden nodes, exact

More information

Generative models for missing value completion

Generative models for missing value completion Generative models for missing value completion Kousuke Ariga Department of Computer Science and Engineering University of Washington Seattle, WA 98105 koar8470@cs.washington.edu Abstract Deep generative

More information

Variational Auto Encoders

Variational Auto Encoders Variational Auto Encoders 1 Recap Deep Neural Models consist of 2 primary components A feature extraction network Where important aspects of the data are amplified and projected into a linearly separable

More information

The Origin of Deep Learning. Lili Mou Jan, 2015

The Origin of Deep Learning. Lili Mou Jan, 2015 The Origin of Deep Learning Lili Mou Jan, 2015 Acknowledgment Most of the materials come from G. E. Hinton s online course. Outline Introduction Preliminary Boltzmann Machines and RBMs Deep Belief Nets

More information

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College Distributed Estimation, Information Loss and Exponential Families Qiang Liu Department of Computer Science Dartmouth College Statistical Learning / Estimation Learning generative models from data Topic

More information

17 : Optimization and Monte Carlo Methods

17 : Optimization and Monte Carlo Methods 10-708: Probabilistic Graphical Models Spring 2017 17 : Optimization and Monte Carlo Methods Lecturer: Avinava Dubey Scribes: Neil Spencer, YJ Choe 1 Recap 1.1 Monte Carlo Monte Carlo methods such as rejection

More information

Variational Inference in TensorFlow. Danijar Hafner Stanford CS University College London, Google Brain

Variational Inference in TensorFlow. Danijar Hafner Stanford CS University College London, Google Brain Variational Inference in TensorFlow Danijar Hafner Stanford CS 20 2018-02-16 University College London, Google Brain Outline Variational Inference Tensorflow Distributions VAE in TensorFlow Variational

More information

Bayesian Deep Learning

Bayesian Deep Learning Bayesian Deep Learning Mohammad Emtiyaz Khan AIP (RIKEN), Tokyo http://emtiyaz.github.io emtiyaz.khan@riken.jp June 06, 2018 Mohammad Emtiyaz Khan 2018 1 What will you learn? Why is Bayesian inference

More information

Auto-Encoding Variational Bayes. Stochastic Backpropagation and Approximate Inference in Deep Generative Models

Auto-Encoding Variational Bayes. Stochastic Backpropagation and Approximate Inference in Deep Generative Models Auto-Encoding Variational Bayes Diederik Kingma and Max Welling Stochastic Backpropagation and Approximate Inference in Deep Generative Models Danilo J. Rezende, Shakir Mohamed, Daan Wierstra Neural Variational

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

Nonparametric Inference for Auto-Encoding Variational Bayes

Nonparametric Inference for Auto-Encoding Variational Bayes Nonparametric Inference for Auto-Encoding Variational Bayes Erik Bodin * Iman Malik * Carl Henrik Ek * Neill D. F. Campbell * University of Bristol University of Bath Variational approximations are an

More information

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 18, 2015 1 / 45 Resources and Attribution Image credits,

More information

Black-box α-divergence Minimization

Black-box α-divergence Minimization Black-box α-divergence Minimization José Miguel Hernández-Lobato, Yingzhen Li, Daniel Hernández-Lobato, Thang Bui, Richard Turner, Harvard University, University of Cambridge, Universidad Autónoma de Madrid.

More information

Inference Suboptimality in Variational Autoencoders

Inference Suboptimality in Variational Autoencoders Inference Suboptimality in Variational Autoencoders Chris Cremer Department of Computer Science University of Toronto ccremer@cs.toronto.edu Xuechen Li Department of Computer Science University of Toronto

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Overdispersed Variational Autoencoders

Overdispersed Variational Autoencoders Overdispersed Variational Autoencoders Harsil Sa, David Barber and Aleksandar Botev Department of Computer Science, University College London Alan Turing Institute arsil.sa.15@ucl.ac.uk, david.barber@ucl.ac.uk,

More information

Denoising Criterion for Variational Auto-Encoding Framework

Denoising Criterion for Variational Auto-Encoding Framework Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) Denoising Criterion for Variational Auto-Encoding Framework Daniel Jiwoong Im, Sungjin Ahn, Roland Memisevic, Yoshua

More information

Greedy Layer-Wise Training of Deep Networks

Greedy Layer-Wise Training of Deep Networks Greedy Layer-Wise Training of Deep Networks Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle NIPS 2007 Presented by Ahmed Hefny Story so far Deep neural nets are more expressive: Can learn

More information

Bayesian Paragraph Vectors

Bayesian Paragraph Vectors Bayesian Paragraph Vectors Geng Ji 1, Robert Bamler 2, Erik B. Sudderth 1, and Stephan Mandt 2 1 Department of Computer Science, UC Irvine, {gji1, sudderth}@uci.edu 2 Disney Research, firstname.lastname@disneyresearch.com

More information

arxiv: v2 [stat.ml] 15 Aug 2017

arxiv: v2 [stat.ml] 15 Aug 2017 Worshop trac - ICLR 207 REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS Chris Cremer, Quaid Morris & David Duvenaud Department of Computer Science University of Toronto {ccremer,duvenaud}@cs.toronto.edu

More information

Sandwiching the marginal likelihood using bidirectional Monte Carlo. Roger Grosse

Sandwiching the marginal likelihood using bidirectional Monte Carlo. Roger Grosse Sandwiching the marginal likelihood using bidirectional Monte Carlo Roger Grosse Ryan Adams Zoubin Ghahramani Introduction When comparing different statistical models, we d like a quantitative criterion

More information

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Qiang Liu and Dilin Wang NIPS 2016 Discussion by Yunchen Pu March 17, 2017 March 17, 2017 1 / 8 Introduction Let x R d

More information

B PROOF OF LEMMA 1. Published as a conference paper at ICLR 2018

B PROOF OF LEMMA 1. Published as a conference paper at ICLR 2018 A ADVERSARIAL DOMAIN ADAPTATION (ADA ADA aims to transfer prediction nowledge learned from a source domain with labeled data to a target domain without labels, by learning domain-invariant features. Let

More information

The connection of dropout and Bayesian statistics

The connection of dropout and Bayesian statistics The connection of dropout and Bayesian statistics Interpretation of dropout as approximate Bayesian modelling of NN http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf Dropout Geoffrey Hinton Google, University

More information

An Overview of Edward: A Probabilistic Programming System. Dustin Tran Columbia University

An Overview of Edward: A Probabilistic Programming System. Dustin Tran Columbia University An Overview of Edward: A Probabilistic Programming System Dustin Tran Columbia University Alp Kucukelbir Eugene Brevdo Andrew Gelman Adji Dieng Maja Rudolph David Blei Dawen Liang Matt Hoffman Kevin Murphy

More information

Learning to Sample Using Stein Discrepancy

Learning to Sample Using Stein Discrepancy Learning to Sample Using Stein Discrepancy Dilin Wang Yihao Feng Qiang Liu Department of Computer Science Dartmouth College Hanover, NH 03755 {dilin.wang.gr, yihao.feng.gr, qiang.liu}@dartmouth.edu Abstract

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

Need for Sampling in Machine Learning. Sargur Srihari

Need for Sampling in Machine Learning. Sargur Srihari Need for Sampling in Machine Learning Sargur srihari@cedar.buffalo.edu 1 Rationale for Sampling 1. ML methods model data with probability distributions E.g., p(x,y; θ) 2. Models are used to answer queries,

More information

Tutorial on: Optimization I. (from a deep learning perspective) Jimmy Ba

Tutorial on: Optimization I. (from a deep learning perspective) Jimmy Ba Tutorial on: Optimization I (from a deep learning perspective) Jimmy Ba Outline Random search v.s. gradient descent Finding better search directions Design white-box optimization methods to improve computation

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

Quasi-Monte Carlo Flows

Quasi-Monte Carlo Flows Quasi-Monte Carlo Flows Florian Wenzel TU Kaiserslautern Germany wenzelfl@hu-berlin.de Alexander Buchholz ENSAE-CREST, Paris France alexander.buchholz@ensae.fr Stephan Mandt Univ. of California, Irvine

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions

Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions Mohammad Emtiyaz Khan, Reza Babanezhad, Wu Lin, Mark Schmidt, Masashi Sugiyama Conference on Uncertainty

More information

Probabilistic Graphical Models for Image Analysis - Lecture 4

Probabilistic Graphical Models for Image Analysis - Lecture 4 Probabilistic Graphical Models for Image Analysis - Lecture 4 Stefan Bauer 12 October 2018 Max Planck ETH Center for Learning Systems Overview 1. Repetition 2. α-divergence 3. Variational Inference 4.

More information

Probabilistic & Bayesian deep learning. Andreas Damianou

Probabilistic & Bayesian deep learning. Andreas Damianou Probabilistic & Bayesian deep learning Andreas Damianou Amazon Research Cambridge, UK Talk at University of Sheffield, 19 March 2019 In this talk Not in this talk: CRFs, Boltzmann machines,... In this

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Local Expectation Gradients for Doubly Stochastic. Variational Inference

Local Expectation Gradients for Doubly Stochastic. Variational Inference Local Expectation Gradients for Doubly Stochastic Variational Inference arxiv:1503.01494v1 [stat.ml] 4 Mar 2015 Michalis K. Titsias Athens University of Economics and Business, 76, Patission Str. GR10434,

More information

Variance Reduction in Black-box Variational Inference by Adaptive Importance Sampling

Variance Reduction in Black-box Variational Inference by Adaptive Importance Sampling Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence IJCAI-18 Variance Reduction in Black-box Variational Inference by Adaptive Importance Sampling Ximing Li, Changchun

More information

Probabilistic Reasoning in Deep Learning

Probabilistic Reasoning in Deep Learning Probabilistic Reasoning in Deep Learning Dr Konstantina Palla, PhD palla@stats.ox.ac.uk September 2017 Deep Learning Indaba, Johannesburgh Konstantina Palla 1 / 39 OVERVIEW OF THE TALK Basics of Bayesian

More information

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING UNSUPERVISED LEARNING Topics Layer-wise (unsupervised) pre-training Restricted Boltzmann Machines Auto-encoders LAYER-WISE (UNSUPERVISED) PRE-TRAINING Breakthrough in 2006 Layer-wise (unsupervised) pre-training

More information

Probabilistic Graphical Models Homework 1: Due January 29, 2014 at 4 pm

Probabilistic Graphical Models Homework 1: Due January 29, 2014 at 4 pm Probabilistic Grapical Models 10-708 Homework 1: Due January 29, 2014 at 4 pm Directions. Tis omework assignment covers te material presented in Lectures 1-3. You must complete all four problems to obtain

More information

The Success of Deep Generative Models

The Success of Deep Generative Models The Success of Deep Generative Models Jakub Tomczak AMLAB, University of Amsterdam CERN, 2018 What is AI about? What is AI about? Decision making: What is AI about? Decision making: new data High probability

More information

Variational Inference with Copula Augmentation

Variational Inference with Copula Augmentation Variational Inference with Copula Augmentation Dustin Tran 1 David M. Blei 2 Edoardo M. Airoldi 1 1 Department of Statistics, Harvard University 2 Department of Statistics & Computer Science, Columbia

More information

Variational Auto-Encoders (VAE)

Variational Auto-Encoders (VAE) Variational Auto-Encoders (VAE) Jonathan Pillow Lecture 21 slides NEU 560 Spring 2018 VAE Generative Model latent ~z N (0, I) data f aaacyhicdzhnbhmxemed5assxy0cuvhesfyidiskofb0ungoiktasnk0cpzzxoq/zm+mjsxfeasu8as8ew+dk64qswaks3/n7z9jj2dipfbyfl862z279+4/2huyp3r85omz/ypn5940jkofg2ncymi8skghjwildkwdpiyslibz4xw/widzwugvulqwuuxki1pwhik1qmcvzgdzel9b9ip10f1rtqjl2jgbh3r+vlpdgwuauwted8vc4igwh4jlihnvelcmz9kvdjputiefhfwdi32dmlnag5eorrro/l0rmpj+qsbjqrjo/dzbjf/fhg3wh0zbansgah57ud1iioaupqdt4ycjxcbbubpprztpmgmc0x/leaxhmhulmj6gsuhfdjfhbrnjjkbnywixfrob0xuuhdpegg+bnqnhjusyqjr1d2umhzun/ljwv55tpxjftcqzdkfbehgt6ai4vdkg8xbmy562w27vclech/bkold+ftc9+tjuey+8jk/ig1ks9+sinjaz0iecspknfcc/sk+zza6z5a0167q1l8hgzf9/a5t+5qk=

More information

Te comparison of dierent models M i is based on teir relative probabilities, wic can be expressed, again using Bayes' teorem, in terms of prior probab

Te comparison of dierent models M i is based on teir relative probabilities, wic can be expressed, again using Bayes' teorem, in terms of prior probab To appear in: Advances in Neural Information Processing Systems 9, eds. M. C. Mozer, M. I. Jordan and T. Petsce. MIT Press, 997 Bayesian Model Comparison by Monte Carlo Caining David Barber D.Barber@aston.ac.uk

More information

Chapter 16. Structured Probabilistic Models for Deep Learning

Chapter 16. Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 1 Chapter 16 Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 2 Structured Probabilistic Models way of using graphs to describe

More information

Latent Variable Models

Latent Variable Models Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 5 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 1 / 31 Recap of last lecture 1 Autoregressive models:

More information

arxiv: v3 [cs.lg] 14 Oct 2015

arxiv: v3 [cs.lg] 14 Oct 2015 Learning Deep Generative Models wit Doubly Stocastic MCMC Cao Du Jun Zu Bo Zang Dept. of Comp. Sci. & Tec., State Key Lab of Intell. Tec. & Sys., TNList Lab, Center for Bio-Inspired Computing Researc,

More information

Approximate Bayesian inference

Approximate Bayesian inference Approximate Bayesian inference Variational and Monte Carlo methods Christian A. Naesseth 1 Exchange rate data 0 20 40 60 80 100 120 Month Image data 2 1 Bayesian inference 2 Variational inference 3 Stochastic

More information

Computing with Distributed Distributional Codes Convergent Inference in Brains and Machines?

Computing with Distributed Distributional Codes Convergent Inference in Brains and Machines? Computing with Distributed Distributional Codes Convergent Inference in Brains and Machines? Maneesh Sahani Professor of Theoretical Neuroscience and Machine Learning Gatsby Computational Neuroscience

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Series 7, May 22, 2018 (EM Convergence)

Series 7, May 22, 2018 (EM Convergence) Exercises Introduction to Machine Learning SS 2018 Series 7, May 22, 2018 (EM Convergence) Institute for Machine Learning Dept. of Computer Science, ETH Zürich Prof. Dr. Andreas Krause Web: https://las.inf.ethz.ch/teaching/introml-s18

More information

Normalization Techniques in Training of Deep Neural Networks

Normalization Techniques in Training of Deep Neural Networks Normalization Techniques in Training of Deep Neural Networks Lei Huang ( 黄雷 ) State Key Laboratory of Software Development Environment, Beihang University Mail:huanglei@nlsde.buaa.edu.cn August 17 th,

More information

Variational Bayes on Monte Carlo Steroids

Variational Bayes on Monte Carlo Steroids Variational Bayes on Monte Carlo Steroids Aditya Grover, Stefano Ermon Department of Computer Science Stanford University {adityag,ermon}@cs.stanford.edu Abstract Variational approaches are often used

More information

Markov Chain Monte Carlo and Variational Inference: Bridging the Gap

Markov Chain Monte Carlo and Variational Inference: Bridging the Gap Markov Chain Monte Carlo and Variational Inference: Bridging the Gap Tim Salimans Algoritmica Diederik P. Kingma and Max Welling University of Amsterdam TIM@ALGORITMICA.NL [D.P.KINGMA,M.WELLING]@UVA.NL

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

Semi-Supervised Learning with the Deep Rendering Mixture Model

Semi-Supervised Learning with the Deep Rendering Mixture Model Semi-Supervised Learning with the Deep Rendering Mixture Model Tan Nguyen 1,2 Wanjia Liu 1 Ethan Perez 1 Richard G. Baraniuk 1 Ankit B. Patel 1,2 1 Rice University 2 Baylor College of Medicine 6100 Main

More information

Operator Variational Inference

Operator Variational Inference Operator Variational Inference Rajesh Ranganath Princeton University Jaan Altosaar Princeton University Dustin Tran Columbia University David M. Blei Columbia University Abstract Variational inference

More information

Posterior Regularization

Posterior Regularization Posterior Regularization 1 Introduction One of the key challenges in probabilistic structured learning, is the intractability of the posterior distribution, for fast inference. There are numerous methods

More information

A Unified View of Deep Generative Models

A Unified View of Deep Generative Models SAILING LAB Laboratory for Statistical Artificial InteLigence & INtegreative Genomics A Unified View of Deep Generative Models Zhiting Hu and Eric Xing Petuum Inc. Carnegie Mellon University 1 Deep generative

More information

Diversity-Promoting Bayesian Learning of Latent Variable Models

Diversity-Promoting Bayesian Learning of Latent Variable Models Diversity-Promoting Bayesian Learning of Latent Variable Models Pengtao Xie 1, Jun Zhu 1,2 and Eric Xing 1 1 Machine Learning Department, Carnegie Mellon University 2 Department of Computer Science and

More information

Variational Autoencoders. Presented by Alex Beatson Materials from Yann LeCun, Jaan Altosaar, Shakir Mohamed

Variational Autoencoders. Presented by Alex Beatson Materials from Yann LeCun, Jaan Altosaar, Shakir Mohamed Variational Autoencoders Presented by Alex Beatson Materials from Yann LeCun, Jaan Altosaar, Shakir Mohamed Contents 1. Why unsupervised learning, and why generative models? (Selected slides from Yann

More information

Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets

Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets Diederik P. Kingma Max Welling Machine Learning Group, University of Amsterdam d.p.kingma@uva.nl m.welling@uva.nl

More information

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 7: Multiclass Classification Princeton University COS 495 Instructor: Yingyu Liang Example: image classification indoor Indoor outdoor Example: image classification (multiclass)

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Approximate Inference using MCMC

Approximate Inference using MCMC Approximate Inference using MCMC 9.520 Class 22 Ruslan Salakhutdinov BCS and CSAIL, MIT 1 Plan 1. Introduction/Notation. 2. Examples of successful Bayesian models. 3. Basic Sampling Algorithms. 4. Markov

More information

Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems

Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems Scott W. Linderman Matthew J. Johnson Andrew C. Miller Columbia University Harvard and Google Brain Harvard University Ryan

More information

WHY ARE DEEP NETS REVERSIBLE: A SIMPLE THEORY,

WHY ARE DEEP NETS REVERSIBLE: A SIMPLE THEORY, WHY ARE DEEP NETS REVERSIBLE: A SIMPLE THEORY, WITH IMPLICATIONS FOR TRAINING Sanjeev Arora, Yingyu Liang & Tengyu Ma Department of Computer Science Princeton University Princeton, NJ 08540, USA {arora,yingyul,tengyu}@cs.princeton.edu

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Nov 2, 2016 Outline SGD-typed algorithms for Deep Learning Parallel SGD for deep learning Perceptron Prediction value for a training data: prediction

More information

Citation for published version (APA): Kingma, D. P. (2017). Variational inference & deep learning: A new synthesis

Citation for published version (APA): Kingma, D. P. (2017). Variational inference & deep learning: A new synthesis UvA-DARE (Digital Academic Repository) Variational inference & deep learning Kingma, D.P. Link to publication Citation for published version (APA): Kingma, D. P. (2017). Variational inference & deep learning:

More information

Tensor Methods for Feature Learning

Tensor Methods for Feature Learning Tensor Methods for Feature Learning Anima Anandkumar U.C. Irvine Feature Learning For Efficient Classification Find good transformations of input for improved classification Figures used attributed to

More information

arxiv: v4 [stat.co] 19 May 2015

arxiv: v4 [stat.co] 19 May 2015 Markov Chain Monte Carlo and Variational Inference: Bridging the Gap arxiv:14.6460v4 [stat.co] 19 May 201 Tim Salimans Algoritmica Diederik P. Kingma and Max Welling University of Amsterdam Abstract Recent

More information

Algorithms for Variational Learning of Mixture of Gaussians

Algorithms for Variational Learning of Mixture of Gaussians Algorithms for Variational Learning of Mixture of Gaussians Instructors: Tapani Raiko and Antti Honkela Bayes Group Adaptive Informatics Research Center 28.08.2008 Variational Bayesian Inference Mixture

More information

Variational Inference for Monte Carlo Objectives

Variational Inference for Monte Carlo Objectives Variational Inference for Monte Carlo Objectives Andriy Mnih, Danilo Rezende June 21, 2016 1 / 18 Introduction Variational training of directed generative models has been widely adopted. Results depend

More information

BACKPROPAGATION THROUGH THE VOID

BACKPROPAGATION THROUGH THE VOID BACKPROPAGATION THROUGH THE VOID Optimizing Control Variates for Black-Box Gradient Estimation 27 Nov 2017, University of Cambridge Speaker: Geoffrey Roeder, University of Toronto OPTIMIZING EXPECTATIONS

More information