Evaluating the Variance of

Size: px
Start display at page:

Download "Evaluating the Variance of"

Transcription

1 Evaluating the Variance of Likelihood-Ratio Gradient Estimators Seiya Tokui 2 Issei Sato 2 3 Preferred Networks 2 The University of Tokyo 3 RIKEN ICML Sydney

2 Task: Gradient estimation for stochastic computational graph 2 Want to compute the following gradient: x φ z f Computational Graph If φ E qφ (z x)f(x, z) No stochasiticity in z (q is a delta distribution) use backprop s stochastic (stochastic computational graph) need more techniques

3 Example: Variational inference in deep directed graphical models 3 x z z 2 z 3 Graphical Models p θ q φ Generative model p θ x, z p θ x z p θ z z 2 p θ z 2 z 3 p θ (z 3 ) Each factor is written by a NN Approximate posterior q φ z x q φ z x q φ z 2 z q φ (z 3 z 2 ) Each factor is written by a NN Objective function (variational bound) L φ, θ E qφ (z x) log p θ x, z q φ z x f(x, z) We want to compute φ L to optimize L with a gradient method.

4 Overview of unbiased estimators 4 Likelihood-ratio estimators z can be continuous or discrete f can be non-continuous Tend to have high variance Many (heuristic) techniques to reduce the variance exist Reparameterization trick z must be continuous f must be differentiable Tend to have low variance in practice (but not guaranteed) Our finding: when there are M random variables, also likelihood-ratio estimators can be formulated with reparameterization for M variables unified framework of gradient estimators

5 A unified framework of gradient estimators 5 Let z (z,, z M ) and q φ z x ς M i q φi ( pa i ). The set of parents of Suppose we have a reparameterization formula: q φi pa i g φi pa i, ε i, ε i p(ε i ) Noise variable that generates Exchange and E partially for each i : φi E qφ (z x)f x, z φi E ε f x, g φ x, ε E ε i φi E εi f(x, g φ x, ε ) Reparameterization [Williams, 992][Kingma & Welling, 24] [Rezende+, 24][Titsias & Lázaro-Gredilla, 24] Local marginalization [Titsias & Lázaro-Gredilla, 25] Differentiable even if g is noncontinuous ( is discrete)

6 A unified framework of gradient estimators 6 φi E qφ (z x)f x, z E ε i φi E εi f(x, g φ x, ε ) Local gradient Each method differs in how to estimate the local gradient. Likelihood-ratio estimator: use log derivative trick Reparameterization estimator: use reparameterization trick Optimal estimator: exactly (or numerically) compute the inner expectation

7 Likelihood-ratio estimator under the framework 7 φi E εi f x, z E εi f x, z b i x, ε φi log q φi pa i + C i x, ε i Baseline Residual Baseline Definition Example Constant b i is a constant of x and ε. C i. Running average of sampled f Independent b i (x, ε i ) is a constant of ε i. C i. Input-dependent baseline Local signal [Mnih & Gregor, 24] Linear b i (x, ε) is linear against. MuProp [Gu+, 26] Fullyinformed b i(x, ε) may be nonlinear against. The optimal estimator (general)

8 Reparameterization estimator under the framework 8 Apply the reparameterization trick to the local gradient: E εi φi f(x, g φ x, ε ) If g φ is not continuous, the above equation does not hold (in other words, Monte Carlo estimation of the right hand side has infinite variance). Otherwise, the reparameterization trick can be used.

9 9 f x, z φi q φi pa i

10 f x, z φi q φi pa i

11 f x, z φi q φi pa i

12 2 f x, z φi q φi pa i

13 3 f x, z φi q φi pa i

14 4 f x, z φi q φi pa i

15 5 f x, z φi q φi pa i

16 6 f x, z φi q φi pa i

17 7 f x, z φi q φi pa i

18 8 f x, z φi q φi pa i

19 9 f x, z φi q φi pa i

20 2 f x, z φi q φi pa i

21 2 f x, z φi q φi pa i

22 22 f x, z φi q φi pa i

23 23 f x, z φi q φi pa i

24 24 f x, z φi q φi pa i

25 25 f x, z φi q φi pa i

26 26 f x, z φi q φi pa i

27 27 f x, z φi q φi pa i

28 28 f x, z φi q φi pa i

29 29 f x, z φi q φi pa i

30 Evaluating the variance of estimators within the framework 3 Theorem The optimal estimator achieves the minimum variance among all estimators within the framework. ( the property of Rao-Blackwellization) Theorem 2 When is a Bernoulli variable, there is an independent baseline b i with which the likelihood-ratio estimator achieves the optimal variance. (I.e., LR with independent baseline can be the optimal estimator.)

31 Experiment: variational learning of sigmoid belief networks 3 z z 2 z 3 p θ q φ Datasets: MNIST and Omniglot 784-dimensional binary (/) inputs Each latent variable follows a Bernoulli distribution with the logit given by the net input (i.e., sigmoid- Bernoulli unit) In the optimal estimator, the Bernoulli unit is reparameterized by / thresholding at ε U(, ).

32 Experimental results: variational learning of sigmoid belief nets 32

33 Conclusion 33 We proposed a framework of gradient estimators for stochastic computational graph by reparameterization and local marginalization. We formulated a hierarchy of baseline techniques for likelihood-ratio estimators and showed the relationship between this hierarchy and the optimal estimator. The experimental results show that the variance of gradient estimation for binary discrete variables is approaching to the optimum with recent advancements, yet a non-negligible gap still exists, indicating the possibility of further improvements.

34 (end) 34

35 Appendix: results with shallow networks 35

36 Appendix: training curve of deep networks 36

37 Appendix: training curve of shallow networks 37

38 Appendix: final performance on test sets 38 VB stands for variational bound LL stands for log likelihood, which is approximated by Monte Carlo objective using sample of size 5,

Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning

Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning Diederik (Durk) Kingma Danilo J. Rezende (*) Max Welling Shakir Mohamed (**) Stochastic Gradient Variational Inference Bayesian

More information

Evaluating the Variance of Likelihood-Ratio Gradient Estimators

Evaluating the Variance of Likelihood-Ratio Gradient Estimators Seiya Tokui 1 2 Issei Sato 3 2 Abstract The likelihood-ratio method is often used to estimate gradients of stochastic computations, for which baselines are required to reduce the estimation variance. Many

More information

Combine Monte Carlo with Exhaustive Search: Effective Variational Inference and Policy Gradient Reinforcement Learning

Combine Monte Carlo with Exhaustive Search: Effective Variational Inference and Policy Gradient Reinforcement Learning Combine Monte Carlo with Exhaustive Search: Effective Variational Inference and Policy Gradient Reinforcement Learning Michalis K. Titsias Department of Informatics Athens University of Economics and Business

More information

BACKPROPAGATION THROUGH THE VOID

BACKPROPAGATION THROUGH THE VOID BACKPROPAGATION THROUGH THE VOID Optimizing Control Variates for Black-Box Gradient Estimation 27 Nov 2017, University of Cambridge Speaker: Geoffrey Roeder, University of Toronto OPTIMIZING EXPECTATIONS

More information

REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models

REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models RBAR: Low-variance, unbiased gradient estimates for discrete latent variable models George Tucker 1,, Andriy Mnih 2, Chris J. Maddison 2,3, Dieterich Lawson 1,*, Jascha Sohl-Dickstein 1 1 Google Brain,

More information

Variational Autoencoder

Variational Autoencoder Variational Autoencoder Göker Erdo gan August 8, 2017 The variational autoencoder (VA) [1] is a nonlinear latent variable model with an efficient gradient-based training procedure based on variational

More information

Variational Inference for Monte Carlo Objectives

Variational Inference for Monte Carlo Objectives Variational Inference for Monte Carlo Objectives Andriy Mnih, Danilo Rezende June 21, 2016 1 / 18 Introduction Variational training of directed generative models has been widely adopted. Results depend

More information

Local Expectation Gradients for Doubly Stochastic. Variational Inference

Local Expectation Gradients for Doubly Stochastic. Variational Inference Local Expectation Gradients for Doubly Stochastic Variational Inference arxiv:1503.01494v1 [stat.ml] 4 Mar 2015 Michalis K. Titsias Athens University of Economics and Business, 76, Patission Str. GR10434,

More information

arxiv: v4 [cs.lg] 6 Nov 2017

arxiv: v4 [cs.lg] 6 Nov 2017 RBAR: Low-variance, unbiased gradient estimates for discrete latent variable models arxiv:10.00v cs.lg] Nov 01 George Tucker 1,, Andriy Mnih, Chris J. Maddison,, Dieterich Lawson 1,*, Jascha Sohl-Dickstein

More information

Bayesian Deep Learning

Bayesian Deep Learning Bayesian Deep Learning Mohammad Emtiyaz Khan AIP (RIKEN), Tokyo http://emtiyaz.github.io emtiyaz.khan@riken.jp June 06, 2018 Mohammad Emtiyaz Khan 2018 1 What will you learn? Why is Bayesian inference

More information

Variational Bayes on Monte Carlo Steroids

Variational Bayes on Monte Carlo Steroids Variational Bayes on Monte Carlo Steroids Aditya Grover, Stefano Ermon Department of Computer Science Stanford University {adityag,ermon}@cs.stanford.edu Abstract Variational approaches are often used

More information

Auto-Encoding Variational Bayes. Stochastic Backpropagation and Approximate Inference in Deep Generative Models

Auto-Encoding Variational Bayes. Stochastic Backpropagation and Approximate Inference in Deep Generative Models Auto-Encoding Variational Bayes Diederik Kingma and Max Welling Stochastic Backpropagation and Approximate Inference in Deep Generative Models Danilo J. Rezende, Shakir Mohamed, Daan Wierstra Neural Variational

More information

arxiv: v3 [cs.lg] 25 Feb 2016 ABSTRACT

arxiv: v3 [cs.lg] 25 Feb 2016 ABSTRACT MUPROP: UNBIASED BACKPROPAGATION FOR STOCHASTIC NEURAL NETWORKS Shixiang Gu 1 2, Sergey Levine 3, Ilya Sutskever 3, and Andriy Mnih 4 1 University of Cambridge 2 MPI for Intelligent Systems, Tübingen,

More information

Deep Variational Inference. FLARE Reading Group Presentation Wesley Tansey 9/28/2016

Deep Variational Inference. FLARE Reading Group Presentation Wesley Tansey 9/28/2016 Deep Variational Inference FLARE Reading Group Presentation Wesley Tansey 9/28/2016 What is Variational Inference? What is Variational Inference? Want to estimate some distribution, p*(x) p*(x) What is

More information

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College Distributed Estimation, Information Loss and Exponential Families Qiang Liu Department of Computer Science Dartmouth College Statistical Learning / Estimation Learning generative models from data Topic

More information

Generative Models for Sentences

Generative Models for Sentences Generative Models for Sentences Amjad Almahairi PhD student August 16 th 2014 Outline 1. Motivation Language modelling Full Sentence Embeddings 2. Approach Bayesian Networks Variational Autoencoders (VAE)

More information

Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes Auto-Encoding Variational Bayes Diederik P Kingma, Max Welling June 18, 2018 Diederik P Kingma, Max Welling Auto-Encoding Variational Bayes June 18, 2018 1 / 39 Outline 1 Introduction 2 Variational Lower

More information

The connection of dropout and Bayesian statistics

The connection of dropout and Bayesian statistics The connection of dropout and Bayesian statistics Interpretation of dropout as approximate Bayesian modelling of NN http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf Dropout Geoffrey Hinton Google, University

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

arxiv: v1 [stat.ml] 3 Nov 2016

arxiv: v1 [stat.ml] 3 Nov 2016 CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX Eric Jang Google Brain ejang@google.com Shixiang Gu University of Cambridge MPI Tübingen Google Brain sg717@cam.ac.uk Ben Poole Stanford University poole@cs.stanford.edu

More information

arxiv: v5 [stat.ml] 5 Aug 2017

arxiv: v5 [stat.ml] 5 Aug 2017 CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX Eric Jang Google Brain ejang@google.com Shixiang Gu University of Cambridge MPI Tübingen sg77@cam.ac.uk Ben Poole Stanford University poole@cs.stanford.edu

More information

Denoising Criterion for Variational Auto-Encoding Framework

Denoising Criterion for Variational Auto-Encoding Framework Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) Denoising Criterion for Variational Auto-Encoding Framework Daniel Jiwoong Im, Sungjin Ahn, Roland Memisevic, Yoshua

More information

Approximate Bayesian inference

Approximate Bayesian inference Approximate Bayesian inference Variational and Monte Carlo methods Christian A. Naesseth 1 Exchange rate data 0 20 40 60 80 100 120 Month Image data 2 1 Bayesian inference 2 Variational inference 3 Stochastic

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

The Generalized Reparameterization Gradient

The Generalized Reparameterization Gradient The Generalized Reparameterization Gradient Francisco J. R. Ruiz University of Cambridge Columbia University Michalis K. Titsias Athens University of Economics and Business David M. Blei Columbia University

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari Deep Belief Nets Sargur N. Srihari srihari@cedar.buffalo.edu Topics 1. Boltzmann machines 2. Restricted Boltzmann machines 3. Deep Belief Networks 4. Deep Boltzmann machines 5. Boltzmann machines for continuous

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information

Deep Generative Models

Deep Generative Models Deep Generative Models Durk Kingma Max Welling Deep Probabilistic Models Worksop Wednesday, 1st of Oct, 2014 D.P. Kingma Deep generative models Transformations between Bayes nets and Neural nets Transformation

More information

Latent Variable Models

Latent Variable Models Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 5 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 1 / 31 Recap of last lecture 1 Autoregressive models:

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Backpropagation Through

Backpropagation Through Backpropagation Through Backpropagation Through Backpropagation Through Will Grathwohl Dami Choi Yuhuai Wu Geoff Roeder David Duvenaud Where do we see this guy? L( ) =E p(b ) [f(b)] Just about everywhere!

More information

Improved Bayesian Compression

Improved Bayesian Compression Improved Bayesian Compression Marco Federici University of Amsterdam marco.federici@student.uva.nl Karen Ullrich University of Amsterdam karen.ullrich@uva.nl Max Welling University of Amsterdam Canadian

More information

Unsupervised Learning

Unsupervised Learning CS 3750 Advanced Machine Learning hkc6@pitt.edu Unsupervised Learning Data: Just data, no labels Goal: Learn some underlying hidden structure of the data P(, ) P( ) Principle Component Analysis (Dimensionality

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 10-708 Probabilistic Graphical Models Homework 3 (v1.1.0) Due Apr 14, 7:00 PM Rules: 1. Homework is due on the due date at 7:00 PM. The homework should be submitted via Gradescope. Solution to each problem

More information

Resampled Proposal Distributions for Variational Inference and Learning

Resampled Proposal Distributions for Variational Inference and Learning Resampled Proposal Distributions for Variational Inference and Learning Aditya Grover * 1 Ramki Gummadi * 2 Miguel Lazaro-Gredilla 2 Dale Schuurmans 3 Stefano Ermon 1 Abstract Learning generative models

More information

Resampled Proposal Distributions for Variational Inference and Learning

Resampled Proposal Distributions for Variational Inference and Learning Resampled Proposal Distributions for Variational Inference and Learning Aditya Grover * 1 Ramki Gummadi * 2 Miguel Lazaro-Gredilla 2 Dale Schuurmans 3 Stefano Ermon 1 Abstract Learning generative models

More information

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 6375: Machine Learning Vibhav Gogate The University of Texas at Dallas Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Y Continuous Non-parametric

More information

Variational Dropout via Empirical Bayes

Variational Dropout via Empirical Bayes Variational Dropout via Empirical Bayes Valery Kharitonov 1 kharvd@gmail.com Dmitry Molchanov 1, dmolch111@gmail.com Dmitry Vetrov 1, vetrovd@yandex.ru 1 National Research University Higher School of Economics,

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

arxiv: v4 [cs.lg] 16 Apr 2015

arxiv: v4 [cs.lg] 16 Apr 2015 REWEIGHTED WAKE-SLEEP Jörg Bornschein and Yoshua Bengio Department of Computer Science and Operations Research University of Montreal Montreal, Quebec, Canada ABSTRACT arxiv:1406.2751v4 [cs.lg] 16 Apr

More information

Variational Inference in TensorFlow. Danijar Hafner Stanford CS University College London, Google Brain

Variational Inference in TensorFlow. Danijar Hafner Stanford CS University College London, Google Brain Variational Inference in TensorFlow Danijar Hafner Stanford CS 20 2018-02-16 University College London, Google Brain Outline Variational Inference Tensorflow Distributions VAE in TensorFlow Variational

More information

ARM: Augment-REINFORCE-Merge Gradient for Discrete Latent Variable Models

ARM: Augment-REINFORCE-Merge Gradient for Discrete Latent Variable Models ARM: Augment-REINFORCE-Merge Gradient for Discrete Latent Variable Models Mingzhang Yin Mingyuan Zhou July 29, 2018 Abstract To backpropagate the gradients through discrete stochastic layers, we encode

More information

Discrete Latent Variable Models

Discrete Latent Variable Models Discrete Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 14 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 14 1 / 29 Summary Major themes in the course

More information

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 7301: Advanced Machine Learning Vibhav Gogate The University of Texas at Dallas Supervised Learning Issues in supervised learning What makes learning hard Point Estimation: MLE vs Bayesian

More information

Natural Gradients via the Variational Predictive Distribution

Natural Gradients via the Variational Predictive Distribution Natural Gradients via the Variational Predictive Distribution Da Tang Columbia University datang@cs.columbia.edu Rajesh Ranganath New York University rajeshr@cims.nyu.edu Abstract Variational inference

More information

Stochastic Gradient Descent

Stochastic Gradient Descent Stochastic Gradient Descent Machine Learning CSE546 Carlos Guestrin University of Washington October 9, 2013 1 Logistic Regression Logistic function (or Sigmoid): Learn P(Y X) directly Assume a particular

More information

Learning Energy-Based Models of High-Dimensional Data

Learning Energy-Based Models of High-Dimensional Data Learning Energy-Based Models of High-Dimensional Data Geoffrey Hinton Max Welling Yee-Whye Teh Simon Osindero www.cs.toronto.edu/~hinton/energybasedmodelsweb.htm Discovering causal structure as a goal

More information

Bayesian Semi-supervised Learning with Deep Generative Models

Bayesian Semi-supervised Learning with Deep Generative Models Bayesian Semi-supervised Learning with Deep Generative Models Jonathan Gordon Department of Engineering Cambridge University jg801@cam.ac.uk José Miguel Hernández-Lobato Department of Engineering Cambridge

More information

Scalable Large-Scale Classification with Latent Variable Augmentation

Scalable Large-Scale Classification with Latent Variable Augmentation Scalable Large-Scale Classification with Latent Variable Augmentation Francisco J. R. Ruiz Columbia University University of Cambridge Michalis K. Titsias Athens University of Economics and Business David

More information

Variational Dropout and the Local Reparameterization Trick

Variational Dropout and the Local Reparameterization Trick Variational ropout and the Local Reparameterization Trick iederik P. Kingma, Tim Salimans and Max Welling Machine Learning Group, University of Amsterdam Algoritmica University of California, Irvine, and

More information

Deep Latent-Variable Models of Natural Language

Deep Latent-Variable Models of Natural Language Deep Latent-Variable of Natural Language Yoon Kim, Sam Wiseman, Alexander Rush Tutorial 2018 https://github.com/harvardnlp/deeplatentnlp 1/153 Goals Background 1 Goals Background 2 3 4 5 6 2/153 Goals

More information

Variance Reduction in Black-box Variational Inference by Adaptive Importance Sampling

Variance Reduction in Black-box Variational Inference by Adaptive Importance Sampling Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence IJCAI-18 Variance Reduction in Black-box Variational Inference by Adaptive Importance Sampling Ximing Li, Changchun

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Variational Autoencoders

Variational Autoencoders Variational Autoencoders Recap: Story so far A classification MLP actually comprises two components A feature extraction network that converts the inputs into linearly separable features Or nearly linearly

More information

Appendices: Stochastic Backpropagation and Approximate Inference in Deep Generative Models

Appendices: Stochastic Backpropagation and Approximate Inference in Deep Generative Models Appendices: Stochastic Backpropagation and Approximate Inference in Deep Generative Models Danilo Jimenez Rezende Shakir Mohamed Daan Wierstra Google DeepMind, London, United Kingdom DANILOR@GOOGLE.COM

More information

Deep Amortized Inference for Probabilistic Programs

Deep Amortized Inference for Probabilistic Programs Deep Amortized Inference for Probabilistic Programs Daniel Ritchie Stanford University Paul Horsfall Stanford University Noah D. Goodman Stanford University Abstract Probabilistic programming languages

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Monte Carlo Studies. The response in a Monte Carlo study is a random variable.

Monte Carlo Studies. The response in a Monte Carlo study is a random variable. Monte Carlo Studies The response in a Monte Carlo study is a random variable. The response in a Monte Carlo study has a variance that comes from the variance of the stochastic elements in the data-generating

More information

Machine Learning I Continuous Reinforcement Learning

Machine Learning I Continuous Reinforcement Learning Machine Learning I Continuous Reinforcement Learning Thomas Rückstieß Technische Universität München January 7/8, 2010 RL Problem Statement (reminder) state s t+1 ENVIRONMENT reward r t+1 new step r t

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Probability and Information Theory. Sargur N. Srihari

Probability and Information Theory. Sargur N. Srihari Probability and Information Theory Sargur N. srihari@cedar.buffalo.edu 1 Topics in Probability and Information Theory Overview 1. Why Probability? 2. Random Variables 3. Probability Distributions 4. Marginal

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

Review: Probabilistic Matrix Factorization. Probabilistic Matrix Factorization (PMF)

Review: Probabilistic Matrix Factorization. Probabilistic Matrix Factorization (PMF) Case Study 4: Collaborative Filtering Review: Probabilistic Matrix Factorization Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February 2 th, 214 Emily Fox 214 1 Probabilistic

More information

Doubly Stochastic Inference for Deep Gaussian Processes. Hugh Salimbeni Department of Computing Imperial College London

Doubly Stochastic Inference for Deep Gaussian Processes. Hugh Salimbeni Department of Computing Imperial College London Doubly Stochastic Inference for Deep Gaussian Processes Hugh Salimbeni Department of Computing Imperial College London 29/5/2017 Motivation DGPs promise much, but are difficult to train Doubly Stochastic

More information

Probabilistic Graphical Models for Image Analysis - Lecture 4

Probabilistic Graphical Models for Image Analysis - Lecture 4 Probabilistic Graphical Models for Image Analysis - Lecture 4 Stefan Bauer 12 October 2018 Max Planck ETH Center for Learning Systems Overview 1. Repetition 2. α-divergence 3. Variational Inference 4.

More information

Gradient Estimation Using Stochastic Computation Graphs

Gradient Estimation Using Stochastic Computation Graphs Gradient Estimation Using Stochastic Computation Graphs Yoonho Lee Department of Computer Science and Engineering Pohang University of Science and Technology May 9, 2017 Outline Stochastic Gradient Estimation

More information

Need for Sampling in Machine Learning. Sargur Srihari

Need for Sampling in Machine Learning. Sargur Srihari Need for Sampling in Machine Learning Sargur srihari@cedar.buffalo.edu 1 Rationale for Sampling 1. ML methods model data with probability distributions E.g., p(x,y; θ) 2. Models are used to answer queries,

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Backpropagation Introduction to Machine Learning. Matt Gormley Lecture 12 Feb 23, 2018

Backpropagation Introduction to Machine Learning. Matt Gormley Lecture 12 Feb 23, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Backpropagation Matt Gormley Lecture 12 Feb 23, 2018 1 Neural Networks Outline

More information

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics Table of Preface page xi PART I INTRODUCTION 1 1 The meaning of probability 3 1.1 Classical definition of probability 3 1.2 Statistical definition of probability 9 1.3 Bayesian understanding of probability

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 7 Unsupervised Learning Statistical Perspective Probability Models Discrete & Continuous: Gaussian, Bernoulli, Multinomial Maimum Likelihood Logistic

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Nonparmeteric Bayes & Gaussian Processes. Baback Moghaddam Machine Learning Group

Nonparmeteric Bayes & Gaussian Processes. Baback Moghaddam Machine Learning Group Nonparmeteric Bayes & Gaussian Processes Baback Moghaddam baback@jpl.nasa.gov Machine Learning Group Outline Bayesian Inference Hierarchical Models Model Selection Parametric vs. Nonparametric Gaussian

More information

An Overview of Edward: A Probabilistic Programming System. Dustin Tran Columbia University

An Overview of Edward: A Probabilistic Programming System. Dustin Tran Columbia University An Overview of Edward: A Probabilistic Programming System Dustin Tran Columbia University Alp Kucukelbir Eugene Brevdo Andrew Gelman Adji Dieng Maja Rudolph David Blei Dawen Liang Matt Hoffman Kevin Murphy

More information

Probabilistic & Bayesian deep learning. Andreas Damianou

Probabilistic & Bayesian deep learning. Andreas Damianou Probabilistic & Bayesian deep learning Andreas Damianou Amazon Research Cambridge, UK Talk at University of Sheffield, 19 March 2019 In this talk Not in this talk: CRFs, Boltzmann machines,... In this

More information

Density estimation. Computing, and avoiding, partition functions. Iain Murray

Density estimation. Computing, and avoiding, partition functions. Iain Murray Density estimation Computing, and avoiding, partition functions Roadmap: Motivation: density estimation Understanding annealing/tempering NADE Iain Murray School of Informatics, University of Edinburgh

More information

Bias-Variance Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions

Bias-Variance Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions - Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions Simon Luo The University of Sydney Data61, CSIRO simon.luo@data61.csiro.au Mahito Sugiyama National Institute of

More information

Sampling Algorithms for Probabilistic Graphical models

Sampling Algorithms for Probabilistic Graphical models Sampling Algorithms for Probabilistic Graphical models Vibhav Gogate University of Washington References: Chapter 12 of Probabilistic Graphical models: Principles and Techniques by Daphne Koller and Nir

More information

Chapter 3 Bayesian Deep Learning

Chapter 3 Bayesian Deep Learning Chapter 3 Bayesian Deep Learning In previous chapters we reviewed Bayesian neural networks (BNNs) and historical techniques for approximate inference in these, as well as more recent approaches. We discussed

More information

Bayesian Paragraph Vectors

Bayesian Paragraph Vectors Bayesian Paragraph Vectors Geng Ji 1, Robert Bamler 2, Erik B. Sudderth 1, and Stephan Mandt 2 1 Department of Computer Science, UC Irvine, {gji1, sudderth}@uci.edu 2 Disney Research, firstname.lastname@disneyresearch.com

More information

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016 Log Gaussian Cox Processes Chi Group Meeting February 23, 2016 Outline Typical motivating application Introduction to LGCP model Brief overview of inference Applications in my work just getting started

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ Bayesian paradigm Consistent use of probability theory

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ 1 Bayesian paradigm Consistent use of probability theory

More information

Stochastic Gradient Estimate Variance in Contrastive Divergence and Persistent Contrastive Divergence

Stochastic Gradient Estimate Variance in Contrastive Divergence and Persistent Contrastive Divergence ESANN 0 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 7-9 April 0, idoc.com publ., ISBN 97-7707-. Stochastic Gradient

More information

REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS

REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS Worshop trac - ICLR 207 REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS Chris Cremer, Quaid Morris & David Duvenaud Department of Computer Science University of Toronto {ccremer,duvenaud}@cs.toronto.edu

More information

Discrete Variables and Gradient Estimators

Discrete Variables and Gradient Estimators iscrete Variables and Gradient Estimators This assignment is designed to get you comfortable deriving gradient estimators, and optimizing distributions over discrete random variables. For most questions,

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

Chapter 20. Deep Generative Models

Chapter 20. Deep Generative Models Peng et al.: Deep Learning and Practice 1 Chapter 20 Deep Generative Models Peng et al.: Deep Learning and Practice 2 Generative Models Models that are able to Provide an estimate of the probability distribution

More information

Machine Learning Basics: Stochastic Gradient Descent. Sargur N. Srihari

Machine Learning Basics: Stochastic Gradient Descent. Sargur N. Srihari Machine Learning Basics: Stochastic Gradient Descent Sargur N. srihari@cedar.buffalo.edu 1 Topics 1. Learning Algorithms 2. Capacity, Overfitting and Underfitting 3. Hyperparameters and Validation Sets

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

arxiv: v2 [cs.cl] 1 Jan 2019

arxiv: v2 [cs.cl] 1 Jan 2019 Variational Self-attention Model for Sentence Representation arxiv:1812.11559v2 [cs.cl] 1 Jan 2019 Qiang Zhang 1, Shangsong Liang 2, Emine Yilmaz 1 1 University College London, London, United Kingdom 2

More information

Deep unsupervised learning

Deep unsupervised learning Deep unsupervised learning Advanced data-mining Yongdai Kim Department of Statistics, Seoul National University, South Korea Unsupervised learning In machine learning, there are 3 kinds of learning paradigm.

More information

Overdispersed Black-Box Variational Inference

Overdispersed Black-Box Variational Inference Overdispersed Black-Box Variational Inference Francisco J. R. Ruiz Data Science Institute Dept. of Computer Science Columbia University Michalis K. Titsias Dept. of Informatics Athens University of Economics

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information