Lecture 14 More on Digital Signatures and Variants. COSC-260 Codes and Ciphers Adam O Neill Adapted from

Size: px
Start display at page:

Download "Lecture 14 More on Digital Signatures and Variants. COSC-260 Codes and Ciphers Adam O Neill Adapted from"

Transcription

1 Lecture 14 More on Digital Signatures and Variants COSC-260 Codes and Ciphers Adam O Neill Adapted from

2 Setting the Stage We will cover in more depth some issues for digital signatures we touched on last time.

3 Setting the Stage We will cover in more depth some issues for digital signatures we touched on last time. Lack of tightness in security proof for RSA- FDH, implications & alternatives.

4 Setting the Stage We will cover in more depth some issues for digital signatures we touched on last time. Lack of tightness in security proof for RSA- FDH, implications & alternatives. Discrete-log sigs: DSA vs Schnorr.

5 Setting the Stage We will cover in more depth some issues for digital signatures we touched on last time. Lack of tightness in security proof for RSA- FDH, implications & alternatives. Discrete-log sigs: DSA vs Schnorr. Then we will have a taste of some more exotic variants of digital signatures.

6 Recall: FDH Signatures Signer pk =(N, e) andsk =(N, d) algorithm S H N,d (M) return H(M) d mod N algorithm VN,e H (M, x) if x e H(M) (modn) then return 1 else return 0 Here H: {0, 1} Z N is a random oracle. A good choice of H might be something like H(M) = first n bytes of SHA1(1 M) SHA1(2 M) SHA1(11 M)

7 Recall: FDH Signatures Signer pk =(N, e) andsk =(N, d) algorithm S H N,d (M) return H(M) d mod N algorithm VN,e H (M, x) if x e H(M) (modn) then return 1 else return 0 Here H: {0, 1} Z N is a random oracle. Modulus length A good choiceofh might be something like H(M) = first n bytes of SHA1(1 M) SHA1(2 M) SHA1(11 M)

8 Security Theorem Theorem: [BR96] Let K rsa be a RSA generator and DS =(K, S, V) the associated FDH RO-model signature scheme. Let A be a uf-cma adversary making q s signing queries and q H queries to the RO H and having running time at most t. Then there is an inverter I such that Adv uf-cma DS (A) (q s + q H +1) Adv owf K rsa (I ). Furthermore the running time of I is that of A plus the time for O(q s + q H +1)computationsoftheRSAfunction.

9 Choosing a Modulus Size Say we want 80-bits of security, meaning a time t attacker should have advantage at most t 2 80 : For inverting RSA, this is provided by a 1024 bit modulus assuming NFS is the best attack. But according to the BR96-reduction, FDH could be less secure than RSA by a factor of q s + q H +1, sothatabigger modulus would be needed for 80-bit security.

10 Choosing a Modulus Size Say we want 80-bits of security, meaning a time t attacker should have advantage at most t 2 80.Thefollowingshowsmodulussizek and cost c of one exponentiation, with q H =2 60 and q s =2 45 in the FDH case: Task k c Inverting RSA Breaking FDH as per [BR96] reduction This (for simplicity) neglects the running time difference between A, I. This motivates getting tighter reductions for FDH, or alternative schemes with tighter reductions.

11 PSS Signatures Signer pk =(N, e) andsk =(N, d) algorithm S h,g 1,g 2 (M) N,d $ r {0, 1} 160 w h(m r) r g 1 (w) r y 0 w r g 2 (w) return y d mod N algorithm V h,g 1,g 2 N,e (M, x) y x e mod N b w r P y r r g 1 (w) if (g 2 (w) P) then return 0 if (b =1)then return 0 if (h(m r) w) then return 0 return 1 Here h, g 1 : {0, 1} {0, 1} 160 and g 2 : {0, 1} {0, 1} k 321 are random oracles where k = N.

12 PSS Benefits & Drawbacks Tight security reduction: [BR 96] show that in the random oracle model, forging against PSS is just as hard as inverting RSA.

13 PSS Benefits & Drawbacks Tight security reduction: [BR 96] show that in the random oracle model, forging against PSS is just as hard as inverting RSA. But now fresh randomness is needed per signature, which is expensive.

14 PSS Benefits & Drawbacks Tight security reduction: [BR 96] show that in the random oracle model, forging against PSS is just as hard as inverting RSA. But now fresh randomness is needed per signature, which is expensive. PSS is widely standardized (e.g. in RSA PKCS #1 v2.1), although has not seen widespread use perhaps for this reason.

15 Recall DSA Fix primes p, q such that q divides p 1 Let G = Z p = h and g = h (p 1)/q so that g G has order q H: {0, 1} Z q ahashfunction Signer keys: pk = X = g x Z p and sk = x $ Z q Algorithm S x (M) m H(M) k $ Z q r (g k mod p) modq s (m + xr) k 1 mod q return (r, s) Algorithm V X (M, (r, s)) m H(M) w s 1 mod q u 1 mw mod q u 2 rw mod q v (g u 1 X u 2 mod p) modq if (v = r) then return 1 else return 0

16 Discussion ECDSA is the version where G is replaced with an appropriate elliptic curve group.

17 Discussion ECDSA is the version where G is replaced with an appropriate elliptic curve group. Proof of security is known for a similar scheme due to Schnorr we will see next, although the reduction is quite loose.

18 Discussion ECDSA is the version where G is replaced with an appropriate elliptic curve group. Proof of security is known for a similar scheme due to Schnorr we will see next, although the reduction is quite loose. Both schemes have similar performance and support elliptic curves patent issues may have prevented adoption of Schnorr.

19 Schnorr Signatures Let G = g be a cyclic group of prime order p H: {0, 1} Z p ahashfunction Signer keys: pk = X = g x G and sk = x $ Z p Algorithm S x (M) $ r Z p R g r c H(R M) a xc + r mod p return (R, a) Algorithm V X (M, (R, a)) if R G then return 0 c H(R M) if g a = RX c then return 1 else return 0

20 Design Rationale Obtained via a general paradigm of converting a proof of knowledge to signature scheme using a hash function (called Fiat-Shamir).

21 Design Rationale Obtained via a general paradigm of converting a proof of knowledge to signature scheme using a hash function (called Fiat-Shamir). Schnorr starts with a challenge-response protocol where the prover proves knowledge of x; the challenge is a random c.

22 Design Rationale Obtained via a general paradigm of converting a proof of knowledge to signature scheme using a hash function (called Fiat-Shamir). Schnorr starts with a challenge-response protocol where the prover proves knowledge of x; the challenge is a random c. For the signature, the signer generates the challenge itself by hashing the message.

23 Multisignatures Allows signatures from different signers, all on the same message, to be combined (without the signing keys) into one multisignature".

24 Multisignatures Allows signatures from different signers, all on the same message, to be combined (without the signing keys) into one multisignature". Main benefit is bandwidth savings but security can benefit too since it can be hard to recover individual signatures from a multisignature.

25 Multisignatures Allows signatures from different signers, all on the same message, to be combined (without the signing keys) into one multisignature". Main benefit is bandwidth savings but security can benefit too since it can be hard to recover individual signatures from a multisignature. First efficient realization in [Boldyreva 02] based on bilinear maps (special elliptic curves).

26 Threshold Signatures A t-out-of-n threshold signature scheme allows any of n players to issue partial signatures on messages of their choosing.

27 Threshold Signatures A t-out-of-n threshold signature scheme allows any of n players to issue partial signatures on messages of their choosing. Given partial signatures on m by at least t of the players, anyone can produce a valid signature on m.

28 Threshold Signatures A t-out-of-n threshold signature scheme allows any of n players to issue partial signatures on messages of their choosing. Given partial signatures on m by at least t of the players, anyone can produce a valid signature on m. But less than t partial signatures on m gives no information

29 Threshold Signatures A t-out-of-n threshold signature scheme allows any of n players to issue partial signatures on messages of their choosing. Given partial signatures on m by at least t of the players, anyone can produce a valid signature on m. But less than t partial signatures on m gives no information Again, see [Boldyreva 02] for an efficient realization based on bilinear maps.

Digital Signatures. Adam O Neill based on

Digital Signatures. Adam O Neill based on Digital Signatures Adam O Neill based on http://cseweb.ucsd.edu/~mihir/cse207/ Signing by hand COSMO ALICE ALICE Pay Bob $100 Cosmo Alice Alice Bank =? no Don t yes pay Bob Signing electronically SIGFILE

More information

Katz, Lindell Introduction to Modern Cryptrography

Katz, Lindell Introduction to Modern Cryptrography Katz, Lindell Introduction to Modern Cryptrography Slides Chapter 12 Markus Bläser, Saarland University Digital signature schemes Goal: integrity of messages Signer signs a message using a private key

More information

Digital signature schemes

Digital signature schemes Digital signature schemes Martin Stanek Department of Computer Science Comenius University stanek@dcs.fmph.uniba.sk Cryptology 1 (2017/18) Content Introduction digital signature scheme security of digital

More information

Digital Signature Schemes and the Random Oracle Model. A. Hülsing

Digital Signature Schemes and the Random Oracle Model. A. Hülsing Digital Signature Schemes and the Random Oracle Model A. Hülsing Today s goal Review provable security of in use signature schemes. (PKCS #1 v2.x) PAGE 1 Digital Signature Source: http://hari-cio-8a.blog.ugm.ac.id/files/2013/03/dsa.jpg

More information

Digital Signatures. p1.

Digital Signatures. p1. Digital Signatures p1. Digital Signatures Digital signature is the same as MAC except that the tag (signature) is produced using the secret key of a public-key cryptosystem. Message m MAC k (m) Message

More information

Lecture 16 Chiu Yuen Koo Nikolai Yakovenko. 1 Digital Signature Schemes. CMSC 858K Advanced Topics in Cryptography March 18, 2004

Lecture 16 Chiu Yuen Koo Nikolai Yakovenko. 1 Digital Signature Schemes. CMSC 858K Advanced Topics in Cryptography March 18, 2004 CMSC 858K Advanced Topics in Cryptography March 18, 2004 Lecturer: Jonathan Katz Lecture 16 Scribe(s): Chiu Yuen Koo Nikolai Yakovenko Jeffrey Blank 1 Digital Signature Schemes In this lecture, we introduce

More information

John Hancock enters the 21th century Digital signature schemes. Table of contents

John Hancock enters the 21th century Digital signature schemes. Table of contents John Hancock enters the 21th century Digital signature schemes Foundations of Cryptography Computer Science Department Wellesley College Fall 2016 Table of contents From last time: Good news and bad There

More information

Digital Signature Algorithm

Digital Signature Algorithm Çetin Kaya Koç koc@cs.ucsb.edu Çetin Kaya Koç http://koclab.org Winter 2017 1 / 11 DSA: The is a US standard, proposed in 1991 by the NIST Along with the DSA, the hash function SHA-1 was also specified

More information

Digital Signatures. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Digital Signatures. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay Digital Signatures Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay July 24, 2018 1 / 29 Group Theory Recap Groups Definition A set

More information

CIS 6930/4930 Computer and Network Security. Topic 5.2 Public Key Cryptography

CIS 6930/4930 Computer and Network Security. Topic 5.2 Public Key Cryptography CIS 6930/4930 Computer and Network Security Topic 5.2 Public Key Cryptography 1 Diffie-Hellman Key Exchange 2 Diffie-Hellman Protocol For negotiating a shared secret key using only public communication

More information

The Random Oracle Paradigm. Mike Reiter. Random oracle is a formalism to model such uses of hash functions that abound in practical cryptography

The Random Oracle Paradigm. Mike Reiter. Random oracle is a formalism to model such uses of hash functions that abound in practical cryptography 1 The Random Oracle Paradigm Mike Reiter Based on Random Oracles are Practical: A Paradigm for Designing Efficient Protocols by M. Bellare and P. Rogaway Random Oracles 2 Random oracle is a formalism to

More information

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited Julien Cathalo 1, Jean-Sébastien Coron 2, and David Naccache 2,3 1 UCL Crypto Group Place du Levant 3, Louvain-la-Neuve, B-1348, Belgium

More information

Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes

Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/pierre.karpman/tea.html 2018 03 13 More

More information

Transitive Signatures Based on Non-adaptive Standard Signatures

Transitive Signatures Based on Non-adaptive Standard Signatures Transitive Signatures Based on Non-adaptive Standard Signatures Zhou Sujing Nanyang Technological University, Singapore, zhousujing@pmail.ntu.edu.sg Abstract. Transitive signature, motivated by signing

More information

Blind Collective Signature Protocol

Blind Collective Signature Protocol Computer Science Journal of Moldova, vol.19, no.1(55), 2011 Blind Collective Signature Protocol Nikolay A. Moldovyan Abstract Using the digital signature (DS) scheme specified by Belarusian DS standard

More information

Schnorr Signature. Schnorr Signature. October 31, 2012

Schnorr Signature. Schnorr Signature. October 31, 2012 . October 31, 2012 Table of contents Salient Features Preliminaries Security Proofs Random Oracle Heuristic PKS and its Security Models Hardness Assumption The Construction Oracle Replay Attack Security

More information

ASYMMETRIC ENCRYPTION

ASYMMETRIC ENCRYPTION ASYMMETRIC ENCRYPTION 1 / 1 Recommended Book Steven Levy. Crypto. Penguin books. 2001. A non-technical account of the history of public-key cryptography and the colorful characters involved. 2 / 1 Recall

More information

Introduction to Elliptic Curve Cryptography

Introduction to Elliptic Curve Cryptography Indian Statistical Institute Kolkata May 19, 2017 ElGamal Public Key Cryptosystem, 1984 Key Generation: 1 Choose a suitable large prime p 2 Choose a generator g of the cyclic group IZ p 3 Choose a cyclic

More information

5199/IOC5063 Theory of Cryptology, 2014 Fall

5199/IOC5063 Theory of Cryptology, 2014 Fall 5199/IOC5063 Theory of Cryptology, 2014 Fall Homework 2 Reference Solution 1. This is about the RSA common modulus problem. Consider that two users A and B use the same modulus n = 146171 for the RSA encryption.

More information

Lecture 18 - Secret Sharing, Visual Cryptography, Distributed Signatures

Lecture 18 - Secret Sharing, Visual Cryptography, Distributed Signatures Lecture 18 - Secret Sharing, Visual Cryptography, Distributed Signatures Boaz Barak November 27, 2007 Quick review of homework 7 Existence of a CPA-secure public key encryption scheme such that oracle

More information

RSA and Rabin Signatures Signcryption

RSA and Rabin Signatures Signcryption T-79.5502 Advanced Course in Cryptology RSA and Rabin Signatures Signcryption Alessandro Tortelli 26-04-06 Overview Introduction Probabilistic Signature Scheme PSS PSS with message recovery Signcryption

More information

CLASSICAL CRYPTOSYSTEMS IN A QUANTUM WORLD

CLASSICAL CRYPTOSYSTEMS IN A QUANTUM WORLD CLASSICAL CRYPTOSYSTEMS IN A QUANTUM WORLD Mark Zhandry Stanford University * Joint work with Dan Boneh But First: My Current Work Indistinguishability Obfuscation (and variants) Multiparty NIKE without

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Previously Digital Signatures Algorithms: Gen() à (sk,pk) Sign(sk,m) à σ Ver(pk,m,σ) à 0/1 Correctness: Pr[Ver(pk,m,Sign(sk,m))=1:

More information

Lecture V : Public Key Cryptography

Lecture V : Public Key Cryptography Lecture V : Public Key Cryptography Internet Security: Principles & Practices John K. Zao, PhD (Harvard) SMIEEE Amir Rezapoor Computer Science Department, National Chiao Tung University 2 Outline Functional

More information

March 19: Zero-Knowledge (cont.) and Signatures

March 19: Zero-Knowledge (cont.) and Signatures March 19: Zero-Knowledge (cont.) and Signatures March 26, 2013 1 Zero-Knowledge (review) 1.1 Review Alice has y, g, p and claims to know x such that y = g x mod p. Alice proves knowledge of x to Bob w/o

More information

Lecture 18: Message Authentication Codes & Digital Signa

Lecture 18: Message Authentication Codes & Digital Signa Lecture 18: Message Authentication Codes & Digital Signatures MACs and Signatures Both are used to assert that a message has indeed been generated by a party MAC is the private-key version and Signatures

More information

On the Big Gap Between p and q in DSA

On the Big Gap Between p and q in DSA On the Big Gap Between p and in DSA Zhengjun Cao Department of Mathematics, Shanghai University, Shanghai, China, 200444. caozhj@shu.edu.cn Abstract We introduce a message attack against DSA and show that

More information

Constructing Provably-Secure Identity-Based Signature Schemes

Constructing Provably-Secure Identity-Based Signature Schemes Constructing Provably-Secure Identity-Based Signature Schemes Chethan Kamath Indian Institute of Science, Bangalore November 23, 2013 Overview Table of contents Background Formal Definitions Schnorr Signature

More information

Week : Public Key Cryptosystem and Digital Signatures

Week : Public Key Cryptosystem and Digital Signatures Week 10-11 : Public Key Cryptosystem and Digital Signatures 1. Public Key Encryptions RSA, ElGamal, 2 RSA- PKC(1/3) 1st public key cryptosystem R.L.Rivest, A.Shamir, L.Adleman, A Method for Obtaining Digital

More information

Short Signatures Without Random Oracles

Short Signatures Without Random Oracles Short Signatures Without Random Oracles Dan Boneh and Xavier Boyen (presented by Aleksandr Yampolskiy) Outline Motivation Preliminaries Secure short signature Extensions Conclusion Why signatures without

More information

Uninstantiability of Full-Domain Hash

Uninstantiability of Full-Domain Hash Uninstantiability of based on On the Generic Insecurity of, Crypto 05, joint work with Y.Dodis and R.Oliveira Krzysztof Pietrzak CWI Amsterdam June 3, 2008 Why talk about this old stuff? Why talk about

More information

GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks

GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks [Mihir Bellare, Adriana Palacio] Iliopoulos Fotis School of Electrical and Computer Engineering

More information

Cryptography. Course 1: Remainder: RSA. Jean-Sébastien Coron. September 21, Université du Luxembourg

Cryptography. Course 1: Remainder: RSA. Jean-Sébastien Coron. September 21, Université du Luxembourg Course 1: Remainder: RSA Université du Luxembourg September 21, 2010 Public-key encryption Public-key encryption: two keys. One key is made public and used to encrypt. The other key is kept private and

More information

ECS 189A Final Cryptography Spring 2011

ECS 189A Final Cryptography Spring 2011 ECS 127: Cryptography Handout F UC Davis Phillip Rogaway June 9, 2011 ECS 189A Final Cryptography Spring 2011 Hints for success: Good luck on the exam. I don t think it s all that hard (I do believe I

More information

Provable Security Proofs and their Interpretation in the Real World

Provable Security Proofs and their Interpretation in the Real World Provable Security Proofs and their Interpretation in the Real World Vikram Singh Abstract This paper analyses provable security proofs, using the EDL signature scheme as its case study, and interprets

More information

Some Security Comparisons of GOST R and ECDSA Signature Schemes

Some Security Comparisons of GOST R and ECDSA Signature Schemes Some Security Comparisons of GOST R 34.10-2012 and ECDSA Signature Schemes Trieu Quang Phong Nguyen Quoc Toan Institute of Cryptography Science and Technology Gover. Info. Security Committee, Viet Nam

More information

Pairing-Based Identification Schemes

Pairing-Based Identification Schemes Pairing-Based Identification Schemes David Freeman Information Theory Research HP Laboratories Palo Alto HPL-2005-154 August 24, 2005* public-key cryptography, identification, zero-knowledge, pairings

More information

Question: Total Points: Score:

Question: Total Points: Score: University of California, Irvine COMPSCI 134: Elements of Cryptography and Computer and Network Security Midterm Exam (Fall 2016) Duration: 90 minutes November 2, 2016, 7pm-8:30pm Name (First, Last): Please

More information

Public Key Cryptography

Public Key Cryptography T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A Public Key Cryptography EECE 412 1 What is it? Two keys Sender uses recipient s public key to encrypt Receiver uses his private key to decrypt

More information

VI. The Fiat-Shamir Heuristic

VI. The Fiat-Shamir Heuristic VI. The Fiat-Shamir Heuristic - as already seen signatures can be used and are used in practice to design identification protocols - next we show how we can obtain signatures schemes from - protocols using

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 11 October 7, 2015 CPSC 467, Lecture 11 1/37 Digital Signature Algorithms Signatures from commutative cryptosystems Signatures from

More information

Tightly-Secure Signatures From Lossy Identification Schemes

Tightly-Secure Signatures From Lossy Identification Schemes Tightly-Secure Signatures From Lossy Identification Schemes Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi 2 École normale supérieure {michel.abdalla,pierre-alain.fouque,vadim.lyubashevsky}@ens.fr

More information

New Variant of ElGamal Signature Scheme

New Variant of ElGamal Signature Scheme Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 34, 1653-1662 New Variant of ElGamal Signature Scheme Omar Khadir Department of Mathematics Faculty of Science and Technology University of Hassan II-Mohammedia,

More information

CS 355: Topics in Cryptography Spring Problem Set 5.

CS 355: Topics in Cryptography Spring Problem Set 5. CS 355: Topics in Cryptography Spring 2018 Problem Set 5 Due: June 8, 2018 at 5pm (submit via Gradescope) Instructions: You must typeset your solution in LaTeX using the provided template: https://crypto.stanford.edu/cs355/homework.tex

More information

Digital Signatures from Strong RSA without Prime Genera7on. David Cash Rafael Dowsley Eike Kiltz

Digital Signatures from Strong RSA without Prime Genera7on. David Cash Rafael Dowsley Eike Kiltz Digital Signatures from Strong RSA without Prime Genera7on David Cash Rafael Dowsley Eike Kiltz Digital Signatures Digital signatures are one of mostly deployed cryptographic primi7ves. Digital Signatures

More information

Picnic Post-Quantum Signatures from Zero Knowledge Proofs

Picnic Post-Quantum Signatures from Zero Knowledge Proofs Picnic Post-Quantum Signatures from Zero Knowledge Proofs MELISSA CHASE, MSR THE PICNIC TEAM DAVID DERLER STEVEN GOLDFEDER JONATHAN KATZ VLAD KOLESNIKOV CLAUDIO ORLANDI SEBASTIAN RAMACHER CHRISTIAN RECHBERGER

More information

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University CS 4770: Cryptography CS 6750: Cryptography and Communication Security Alina Oprea Associate Professor, CCIS Northeastern University March 26 2017 Outline RSA encryption in practice Transform RSA trapdoor

More information

PAIRING-BASED IDENTIFICATION SCHEMES

PAIRING-BASED IDENTIFICATION SCHEMES PAIRING-BASED IDENTIFICATION SCHEMES DAVID FREEMAN Abstract. We propose four different identification schemes that make use of bilinear pairings, and prove their security under certain computational assumptions.

More information

New Approach for Selectively Convertible Undeniable Signature Schemes

New Approach for Selectively Convertible Undeniable Signature Schemes New Approach for Selectively Convertible Undeniable Signature Schemes Kaoru Kurosawa 1 and Tsuyoshi Takagi 2 1 Ibaraki University, Japan, kurosawa@mx.ibaraki.ac.jp 2 Future University-Hakodate, Japan,

More information

Threshold RSA for Dynamic and Ad-Hoc Groups

Threshold RSA for Dynamic and Ad-Hoc Groups Threshold RSA for Dynamic and Ad-Hoc Groups Rosario Gennaro, Shai Halevi, Hugo Krawczyk, Tal Rabin IBM T.J.Watson Research Center Hawthorne, NY USA Abstract. We consider the use of threshold signatures

More information

Chapter 8 Public-key Cryptography and Digital Signatures

Chapter 8 Public-key Cryptography and Digital Signatures Chapter 8 Public-key Cryptography and Digital Signatures v 1. Introduction to Public-key Cryptography 2. Example of Public-key Algorithm: Diffie- Hellman Key Exchange Scheme 3. RSA Encryption and Digital

More information

From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes

From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes [Published in D. Naccache, Ed., Topics in Cryptology CT-RSA 2001, vol. 2020 of Lecture Notes in Computer

More information

An Identification Scheme Based on KEA1 Assumption

An Identification Scheme Based on KEA1 Assumption All rights are reserved and copyright of this manuscript belongs to the authors. This manuscript has been published without reviewing and editing as received from the authors: posting the manuscript to

More information

II. Digital signatures

II. Digital signatures II. Digital signatures Alice m Bob Eve 1. Did Bob send message m, or was it Eve? 2. Did Eve modify the message m, that was sent by Bob? 1 Digital signatures Digital signature - are equivalent of handwritten

More information

Introduction to Cryptography. Lecture 8

Introduction to Cryptography. Lecture 8 Introduction to Cryptography Lecture 8 Benny Pinkas page 1 1 Groups we will use Multiplication modulo a prime number p (G, ) = ({1,2,,p-1}, ) E.g., Z 7* = ( {1,2,3,4,5,6}, ) Z p * Z N * Multiplication

More information

Overview. Public Key Algorithms II

Overview. Public Key Algorithms II Public Key Algorithms II Dr. Arjan Durresi Louisiana State University Baton Rouge, LA 70810 Durresi@csc.lsu.Edu These slides are available at: http://www.csc.lsu.edu/~durresi/csc4601-04/ Louisiana State

More information

Random Oracle Reducibility

Random Oracle Reducibility Random Oracle Reducibility Paul Baecher Marc Fischlin Darmstadt University of Technology, Germany www.minicrypt.de Abstract. We discuss a reduction notion relating the random oracles in two cryptographic

More information

Evaluation Report on the ECDSA signature scheme

Evaluation Report on the ECDSA signature scheme Evaluation Report on the ECDSA signature scheme Jacques Stern 1 Introduction This document is an evaluation of the ECDSA signature scheme. Our work is based on the analysis of various documents [1, 32,

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2018 Identification Identification Non- Repudiation Consider signature- based C- R sk ch=r res = Sig(vk,ch) Bob can prove to police

More information

Optimal Security Reductions for Unique Signatures: Bypassing Impossibilities with A Counterexample

Optimal Security Reductions for Unique Signatures: Bypassing Impossibilities with A Counterexample Optimal Security Reductions for Unique Signatures: Bypassing Impossibilities with A Counterexample Fuchun Guo 1, Rongmao Chen 2, Willy Susilo 1, Jianchang Lai 1, Guomin Yang 1, and Yi Mu 1 1 Institute

More information

Digital Signatures from Challenge-Divided Σ-Protocols

Digital Signatures from Challenge-Divided Σ-Protocols Digital Signatures from Challenge-Divided Σ-Protocols Andrew C. Yao Yunlei Zhao Abstract Digital signature is one of the basic primitives in cryptography. A common paradigm of obtaining signatures, known

More information

Chapter 7: Signature Schemes. COMP Lih-Yuan Deng

Chapter 7: Signature Schemes. COMP Lih-Yuan Deng Chapter 7: Signature Schemes COMP 7120-8120 Lih-Yuan Deng lihdeng@memphis.edu Overview Introduction Security requirements for signature schemes ElGamal signature scheme Variants of ElGamal signature scheme

More information

Improved Security for Linearly Homomorphic Signatures: A Generic Framework

Improved Security for Linearly Homomorphic Signatures: A Generic Framework Improved Security for Linearly Homomorphic Signatures: A Generic Framework Stanford University, USA PKC 2012 Darmstadt, Germany 23 May 2012 Problem: Computing on Authenticated Data Q: How do we delegate

More information

Lecture 10. Public Key Cryptography: Encryption + Signatures. Identification

Lecture 10. Public Key Cryptography: Encryption + Signatures. Identification Lecture 10 Public Key Cryptography: Encryption + Signatures 1 Identification Public key cryptography can be also used for IDENTIFICATION Identification is an interactive protocol whereby one party: prover

More information

COMS W4995 Introduction to Cryptography October 12, Lecture 12: RSA, and a summary of One Way Function Candidates.

COMS W4995 Introduction to Cryptography October 12, Lecture 12: RSA, and a summary of One Way Function Candidates. COMS W4995 Introduction to Cryptography October 12, 2005 Lecture 12: RSA, and a summary of One Way Function Candidates. Lecturer: Tal Malkin Scribes: Justin Cranshaw and Mike Verbalis 1 Introduction In

More information

Flaws in Applying Proof Methodologies to Signature Schemes

Flaws in Applying Proof Methodologies to Signature Schemes Flaws in Applying Proof Methodologies to Signature Schemes Jacques Stern 1,, David Pointcheval 1, John Malone-Lee 2, and Nigel P. Smart 2 1 Dépt d Informatique, ENS CNRS, 45 rue d Ulm, 75230 Paris Cedex

More information

Cryptanalysis of a Zero-Knowledge Identification Protocol of Eurocrypt 95

Cryptanalysis of a Zero-Knowledge Identification Protocol of Eurocrypt 95 Cryptanalysis of a Zero-Knowledge Identification Protocol of Eurocrypt 95 Jean-Sébastien Coron and David Naccache Gemplus Card International 34 rue Guynemer, 92447 Issy-les-Moulineaux, France {jean-sebastien.coron,

More information

A Security Proof of KCDSA using an extended Random Oracle Model

A Security Proof of KCDSA using an extended Random Oracle Model A Security Proof of KCDSA using an extended Random Oracle Model Vikram Singh Abstract We describe a tight security reduction to the discrete logarithm problem for KCDSA under an extended Random Oracle

More information

Lecture 10: Zero-Knowledge Proofs

Lecture 10: Zero-Knowledge Proofs Lecture 10: Zero-Knowledge Proofs Introduction to Modern Cryptography Benny Applebaum Tel-Aviv University Fall Semester, 2011 12 Some of these slides are based on note by Boaz Barak. Quo vadis? Eo Romam

More information

Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World. Dan Boneh and Mark Zhandry Stanford University

Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World. Dan Boneh and Mark Zhandry Stanford University Secure Signatures and Chosen Ciphertext Security in a Quantu Coputing World Dan Boneh and Mark Zhandry Stanford University Classical Chosen Message Attack (CMA) σ = S(sk, ) signing key sk Classical CMA

More information

PSS Is Secure against Random Fault Attacks

PSS Is Secure against Random Fault Attacks PSS Is Secure against Random Fault Attacks Jean-Sébastien Coron and Avradip Mandal University of Luxembourg Abstract. A fault attack consists in inducing hardware malfunctions in order to recover secrets

More information

Algorithmic Number Theory and Public-key Cryptography

Algorithmic Number Theory and Public-key Cryptography Algorithmic Number Theory and Public-key Cryptography Course 3 University of Luxembourg March 22, 2018 The RSA algorithm The RSA algorithm is the most widely-used public-key encryption algorithm Invented

More information

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions Presentation Article presentation, for the ENS Lattice Based Crypto Workgroup http://www.di.ens.fr/~pnguyen/lbc.html, 30 September 2009 How to Use Short Basis : Trapdoors for http://www.cc.gatech.edu/~cpeikert/pubs/trap_lattice.pdf

More information

Introduction to Cryptography. Susan Hohenberger

Introduction to Cryptography. Susan Hohenberger Introduction to Cryptography Susan Hohenberger 1 Cryptography -- from art to science -- more than just encryption -- essential today for non-military applications 2 Symmetric Crypto Shared secret K =>

More information

Authentication. Chapter Message Authentication

Authentication. Chapter Message Authentication Chapter 5 Authentication 5.1 Message Authentication Suppose Bob receives a message addressed from Alice. How does Bob ensure that the message received is the same as the message sent by Alice? For example,

More information

Q B (pk, sk) Gen x u M pk y Map pk (x) return [B(pk, y)? = x]. (m, s) A O h

Q B (pk, sk) Gen x u M pk y Map pk (x) return [B(pk, y)? = x]. (m, s) A O h MTAT.07.003 Cryptology II Spring 2012 / Exercise session?? / Example Solution Exercise (FRH in RO model). Show that the full domain hash signature is secure against existential forgeries in the random

More information

Cryptography IV: Asymmetric Ciphers

Cryptography IV: Asymmetric Ciphers Cryptography IV: Asymmetric Ciphers Computer Security Lecture 7 David Aspinall School of Informatics University of Edinburgh 31st January 2011 Outline Background RSA Diffie-Hellman ElGamal Summary Outline

More information

Lattice-Based Fault Attacks on RSA Signatures

Lattice-Based Fault Attacks on RSA Signatures Lattice-Based Fault Attacks on RSA Signatures Mehdi Tibouchi École normale supérieure Workshop on Applied Cryptography, Singapore, 2010-12-03 Gist of this talk Review a classical attack on RSA signatures

More information

Design Validations for Discrete Logarithm Based Signature Schemes

Design Validations for Discrete Logarithm Based Signature Schemes Proceedings of the 2000 International Workshop on Practice and Theory in Public Key Cryptography (PKC 2000) (18 20 january 2000, Melbourne, Australia) H. Imai and Y. Zheng Eds. Springer-Verlag, LNCS 1751,

More information

Hash-based signatures & Hash-and-sign without collision-resistance

Hash-based signatures & Hash-and-sign without collision-resistance Hash-based signatures & Hash-and-sign without collision-resistance Andreas Hülsing 22.12.2016 Hash-based Signature Schemes [Mer89] Post quantum Only secure hash function Security well understood Fast 22-12-2016

More information

1 Number Theory Basics

1 Number Theory Basics ECS 289M (Franklin), Winter 2010, Crypto Review 1 Number Theory Basics This section has some basic facts about number theory, mostly taken (or adapted) from Dan Boneh s number theory fact sheets for his

More information

Optimal Use of Montgomery Multiplication on Smart Cards

Optimal Use of Montgomery Multiplication on Smart Cards Optimal Use of Montgomery Multiplication on Smart Cards Arnaud Boscher and Robert Naciri Oberthur Card Systems SA, 71-73, rue des Hautes Pâtures, 92726 Nanterre Cedex, France {a.boscher, r.naciri}@oberthurcs.com

More information

Dr George Danezis University College London, UK

Dr George Danezis University College London, UK Dr George Danezis University College London, UK Identity as a proxy to check credentials Username decides access in Access Control Matrix Sometime it leaks too much information Real world examples Tickets

More information

Foundations of Network and Computer Security

Foundations of Network and Computer Security Foundations of Network and Computer Security John Black Lecture #6 Sep 8 th 2005 CSCI 6268/TLEN 5831, Fall 2005 Announcements Quiz #1 later today Still some have not signed up for class mailing list Perhaps

More information

Blind Signature Protocol Based on Difficulty of. Simultaneous Solving Two Difficult Problems

Blind Signature Protocol Based on Difficulty of. Simultaneous Solving Two Difficult Problems Applied Mathematical Sciences, Vol. 6, 202, no. 39, 6903-690 Blind Signature Protocol Based on Difficulty of Simultaneous Solving Two Difficult Problems N. H. Minh, D. V. Binh 2, N. T. Giang 3 and N. A.

More information

DATA PRIVACY AND SECURITY

DATA PRIVACY AND SECURITY DATA PRIVACY AND SECURITY Instructor: Daniele Venturi Master Degree in Data Science Sapienza University of Rome Academic Year 2018-2019 Interlude: Number Theory Cubum autem in duos cubos, aut quadratoquadratum

More information

On the Security of EPOC and TSH-ESIGN

On the Security of EPOC and TSH-ESIGN On the Security of EPOC and TSH-ESIGN Tatsuaki Okamoto Tetsutaro Kobayashi NTT Laboratories 1-1 Hikarinooka, Yokosuka-shi, 239-0847 Japan Email: {okamoto, kotetsu }@isl.ntt.co.jp Abstract We submitted

More information

Foundations of Network and Computer Security

Foundations of Network and Computer Security Foundations of Network and Computer Security John Black Lecture #9 Sep 22 nd 2005 CSCI 6268/TLEN 5831, Fall 2005 Announcements Midterm #1, next class (Tues, Sept 27 th ) All lecture materials and readings

More information

Week 12: Hash Functions and MAC

Week 12: Hash Functions and MAC Week 12: Hash Functions and MAC 1. Introduction Hash Functions vs. MAC 2 Hash Functions Any Message M Hash Function Generate a fixed length Fingerprint for an arbitrary length message. No Key involved.

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018 Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018 Name : TU/e student number : Exercise 1 2 3 4 5 total points Notes: Please hand in all sheets at the end of the exam.

More information

SIGNATURE SCHEMES & CRYPTOGRAPHIC HASH FUNCTIONS. CIS 400/628 Spring 2005 Introduction to Cryptography

SIGNATURE SCHEMES & CRYPTOGRAPHIC HASH FUNCTIONS. CIS 400/628 Spring 2005 Introduction to Cryptography SIGNATURE SCHEMES & CRYPTOGRAPHIC HASH FUNCTIONS CIS 400/628 Spring 2005 Introduction to Cryptography This is based on Chapter 8 of Trappe and Washington DIGITAL SIGNATURES message sig 1. How do we bind

More information

Short Signature Scheme From Bilinear Pairings

Short Signature Scheme From Bilinear Pairings Sedat Akleylek, Barış Bülent Kırlar, Ömer Sever, and Zaliha Yüce Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey {akleylek,kirlar}@metu.edu.tr,severomer@yahoo.com,zyuce@stm.com.tr

More information

Introduction to Elliptic Curve Cryptography. Anupam Datta

Introduction to Elliptic Curve Cryptography. Anupam Datta Introduction to Elliptic Curve Cryptography Anupam Datta 18-733 Elliptic Curve Cryptography Public Key Cryptosystem Duality between Elliptic Curve Cryptography and Discrete Log Based Cryptography Groups

More information

Outline. Provable Security in the Computational Model. III Signatures. Public-Key Encryption. Outline. David Pointcheval.

Outline. Provable Security in the Computational Model. III Signatures. Public-Key Encryption. Outline. David Pointcheval. Provable Security in the Computational Model III Signatures David Pointcheval Ecole normale supérieure, CNRS & INRI Public-Key Encryption Signatures 2 dvanced Security for Signature dvanced Security Notions

More information

Ring Group Signatures

Ring Group Signatures Ring Group Signatures Liqun Chen Hewlett-Packard Laboratories, Long Down Avenue, Stoke Gifford, Bristol, BS34 8QZ, United Kingdom. liqun.chen@hp.com Abstract. In many applications of group signatures,

More information

The Double-Hash Transform: From Identification to (Double-Authentication-Preventing) Signatures, Tightly

The Double-Hash Transform: From Identification to (Double-Authentication-Preventing) Signatures, Tightly The Double-Hash Transform: From Identification to (Double-Authentication-Preventing) Signatures, Tightly Mihir Bellare 1 Douglas Stebila 2 December 2015 Abstract We give a new method to turn identification

More information

PAPER An Identification Scheme with Tight Reduction

PAPER An Identification Scheme with Tight Reduction IEICE TRANS. FUNDAMENTALS, VOL.Exx A, NO.xx XXXX 200x PAPER An Identification Scheme with Tight Reduction Seiko ARITA, Member and Natsumi KAWASHIMA, Nonmember SUMMARY There are three well-known identification

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Friday 25 January 2019

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Friday 25 January 2019 Faculty of Mathematics and Computer Science Exam Cryptology, Friday 25 January 2019 Name : TU/e student number : Exercise 1 2 3 4 5 total points Notes: Please hand in all sheets at the end of the exam.

More information

Lecture 10 - MAC s continued, hash & MAC

Lecture 10 - MAC s continued, hash & MAC Lecture 10 - MAC s continued, hash & MAC Boaz Barak March 3, 2010 Reading: Boneh-Shoup chapters 7,8 The field GF(2 n ). A field F is a set with a multiplication ( ) and addition operations that satisfy

More information

Entity Authentication

Entity Authentication Entity Authentication Sven Laur swen@math.ut.ee University of Tartu Formal Syntax Entity authentication pk (sk, pk) Gen α 1 β 1 β i V pk (α 1,...,α i 1 ) α i P sk (β 1,...,β i 1 ) Is it Charlie? α k The

More information