John Hancock enters the 21th century Digital signature schemes. Table of contents

Size: px
Start display at page:

Download "John Hancock enters the 21th century Digital signature schemes. Table of contents"

Transcription

1 John Hancock enters the 21th century Digital signature schemes Foundations of Cryptography Computer Science Department Wellesley College Fall 2016 Table of contents

2 From last time: Good news and bad There is no known function H for which hashed RSA signature schemes are known to be secure. However, hashed RSA is provable secure under an idealize model when H is modeled as a random oracle that maps inputs uniformly onto Z N.Inthiscasetheschemeis called RSA full-domain hash (RSA-FDH). This provides a heuristic justification of the scheme when H is a random-looking hash functions. Algorithm GenRSA Recall GenRSA Input: Length n; parameter t Output: N, e, d as described below (N, p, q) GenModulus(1 n )* (N) :=(p 1)(q 1) find e such that gcd(e, (N)) = 1 compute d := [e 1 mod (N)]** return N, e, d *N = pq with p, qn-bit primes. **Such an integer d exists since e is invertible modulo (N).

3 And recall what RSA is hard relative to GenRSA means The RSA experiment RSA-inv A,GenRSA (n): 1. Run GenRSA(1 n ) to obtain (N, e, d). 2. Choose y Z N. 3. A is given N, e, y, and outputs x 2 Z N. 4. The output of the experiment is defined to be 1 if x e = y mod N, and 0 otherwise. Definition We say that the RSA problem is hard relative to GenRSA if for all probabilistic polynomial-time algorithms A there exists a negligible function negl such that Pr[RSA-inv A,GenRSA (n) = 1] apple negl(n). Security of RSA-FDH Theorem If the RSA problem is hard relative to GenRSA and H is modeled as a random oracle, then Construction 12.6 is secure. Proof. Let =(Gen, Sign, Vrfy) denote Construction 12.6, and let A be a PPT adversary against the Sig-forge A, (n) experiment. Assume WLOG that if A requests a signature on a message m or outputs a forgery (m, ) then it previously queried m to H. Let q(n) be a polynomial upper bound on the number of queries A makes to H on security parameter n; weassumea makes exactly q(n) queriestoh.

4 Steps of the Sig-forge A, (n) experiment Let =(Gen, Sign, Vrfy) be a signature scheme. The signature experiment Sig-forge A, (n) : 1. GenRSA(1 n ) is run to obtain N, e, d). A random function H : {0, 1}! Z N is chosen. 2. The adversary A is given (pk, sk) andmayqueryh as well ass a signing oracle Sign hn,di that, on input m, returns := [H(m) d mod N]. 3. The adversary then outputs (m, ) where it had not previously requested a signature on M. The output of the experiment is defined to be 1 if and only if e = H(m) mod N. Definition A signature scheme =(Gen, Sign, Vrfy) is existentially unforgeable under an adaptive chosen-message attack if for all PPT adversaries A, there exists a negligible function negl such that Pr[Sig-forge A, (n) = 1] apple negl(n). A modified Sig-forge 0 A, (n) experiment We define a modified experiment Sig-forge 0 A, (n) that guesses as to which queried message corresponds to the eventual forgery. The modified signature experiment Sig-forge 0 A, (n) : 1. Choose uniform j 2 {0,...,q}. 2. GenRSA(1 n ) is run to obtain N, e, d). A random function H : {0, 1}! Z N is chosen. 3. The adversary A is given (pk, sk) andmayqueryh as well ass a signing oracle Sign hn,di that, on input m, returns := [H(m) d mod N]. 4. The adversary then outputs (m, ) where it had not previously requested a signature on M. Leti be such that m = m 1.The output of the experiment is defined to be 1 if and only if e = H(m) mod N and j = i. *Since j is uniform the probability that i = j is exactly 1/q and Pr[Sig-forge 0 A, (n) =1]= 1 q(n) Pr[Sig-forge A, (n) =1].

5 A further modification of the Sig-forge A, (n) experiment Consider a further modification of our experiment Sig-forge 00 A, (n) in which the experiment is aborted if A ever requests a signature on the message m j. This does not change the probability that the output of the experiment is 1, since if A ever requests a signature on M j it cannot output a forgery on m j.thus, Pr[Sig-forge 00 A, (n) = 1] = Pr[Sig-forge 0 A, (n) = 1] = Pr[Sig-forge A, (n) = 1]. q(n) Construction of A 0 solving the RSA problem The Adversary is given (N, e, y). 1. Run A on the public key pk = hn, ei. Storetriples(,, ) inatable initially empty. Entry (m i, i, y i )indicatesthata 0 has set H(m i )=y i,and e i = y i mod N. 2. When A makes its ith random-oracle query H(m i ), answer: If i = j, returny. Else choose uniform i 2 Z N, compute y i := [ i e return y i and store (m i, i, y i ). When A requests a signature on m = m i,answer: mod N], If i = j, thena 0 aborts. If i 6= j, thereisanentry(m i, i, y i )inthetable.return i. 3. When A outputs (m, ), then if m = m j and e = y mod N, then output.

6 A 0 world view Note that A s point of view when run as subroutine of A 0 is identical to its view in Sig-forge 00 A, (n). All Sign-oracle queries are answered correctly, and each random-oracle query is answered by a uniform element of Z N : The query H(m j )isansweredwithy, a uniform element of Z N. Queries H(M i )withi 6= j are answer with y i =[ i e mod N], where i is uniform in Z N. Since exponentiation by e is one-to-one, the y i are uniformly distributed as well. When Sig-forge 00 A, (n) outputs 1, j = i and e = H(m) mod N. Inthis case, A does not abort and e = H(m i )=y mod N. Thus, is the desired inverse. We assumed that RSA is hard relative to GenRSA, so left term below negligible Pr[RSA-inv A,GenRSA (n) = 1] = Pr[Sig-forge 00 A, (n) = 1] = Pr[Sig-forge A 0,GenRSA (n) = 1] q(n)

Katz, Lindell Introduction to Modern Cryptrography

Katz, Lindell Introduction to Modern Cryptrography Katz, Lindell Introduction to Modern Cryptrography Slides Chapter 12 Markus Bläser, Saarland University Digital signature schemes Goal: integrity of messages Signer signs a message using a private key

More information

Constructing secure MACs Message authentication in action. Table of contents

Constructing secure MACs Message authentication in action. Table of contents Constructing secure MACs Message authentication in action Foundations of Cryptography Computer Science Department Wellesley College Fall 2016 Table of contents From last time Recall the definition of message

More information

Digital Signature Schemes and the Random Oracle Model. A. Hülsing

Digital Signature Schemes and the Random Oracle Model. A. Hülsing Digital Signature Schemes and the Random Oracle Model A. Hülsing Today s goal Review provable security of in use signature schemes. (PKCS #1 v2.x) PAGE 1 Digital Signature Source: http://hari-cio-8a.blog.ugm.ac.id/files/2013/03/dsa.jpg

More information

II. Digital signatures

II. Digital signatures II. Digital signatures Alice m Bob Eve 1. Did Bob send message m, or was it Eve? 2. Did Eve modify the message m, that was sent by Bob? 1 Digital signatures Digital signature - are equivalent of handwritten

More information

Lecture 16 Chiu Yuen Koo Nikolai Yakovenko. 1 Digital Signature Schemes. CMSC 858K Advanced Topics in Cryptography March 18, 2004

Lecture 16 Chiu Yuen Koo Nikolai Yakovenko. 1 Digital Signature Schemes. CMSC 858K Advanced Topics in Cryptography March 18, 2004 CMSC 858K Advanced Topics in Cryptography March 18, 2004 Lecturer: Jonathan Katz Lecture 16 Scribe(s): Chiu Yuen Koo Nikolai Yakovenko Jeffrey Blank 1 Digital Signature Schemes In this lecture, we introduce

More information

1 Number Theory Basics

1 Number Theory Basics ECS 289M (Franklin), Winter 2010, Crypto Review 1 Number Theory Basics This section has some basic facts about number theory, mostly taken (or adapted) from Dan Boneh s number theory fact sheets for his

More information

Transitive Signatures Based on Non-adaptive Standard Signatures

Transitive Signatures Based on Non-adaptive Standard Signatures Transitive Signatures Based on Non-adaptive Standard Signatures Zhou Sujing Nanyang Technological University, Singapore, zhousujing@pmail.ntu.edu.sg Abstract. Transitive signature, motivated by signing

More information

Katz, Lindell Introduction to Modern Cryptrography

Katz, Lindell Introduction to Modern Cryptrography Katz, Lindell Introduction to Modern Cryptrography Slides Chapter 8 Markus Bläser, Saarland University Weak factoring experiment The weak factoring experiment 1. Choose two n-bit integers x 1, x 2 uniformly.

More information

Block Ciphers/Pseudorandom Permutations

Block Ciphers/Pseudorandom Permutations Block Ciphers/Pseudorandom Permutations Definition: Pseudorandom Permutation is exactly the same as a Pseudorandom Function, except for every key k, F k must be a permutation and it must be indistinguishable

More information

Lecture 15 & 16: Trapdoor Permutations, RSA, Signatures

Lecture 15 & 16: Trapdoor Permutations, RSA, Signatures CS 7810 Graduate Cryptography October 30, 2017 Lecture 15 & 16: Trapdoor Permutations, RSA, Signatures Lecturer: Daniel Wichs Scribe: Willy Quach & Giorgos Zirdelis 1 Topic Covered. Trapdoor Permutations.

More information

CSC 5930/9010 Modern Cryptography: Number Theory

CSC 5930/9010 Modern Cryptography: Number Theory CSC 5930/9010 Modern Cryptography: Number Theory Professor Henry Carter Fall 2018 Recap Hash functions map arbitrary-length strings to fixedlength outputs Cryptographic hashes should be collision-resistant

More information

Avoiding collisions Cryptographic hash functions. Table of contents

Avoiding collisions Cryptographic hash functions. Table of contents Avoiding collisions Cryptographic hash functions Foundations of Cryptography Computer Science Department Wellesley College Fall 2016 Table of contents Introduction Collision resistance Birthday attacks

More information

VI. The Fiat-Shamir Heuristic

VI. The Fiat-Shamir Heuristic VI. The Fiat-Shamir Heuristic - as already seen signatures can be used and are used in practice to design identification protocols - next we show how we can obtain signatures schemes from - protocols using

More information

Digital Signatures. Adam O Neill based on

Digital Signatures. Adam O Neill based on Digital Signatures Adam O Neill based on http://cseweb.ucsd.edu/~mihir/cse207/ Signing by hand COSMO ALICE ALICE Pay Bob $100 Cosmo Alice Alice Bank =? no Don t yes pay Bob Signing electronically SIGFILE

More information

El Gamal A DDH based encryption scheme. Table of contents

El Gamal A DDH based encryption scheme. Table of contents El Gamal A DDH based encryption scheme Foundations of Cryptography Computer Science Department Wellesley College Fall 2016 Table of contents Introduction El Gamal Practical Issues The El Gamal encryption

More information

Lecture 14 More on Digital Signatures and Variants. COSC-260 Codes and Ciphers Adam O Neill Adapted from

Lecture 14 More on Digital Signatures and Variants. COSC-260 Codes and Ciphers Adam O Neill Adapted from Lecture 14 More on Digital Signatures and Variants COSC-260 Codes and Ciphers Adam O Neill Adapted from http://cseweb.ucsd.edu/~mihir/cse107/ Setting the Stage We will cover in more depth some issues for

More information

Chapter 11 : Private-Key Encryption

Chapter 11 : Private-Key Encryption COMP547 Claude Crépeau INTRODUCTION TO MODERN CRYPTOGRAPHY _ Second Edition _ Jonathan Katz Yehuda Lindell Chapter 11 : Private-Key Encryption 1 Chapter 11 Public-Key Encryption Apologies: all numbering

More information

Digital signature schemes

Digital signature schemes Digital signature schemes Martin Stanek Department of Computer Science Comenius University stanek@dcs.fmph.uniba.sk Cryptology 1 (2017/18) Content Introduction digital signature scheme security of digital

More information

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited Julien Cathalo 1, Jean-Sébastien Coron 2, and David Naccache 2,3 1 UCL Crypto Group Place du Levant 3, Louvain-la-Neuve, B-1348, Belgium

More information

Authentication. Chapter Message Authentication

Authentication. Chapter Message Authentication Chapter 5 Authentication 5.1 Message Authentication Suppose Bob receives a message addressed from Alice. How does Bob ensure that the message received is the same as the message sent by Alice? For example,

More information

Digital Signatures. p1.

Digital Signatures. p1. Digital Signatures p1. Digital Signatures Digital signature is the same as MAC except that the tag (signature) is produced using the secret key of a public-key cryptosystem. Message m MAC k (m) Message

More information

From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes

From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes [Published in D. Naccache, Ed., Topics in Cryptology CT-RSA 2001, vol. 2020 of Lecture Notes in Computer

More information

Threshold RSA for Dynamic and Ad-Hoc Groups

Threshold RSA for Dynamic and Ad-Hoc Groups Threshold RSA for Dynamic and Ad-Hoc Groups Rosario Gennaro, Shai Halevi, Hugo Krawczyk, Tal Rabin IBM T.J.Watson Research Center Hawthorne, NY USA Abstract. We consider the use of threshold signatures

More information

CPA-Security. Definition: A private-key encryption scheme

CPA-Security. Definition: A private-key encryption scheme CPA-Security The CPA Indistinguishability Experiment PrivK cpa A,Π n : 1. A key k is generated by running Gen 1 n. 2. The adversary A is given input 1 n and oracle access to Enc k, and outputs a pair of

More information

Schnorr Signature. Schnorr Signature. October 31, 2012

Schnorr Signature. Schnorr Signature. October 31, 2012 . October 31, 2012 Table of contents Salient Features Preliminaries Security Proofs Random Oracle Heuristic PKS and its Security Models Hardness Assumption The Construction Oracle Replay Attack Security

More information

Lecture 8 Alvaro A. Cardenas Nicholas Sze Yinian Mao Kavitha Swaminathan. 1 Introduction. 2 The Dolev-Dwork-Naor (DDN) Scheme [1]

Lecture 8 Alvaro A. Cardenas Nicholas Sze Yinian Mao Kavitha Swaminathan. 1 Introduction. 2 The Dolev-Dwork-Naor (DDN) Scheme [1] CMSC 858K Advanced Topics in Cryptography February 19, 2004 Lecturer: Jonathan Katz Lecture 8 Scribe(s): Alvaro A. Cardenas Nicholas Sze Yinian Mao Kavitha Swaminathan 1 Introduction Last time we introduced

More information

Q B (pk, sk) Gen x u M pk y Map pk (x) return [B(pk, y)? = x]. (m, s) A O h

Q B (pk, sk) Gen x u M pk y Map pk (x) return [B(pk, y)? = x]. (m, s) A O h MTAT.07.003 Cryptology II Spring 2012 / Exercise session?? / Example Solution Exercise (FRH in RO model). Show that the full domain hash signature is secure against existential forgeries in the random

More information

Cryptographic Hardness Assumptions

Cryptographic Hardness Assumptions Chapter 2 Cryptographic Hardness Assumptions As noted in the previous chapter, it is impossible to construct a digital signature scheme that is secure against an all-powerful adversary. Instead, the best

More information

Optimal Security Reductions for Unique Signatures: Bypassing Impossibilities with A Counterexample

Optimal Security Reductions for Unique Signatures: Bypassing Impossibilities with A Counterexample Optimal Security Reductions for Unique Signatures: Bypassing Impossibilities with A Counterexample Fuchun Guo 1, Rongmao Chen 2, Willy Susilo 1, Jianchang Lai 1, Guomin Yang 1, and Yi Mu 1 1 Institute

More information

PSS Is Secure against Random Fault Attacks

PSS Is Secure against Random Fault Attacks PSS Is Secure against Random Fault Attacks Jean-Sébastien Coron and Avradip Mandal University of Luxembourg Abstract. A fault attack consists in inducing hardware malfunctions in order to recover secrets

More information

Digital Signatures from Strong RSA without Prime Genera7on. David Cash Rafael Dowsley Eike Kiltz

Digital Signatures from Strong RSA without Prime Genera7on. David Cash Rafael Dowsley Eike Kiltz Digital Signatures from Strong RSA without Prime Genera7on David Cash Rafael Dowsley Eike Kiltz Digital Signatures Digital signatures are one of mostly deployed cryptographic primi7ves. Digital Signatures

More information

Technische Universität München (I7) Winter 2013/14 Dr. M. Luttenberger / M. Schlund SOLUTION. Cryptography Endterm

Technische Universität München (I7) Winter 2013/14 Dr. M. Luttenberger / M. Schlund SOLUTION. Cryptography Endterm Technische Universität München (I7) Winter 2013/14 Dr. M. Luttenberger / M. Schlund SOLUTION Cryptography Endterm Exercise 1 One Liners 1.5P each = 12P For each of the following statements, state if it

More information

Foundations of Cryptography

Foundations of Cryptography - 111 - Foundations of Cryptography Notes of lecture No. 10B & 11 (given on June 11 & 18, 1989) taken by Sergio Rajsbaum Summary In this lecture we define unforgeable digital signatures and present such

More information

CSA E0 235: Cryptography (19 Mar 2015) CBC-MAC

CSA E0 235: Cryptography (19 Mar 2015) CBC-MAC CSA E0 235: Cryptography (19 Mar 2015) Instructor: Arpita Patra CBC-MAC Submitted by: Bharath Kumar, KS Tanwar 1 Overview In this lecture, we will explore Cipher Block Chaining - Message Authentication

More information

Lecture 18: Message Authentication Codes & Digital Signa

Lecture 18: Message Authentication Codes & Digital Signa Lecture 18: Message Authentication Codes & Digital Signatures MACs and Signatures Both are used to assert that a message has indeed been generated by a party MAC is the private-key version and Signatures

More information

Block ciphers And modes of operation. Table of contents

Block ciphers And modes of operation. Table of contents Block ciphers And modes of operation Foundations of Cryptography Computer Science Department Wellesley College Table of contents Introduction Pseudorandom permutations Block Ciphers Modes of Operation

More information

Secure Hash-and-Sign Signatures Without the Random Oracle

Secure Hash-and-Sign Signatures Without the Random Oracle Secure Hash-and-Sign Signatures Without the Random Oracle Rosario Gennaro, Shai Halevi, and Tal Rabin IBM T.J.Watson Research Center, PO Box 704, Yorktown Heights, NY 10598, USA {rosario,shaih,talr}@watson.ibm.com

More information

XMSS A Practical Forward Secure Signature Scheme based on Minimal Security Assumptions

XMSS A Practical Forward Secure Signature Scheme based on Minimal Security Assumptions XMSS A Practical Forward Secure Signature Scheme based on Minimal Security Assumptions Johannes Buchmann and Andreas Hülsing {buchmann,huelsing}@cdc.informatik.tu-darmstadt.de Cryptography and Computeralgebra

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Friday 25 January 2019

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Friday 25 January 2019 Faculty of Mathematics and Computer Science Exam Cryptology, Friday 25 January 2019 Name : TU/e student number : Exercise 1 2 3 4 5 total points Notes: Please hand in all sheets at the end of the exam.

More information

Uninstantiability of Full-Domain Hash

Uninstantiability of Full-Domain Hash Uninstantiability of based on On the Generic Insecurity of, Crypto 05, joint work with Y.Dodis and R.Oliveira Krzysztof Pietrzak CWI Amsterdam June 3, 2008 Why talk about this old stuff? Why talk about

More information

A Security Proof of KCDSA using an extended Random Oracle Model

A Security Proof of KCDSA using an extended Random Oracle Model A Security Proof of KCDSA using an extended Random Oracle Model Vikram Singh Abstract We describe a tight security reduction to the discrete logarithm problem for KCDSA under an extended Random Oracle

More information

Tightly-Secure Signatures From Lossy Identification Schemes

Tightly-Secure Signatures From Lossy Identification Schemes Tightly-Secure Signatures From Lossy Identification Schemes Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi 2 École normale supérieure {michel.abdalla,pierre-alain.fouque,vadim.lyubashevsky}@ens.fr

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018 Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018 Name : TU/e student number : Exercise 1 2 3 4 5 total points Notes: Please hand in all sheets at the end of the exam.

More information

Lecture 22: RSA Encryption. RSA Encryption

Lecture 22: RSA Encryption. RSA Encryption Lecture 22: Recall: RSA Assumption We pick two primes uniformly and independently at random p, q $ P n We define N = p q We shall work over the group (Z N, ), where Z N is the set of all natural numbers

More information

SIS-based Signatures

SIS-based Signatures Lattices and Homomorphic Encryption, Spring 2013 Instructors: Shai Halevi, Tal Malkin February 26, 2013 Basics We will use the following parameters: n, the security parameter. =poly(n). m 2n log s 2 n

More information

1 Basic Number Theory

1 Basic Number Theory ECS 228 (Franklin), Winter 2013, Crypto Review 1 Basic Number Theory This section has some basic facts about number theory, mostly taken (or adapted) from Dan Boneh s number theory fact sheets for his

More information

Lecture 6. Winter 2018 CS 485/585 Introduction to Cryptography. Constructing CPA-secure ciphers

Lecture 6. Winter 2018 CS 485/585 Introduction to Cryptography. Constructing CPA-secure ciphers 1 Winter 2018 CS 485/585 Introduction to Cryptography Lecture 6 Portland State University Jan. 25, 2018 Lecturer: Fang Song Draft note. Version: February 4, 2018. Email fang.song@pdx.edu for comments and

More information

RSA and Rabin Signatures Signcryption

RSA and Rabin Signatures Signcryption T-79.5502 Advanced Course in Cryptology RSA and Rabin Signatures Signcryption Alessandro Tortelli 26-04-06 Overview Introduction Probabilistic Signature Scheme PSS PSS with message recovery Signcryption

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Previously Digital Signatures Algorithms: Gen() à (sk,pk) Sign(sk,m) à σ Ver(pk,m,σ) à 0/1 Correctness: Pr[Ver(pk,m,Sign(sk,m))=1:

More information

10 Concrete candidates for public key crypto

10 Concrete candidates for public key crypto 10 Concrete candidates for public key crypto In the previous lecture we talked about public key cryptography and saw the Diffie Hellman system and the DSA signature scheme. In this lecture, we will see

More information

New Approach for Selectively Convertible Undeniable Signature Schemes

New Approach for Selectively Convertible Undeniable Signature Schemes New Approach for Selectively Convertible Undeniable Signature Schemes Kaoru Kurosawa 1 and Tsuyoshi Takagi 2 1 Ibaraki University, Japan, kurosawa@mx.ibaraki.ac.jp 2 Future University-Hakodate, Japan,

More information

Homework 7 Solutions

Homework 7 Solutions Homework 7 Solutions Due: March 22, 2018 CS 151: Intro. to Cryptography and Computer Security 1 Fun with PRFs a. F a s = F 0 k(x) F s (x) is not a PRF, for any choice of F. Consider a distinguisher D a

More information

Cryptography. Course 1: Remainder: RSA. Jean-Sébastien Coron. September 21, Université du Luxembourg

Cryptography. Course 1: Remainder: RSA. Jean-Sébastien Coron. September 21, Université du Luxembourg Course 1: Remainder: RSA Université du Luxembourg September 21, 2010 Public-key encryption Public-key encryption: two keys. One key is made public and used to encrypt. The other key is kept private and

More information

Practice Exam Winter 2018, CS 485/585 Crypto March 14, 2018

Practice Exam Winter 2018, CS 485/585 Crypto March 14, 2018 Practice Exam Name: Winter 2018, CS 485/585 Crypto March 14, 2018 Portland State University Prof. Fang Song Instructions This exam contains 8 pages (including this cover page) and 5 questions. Total of

More information

Short Signatures Without Random Oracles

Short Signatures Without Random Oracles Short Signatures Without Random Oracles Dan Boneh and Xavier Boyen (presented by Aleksandr Yampolskiy) Outline Motivation Preliminaries Secure short signature Extensions Conclusion Why signatures without

More information

Cryptographic Solutions for Data Integrity in the Cloud

Cryptographic Solutions for Data Integrity in the Cloud Cryptographic Solutions for Stanford University, USA Stanford Computer Forum 2 April 2012 Homomorphic Encryption Homomorphic encryption allows users to delegate computation while ensuring secrecy. Homomorphic

More information

Introduction to Elliptic Curve Cryptography

Introduction to Elliptic Curve Cryptography Indian Statistical Institute Kolkata May 19, 2017 ElGamal Public Key Cryptosystem, 1984 Key Generation: 1 Choose a suitable large prime p 2 Choose a generator g of the cyclic group IZ p 3 Choose a cyclic

More information

Outline. Provable Security in the Computational Model. III Signatures. Public-Key Encryption. Outline. David Pointcheval.

Outline. Provable Security in the Computational Model. III Signatures. Public-Key Encryption. Outline. David Pointcheval. Provable Security in the Computational Model III Signatures David Pointcheval Ecole normale supérieure, CNRS & INRI Public-Key Encryption Signatures 2 dvanced Security for Signature dvanced Security Notions

More information

Lecture 7: CPA Security, MACs, OWFs

Lecture 7: CPA Security, MACs, OWFs CS 7810 Graduate Cryptography September 27, 2017 Lecturer: Daniel Wichs Lecture 7: CPA Security, MACs, OWFs Scribe: Eysa Lee 1 Topic Covered Chosen Plaintext Attack (CPA) MACs One Way Functions (OWFs)

More information

Lecture 1: Introduction to Public key cryptography

Lecture 1: Introduction to Public key cryptography Lecture 1: Introduction to Public key cryptography Thomas Johansson T. Johansson (Lund University) 1 / 44 Key distribution Symmetric key cryptography: Alice and Bob share a common secret key. Some means

More information

Cryptography CS 555. Topic 24: Finding Prime Numbers, RSA

Cryptography CS 555. Topic 24: Finding Prime Numbers, RSA Cryptography CS 555 Topic 24: Finding Prime Numbers, RSA 1 Recap Number Theory Basics Abelian Groups φφ pppp = pp 1 qq 1 for distinct primes p and q φφ NN = Z N gg xx mod N = gg [xx mmmmmm φφ NN ] mod

More information

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions Presentation Article presentation, for the ENS Lattice Based Crypto Workgroup http://www.di.ens.fr/~pnguyen/lbc.html, 30 September 2009 How to Use Short Basis : Trapdoors for http://www.cc.gatech.edu/~cpeikert/pubs/trap_lattice.pdf

More information

Security Analysis of an Identity-Based Strongly Unforgeable Signature Scheme

Security Analysis of an Identity-Based Strongly Unforgeable Signature Scheme Security Analysis of an Identity-Based Strongly Unforgeable Signature Scheme Kwangsu Lee Dong Hoon Lee Abstract Identity-based signature (IBS) is a specific type of public-key signature (PKS) where any

More information

Advanced Topics in Cryptography

Advanced Topics in Cryptography Advanced Topics in Cryptography Lecture 6: El Gamal. Chosen-ciphertext security, the Cramer-Shoup cryptosystem. Benny Pinkas based on slides of Moni Naor page 1 1 Related papers Lecture notes of Moni Naor,

More information

ECS 189A Final Cryptography Spring 2011

ECS 189A Final Cryptography Spring 2011 ECS 127: Cryptography Handout F UC Davis Phillip Rogaway June 9, 2011 ECS 189A Final Cryptography Spring 2011 Hints for success: Good luck on the exam. I don t think it s all that hard (I do believe I

More information

5199/IOC5063 Theory of Cryptology, 2014 Fall

5199/IOC5063 Theory of Cryptology, 2014 Fall 5199/IOC5063 Theory of Cryptology, 2014 Fall Homework 2 Reference Solution 1. This is about the RSA common modulus problem. Consider that two users A and B use the same modulus n = 146171 for the RSA encryption.

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Last Time Hardcore Bits Hardcore Bits Let F be a one- way function with domain x, range y Definition: A function h:xà {0,1} is

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Ali El Kaafarani 1 Mathematical Institute 2 PQShield Ltd. 1 of 44 Outline 1 Public Key Encryption: security notions 2 RSA Encryption Scheme 2 of 44 Course main reference 3 of 44

More information

Synchronized Aggregate Signatures from the RSA Assumption

Synchronized Aggregate Signatures from the RSA Assumption Synchronized Aggregate Signatures from the RSA Assumption Susan Hohenberger Johns Hopkins University susan@cs.jhu.edu Brent Waters UT Austin bwaters@cs.utexas.edu January 18, 2018 Abstract In this work

More information

Lecture 18 - Secret Sharing, Visual Cryptography, Distributed Signatures

Lecture 18 - Secret Sharing, Visual Cryptography, Distributed Signatures Lecture 18 - Secret Sharing, Visual Cryptography, Distributed Signatures Boaz Barak November 27, 2007 Quick review of homework 7 Existence of a CPA-secure public key encryption scheme such that oracle

More information

Efficient Identity-Based Encryption Without Random Oracles

Efficient Identity-Based Encryption Without Random Oracles Efficient Identity-Based Encryption Without Random Oracles Brent Waters Abstract We present the first efficient Identity-Based Encryption (IBE) scheme that is fully secure without random oracles. We first

More information

BEYOND POST QUANTUM CRYPTOGRAPHY

BEYOND POST QUANTUM CRYPTOGRAPHY BEYOND POST QUANTUM CRYPTOGRAPHY Mark Zhandry Stanford University Joint work with Dan Boneh Classical Cryptography Post-Quantum Cryptography All communication stays classical Beyond Post-Quantum Cryptography

More information

The Random Oracle Paradigm. Mike Reiter. Random oracle is a formalism to model such uses of hash functions that abound in practical cryptography

The Random Oracle Paradigm. Mike Reiter. Random oracle is a formalism to model such uses of hash functions that abound in practical cryptography 1 The Random Oracle Paradigm Mike Reiter Based on Random Oracles are Practical: A Paradigm for Designing Efficient Protocols by M. Bellare and P. Rogaway Random Oracles 2 Random oracle is a formalism to

More information

A short identity-based proxy ring signature scheme from RSA

A short identity-based proxy ring signature scheme from RSA University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2015 A short identity-based proxy ring signature

More information

Anonymous Proxy Signature with Restricted Traceability

Anonymous Proxy Signature with Restricted Traceability Anonymous Proxy Signature with Restricted Traceability Jiannan Wei Joined work with Guomin Yang and Yi Mu University of Wollongong Outline Introduction Motivation and Potential Solutions Anonymous Proxy

More information

EXAM IN. TDA352 (Chalmers) - DIT250 (GU) 12 January 2018, 08:

EXAM IN. TDA352 (Chalmers) - DIT250 (GU) 12 January 2018, 08: CHALMERS GÖTEBORGS UNIVERSITET EXAM IN CRYPTOGRAPHY TDA352 (Chalmers) - DIT250 (GU) 12 January 2018, 08:30 12.30 Tillåtna hjälpmedel: Typgodkänd räknare. Annan minnestömd räknare får användas efter godkännande

More information

Algorithmic Number Theory and Public-key Cryptography

Algorithmic Number Theory and Public-key Cryptography Algorithmic Number Theory and Public-key Cryptography Course 3 University of Luxembourg March 22, 2018 The RSA algorithm The RSA algorithm is the most widely-used public-key encryption algorithm Invented

More information

Cryptography IV: Asymmetric Ciphers

Cryptography IV: Asymmetric Ciphers Cryptography IV: Asymmetric Ciphers Computer Security Lecture 7 David Aspinall School of Informatics University of Edinburgh 31st January 2011 Outline Background RSA Diffie-Hellman ElGamal Summary Outline

More information

Comparing With RSA. 1 ucl Crypto Group

Comparing With RSA. 1 ucl Crypto Group Comparing With RSA Julien Cathalo 1, David Naccache 2, and Jean-Jacques Quisquater 1 1 ucl Crypto Group Place du Levant 3, Louvain-la-Neuve, b-1348, Belgium julien.cathalo@uclouvain.be, jean-jacques.quisquater@uclouvain.be

More information

Chapter 8 Public-key Cryptography and Digital Signatures

Chapter 8 Public-key Cryptography and Digital Signatures Chapter 8 Public-key Cryptography and Digital Signatures v 1. Introduction to Public-key Cryptography 2. Example of Public-key Algorithm: Diffie- Hellman Key Exchange Scheme 3. RSA Encryption and Digital

More information

Cryptographical Security in the Quantum Random Oracle Model

Cryptographical Security in the Quantum Random Oracle Model Cryptographical Security in the Quantum Random Oracle Model Center for Advanced Security Research Darmstadt (CASED) - TU Darmstadt, Germany June, 21st, 2012 This work is licensed under a Creative Commons

More information

1 Rabin Squaring Function and the Factoring Assumption

1 Rabin Squaring Function and the Factoring Assumption COMS W461 Introduction to Cryptography October 11, 005 Lecture 11: Introduction to Cryptography Lecturer: Tal Malkin Scribes: Kate McCarthy, Adam Vartanian Summary In this lecture we will prove that Rabin

More information

Lecture 11: Hash Functions, Merkle-Damgaard, Random Oracle

Lecture 11: Hash Functions, Merkle-Damgaard, Random Oracle CS 7880 Graduate Cryptography October 20, 2015 Lecture 11: Hash Functions, Merkle-Damgaard, Random Oracle Lecturer: Daniel Wichs Scribe: Tanay Mehta 1 Topics Covered Review Collision-Resistant Hash Functions

More information

Short Unique Signatures from RSA with a Tight Security Reduction (in the Random Oracle Model)

Short Unique Signatures from RSA with a Tight Security Reduction (in the Random Oracle Model) Short Unique Signatures from RSA with a Tight Security Reduction (in the Random Oracle Model) Hovav Shacham UC San Diego and UT Austin Abstract. A signature scheme is unique if for every public key and

More information

Lecture 6. 2 Adaptively-Secure Non-Interactive Zero-Knowledge

Lecture 6. 2 Adaptively-Secure Non-Interactive Zero-Knowledge CMSC 858K Advanced Topics in Cryptography February 12, 2004 Lecturer: Jonathan Katz Lecture 6 Scribe(s): Omer Horvitz John Trafton Zhongchao Yu Akhil Gupta 1 Introduction In this lecture, we show how to

More information

Introduction to Cryptography

Introduction to Cryptography B504 / I538: Introduction to Cryptography Spring 2017 Lecture 12 Recall: MAC existential forgery game 1 n Challenger (C) k Gen(1 n ) Forger (A) 1 n m 1 m 1 M {m} t 1 MAC k (m 1 ) t 1 m 2 m 2 M {m} t 2

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 11 October 7, 2015 CPSC 467, Lecture 11 1/37 Digital Signature Algorithms Signatures from commutative cryptosystems Signatures from

More information

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University CS 4770: Cryptography CS 6750: Cryptography and Communication Security Alina Oprea Associate Professor, CCIS Northeastern University March 26 2017 Outline RSA encryption in practice Transform RSA trapdoor

More information

Lecture 1. Crypto Background

Lecture 1. Crypto Background Lecture 1 Crypto Background This lecture Crypto background hash functions random oracle model digital signatures and applications Cryptographic Hash Functions Hash function takes a string of arbitrary

More information

Lecture 9 Julie Staub Avi Dalal Abheek Anand Gelareh Taban. 1 Introduction. 2 Background. CMSC 858K Advanced Topics in Cryptography February 24, 2004

Lecture 9 Julie Staub Avi Dalal Abheek Anand Gelareh Taban. 1 Introduction. 2 Background. CMSC 858K Advanced Topics in Cryptography February 24, 2004 CMSC 858K Advanced Topics in Cryptography February 24, 2004 Lecturer: Jonathan Katz Lecture 9 Scribe(s): Julie Staub Avi Dalal Abheek Anand Gelareh Taban 1 Introduction In previous lectures, we constructed

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 10 February 19, 2013 CPSC 467b, Lecture 10 1/45 Primality Tests Strong primality tests Weak tests of compositeness Reformulation

More information

Evaluation Report on the ECDSA signature scheme

Evaluation Report on the ECDSA signature scheme Evaluation Report on the ECDSA signature scheme Jacques Stern 1 Introduction This document is an evaluation of the ECDSA signature scheme. Our work is based on the analysis of various documents [1, 32,

More information

Lecture V : Public Key Cryptography

Lecture V : Public Key Cryptography Lecture V : Public Key Cryptography Internet Security: Principles & Practices John K. Zao, PhD (Harvard) SMIEEE Amir Rezapoor Computer Science Department, National Chiao Tung University 2 Outline Functional

More information

MATH 158 FINAL EXAM 20 DECEMBER 2016

MATH 158 FINAL EXAM 20 DECEMBER 2016 MATH 158 FINAL EXAM 20 DECEMBER 2016 Name : The exam is double-sided. Make sure to read both sides of each page. The time limit is three hours. No calculators are permitted. You are permitted one page

More information

Short Signatures From Diffie-Hellman: Realizing Short Public Key

Short Signatures From Diffie-Hellman: Realizing Short Public Key Short Signatures From Diffie-Hellman: Realizing Short Public Key Jae Hong Seo Department of Mathematics, Myongji University Yongin, Republic of Korea jaehongseo@mju.ac.kr Abstract. Efficient signature

More information

Improved Security for Linearly Homomorphic Signatures: A Generic Framework

Improved Security for Linearly Homomorphic Signatures: A Generic Framework Improved Security for Linearly Homomorphic Signatures: A Generic Framework Stanford University, USA PKC 2012 Darmstadt, Germany 23 May 2012 Problem: Computing on Authenticated Data Q: How do we delegate

More information

Applied cryptography

Applied cryptography Applied cryptography Identity-based Cryptography Andreas Hülsing 19 November 2015 1 / 37 The public key problem How to obtain the correct public key of a user? How to check its authenticity? General answer:

More information

Sampling Lattice Trapdoors

Sampling Lattice Trapdoors Sampling Lattice Trapdoors November 10, 2015 Today: 2 notions of lattice trapdoors Efficient sampling of trapdoors Application to digital signatures Last class we saw one type of lattice trapdoor for a

More information

March 19: Zero-Knowledge (cont.) and Signatures

March 19: Zero-Knowledge (cont.) and Signatures March 19: Zero-Knowledge (cont.) and Signatures March 26, 2013 1 Zero-Knowledge (review) 1.1 Review Alice has y, g, p and claims to know x such that y = g x mod p. Alice proves knowledge of x to Bob w/o

More information

A Strong Identity Based Key-Insulated Cryptosystem

A Strong Identity Based Key-Insulated Cryptosystem A Strong Identity Based Key-Insulated Cryptosystem Jin Li 1, Fangguo Zhang 2,3, and Yanming Wang 1,4 1 School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, 510275, P.R.China

More information