GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks

Size: px
Start display at page:

Download "GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks"

Transcription

1 GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks [Mihir Bellare, Adriana Palacio] Iliopoulos Fotis School of Electrical and Computer Engineering National Technical University of Athens January 28, 2013 F. Iliopoulos (NTUA) Crypto Project January 28, / 12

2 Introduction What is an Identfication Scheme? Prover - holds Secret Key Verifer - verifies the identity of the prover Zero Knowledge Fiat-Shamir Identification Scheme F. Iliopoulos (NTUA) Crypto Project January 28, / 12

3 Security under different kinds of attacks Passive Attack - The adversary obtains transcript of interractions between the prover and verifier. Active Attack - The adversary as a cheating verifier - interacts with the prover before impersonation attempt Concurrent Attack - The adversary as cheating verifierinteracts with many differnt prover-clones concurrently F. Iliopoulos (NTUA) Crypto Project January 28, / 12

4 Impersonation under Concurrent Attack A game with two phases 1 Impersonator acts as a cheating verifier, interracts with multiple prover clones (all the same pk) 2 Impersonator acts as a cheating prover interactig with the verifier While concurrent attacks, phase 1 is completed before phase 2 stars Model for ATMs, smart cards - not for Internet! F. Iliopoulos (NTUA) Crypto Project January 28, / 12

5 GQ Identification Scheme - Initialisation AlgorithmK(k) (N, e, d) K rsa (k) x R Z N X x e mod N pk N, e, X sk (N, x) Return(pk, sk) F. Iliopoulos (NTUA) Crypto Project January 28, / 12

6 GQ Identification Scheme - Interaction Prover P Verifier V y R Z N Y y e mod N z yx c mod N Y c z c R {0, 1} l(k) If z e YX c mod N then d 1 else d 0 F. Iliopoulos (NTUA) Crypto Project January 28, / 12

7 Schnorr - Initialisation AlgorithmK(k) (q, g) K dl (k) x R Z q X g x pk (q, g, X ) sk (q, x) Return(pk, sk) F. Iliopoulos (NTUA) Crypto Project January 28, / 12

8 Schnorr Identification Scheme - Interaction Prover P Verifier V y R Z q Y g y z y + cx mod q Y c z c R {0, 1} l(k) If g z YX c then d 1 else d 0 F. Iliopoulos (NTUA) Crypto Project January 28, / 12

9 Main Results GQ ID is secure against impersonation under concurrent attacks if RSA is secure under one or more inversions Schnorr ID is secure against impersonation under concurrent attacks if DL is secure under one or more inversions in the underlying group First proofs for security of this kind Turns the problem of security into a number theoretic problem F. Iliopoulos (NTUA) Crypto Project January 28, / 12

10 RSA security under one or more inversions assumption An rsa-omi adversary is a randomized polynomial-time algorithm I, inputs N,e and access to two oracles RSA-inversion Oracle: given Y Z N returns Y d mod N Challenge Oracle: Returns a random challenge point W Z N Adversary wins if outputs the RSA inverse of every chalenge -output of Challenge Oracle - and also the number of queries to RSA-inversion oracle is stricly less than to Challenge oracle F. Iliopoulos (NTUA) Crypto Project January 28, / 12

11 Main Theorem Theorem Let ID = (K, P, V) be the GQ identification scheme associated to prime-exponent RSA key generator K RSA and challenge length l. Let A = ( ˆV, ˆP) be an imp-ca adversary of time complexity t( ) attacking ID. Then there exists an rsa-omi adversary I attacking K rsa such that for every k Adv imp ca ID,A (k) 2 l(k) + Adv rsa omi K rsa,i (k) (1) Furthermore, the time complexity of I is 2t(k) + O(k 4 + (n(k) + 1) l(k) k 2 ), where n(k) is the number of prover clones with which ˆV interacts. F. Iliopoulos (NTUA) Crypto Project January 28, / 12

12 Proof Sketch 1 Reset lemma: Upper bounds the probability that a cheating prover can convince the verifier to accept as a function of the probability that a certain experiment based on resetting the prover yields two accepting conversation transcripts. 2 I can simulate the envivorment of adversary A (via oracles) 3 The probability that I wins is equal to the probability that the cheating prover manages two accepting conversation transcripts given that the verifier s challanges are different. F. Iliopoulos (NTUA) Crypto Project January 28, / 12

An Identification Scheme Based on KEA1 Assumption

An Identification Scheme Based on KEA1 Assumption All rights are reserved and copyright of this manuscript belongs to the authors. This manuscript has been published without reviewing and editing as received from the authors: posting the manuscript to

More information

PAPER An Identification Scheme with Tight Reduction

PAPER An Identification Scheme with Tight Reduction IEICE TRANS. FUNDAMENTALS, VOL.Exx A, NO.xx XXXX 200x PAPER An Identification Scheme with Tight Reduction Seiko ARITA, Member and Natsumi KAWASHIMA, Nonmember SUMMARY There are three well-known identification

More information

Katz, Lindell Introduction to Modern Cryptrography

Katz, Lindell Introduction to Modern Cryptrography Katz, Lindell Introduction to Modern Cryptrography Slides Chapter 12 Markus Bläser, Saarland University Digital signature schemes Goal: integrity of messages Signer signs a message using a private key

More information

Identity-Based Identification Schemes

Identity-Based Identification Schemes Identity-Based Identification Schemes Guomin Yang Centre for Computer and Information Security Research School of Computing and Information Technology University of Wollongong G. Yang (CCISR, SCIT, UOW)

More information

Schnorr Signature. Schnorr Signature. October 31, 2012

Schnorr Signature. Schnorr Signature. October 31, 2012 . October 31, 2012 Table of contents Salient Features Preliminaries Security Proofs Random Oracle Heuristic PKS and its Security Models Hardness Assumption The Construction Oracle Replay Attack Security

More information

Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes

Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/pierre.karpman/tea.html 2018 03 13 More

More information

PAIRING-BASED IDENTIFICATION SCHEMES

PAIRING-BASED IDENTIFICATION SCHEMES PAIRING-BASED IDENTIFICATION SCHEMES DAVID FREEMAN Abstract. We propose four different identification schemes that make use of bilinear pairings, and prove their security under certain computational assumptions.

More information

Practical Key Recovery for Discrete-Logarithm Based Authentication Schemes from Random Nonce Bits

Practical Key Recovery for Discrete-Logarithm Based Authentication Schemes from Random Nonce Bits Practical Key Recovery for Discrete-Logarithm Based Authentication Schemes from Random Nonce Bits Damien Vergnaud École normale supérieure CHES September, 15th 2015 (with Aurélie Bauer) Damien Vergnaud

More information

Identification Schemes of Proofs of Ability Secure against Concurrent Man-in-the-Middle Attacks

Identification Schemes of Proofs of Ability Secure against Concurrent Man-in-the-Middle Attacks Identification Schemes of Proofs of Ability Secure against Concurrent Man-in-the-Middle Attacks Hiroaki Anada and Seiko Arita Institute of Information Security, Yokohama, Japan hiroaki.anada@gmail.com,

More information

Entity Authentication

Entity Authentication Entity Authentication Sven Laur swen@math.ut.ee University of Tartu Formal Syntax Entity authentication pk (sk, pk) Gen α 1 β 1 β i V pk (α 1,...,α i 1 ) α i P sk (β 1,...,β i 1 ) Is it Charlie? α k The

More information

A Note on the Cramer-Damgård Identification Scheme

A Note on the Cramer-Damgård Identification Scheme A Note on the Cramer-Damgård Identification Scheme Yunlei Zhao 1, Shirley H.C. Cheung 2,BinyuZang 1,andBinZhu 3 1 Software School, Fudan University, Shanghai 200433, P.R. China {990314, byzang}@fudan.edu.cn

More information

The Double-Hash Transform: From Identification to (Double-Authentication-Preventing) Signatures, Tightly

The Double-Hash Transform: From Identification to (Double-Authentication-Preventing) Signatures, Tightly The Double-Hash Transform: From Identification to (Double-Authentication-Preventing) Signatures, Tightly Mihir Bellare 1 Douglas Stebila 2 December 2015 Abstract We give a new method to turn identification

More information

Lecture 14 More on Digital Signatures and Variants. COSC-260 Codes and Ciphers Adam O Neill Adapted from

Lecture 14 More on Digital Signatures and Variants. COSC-260 Codes and Ciphers Adam O Neill Adapted from Lecture 14 More on Digital Signatures and Variants COSC-260 Codes and Ciphers Adam O Neill Adapted from http://cseweb.ucsd.edu/~mihir/cse107/ Setting the Stage We will cover in more depth some issues for

More information

Pairing-Based Identification Schemes

Pairing-Based Identification Schemes Pairing-Based Identification Schemes David Freeman Information Theory Research HP Laboratories Palo Alto HPL-2005-154 August 24, 2005* public-key cryptography, identification, zero-knowledge, pairings

More information

VI. The Fiat-Shamir Heuristic

VI. The Fiat-Shamir Heuristic VI. The Fiat-Shamir Heuristic - as already seen signatures can be used and are used in practice to design identification protocols - next we show how we can obtain signatures schemes from - protocols using

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2018 Identification Identification Non- Repudiation Consider signature- based C- R sk ch=r res = Sig(vk,ch) Bob can prove to police

More information

March 19: Zero-Knowledge (cont.) and Signatures

March 19: Zero-Knowledge (cont.) and Signatures March 19: Zero-Knowledge (cont.) and Signatures March 26, 2013 1 Zero-Knowledge (review) 1.1 Review Alice has y, g, p and claims to know x such that y = g x mod p. Alice proves knowledge of x to Bob w/o

More information

Interactive protocols & zero-knowledge

Interactive protocols & zero-knowledge Interactive protocols & zero-knowledge - interactive protocols formalize what can be recognized by polynomial time restricted verifiers in arbitrary protocols - generalizes NP - zero-knowledge formalizes

More information

Attribute-Based Signatures without Pairings via the Fiat-Shamir Paradigm

Attribute-Based Signatures without Pairings via the Fiat-Shamir Paradigm Attribute-Based Signatures without Pairings via the Fiat-Shamir Paradigm Hiroaki Anada Institute of Systems, Information Technologies and Nanotechnologies (ISIT) Fukuoka SRP Center Bldg. 7F Momochihama

More information

Provable security. Michel Abdalla

Provable security. Michel Abdalla Lecture 1: Provable security Michel Abdalla École normale supérieure & CNRS Cryptography Main goal: Enable secure communication in the presence of adversaries Adversary Sender 10110 10110 Receiver Only

More information

Tightly-Secure Signatures From Lossy Identification Schemes

Tightly-Secure Signatures From Lossy Identification Schemes Tightly-Secure Signatures From Lossy Identification Schemes Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi 2 École normale supérieure {michel.abdalla,pierre-alain.fouque,vadim.lyubashevsky}@ens.fr

More information

Cryptography CS 555. Topic 23: Zero-Knowledge Proof and Cryptographic Commitment. CS555 Topic 23 1

Cryptography CS 555. Topic 23: Zero-Knowledge Proof and Cryptographic Commitment. CS555 Topic 23 1 Cryptography CS 555 Topic 23: Zero-Knowledge Proof and Cryptographic Commitment CS555 Topic 23 1 Outline and Readings Outline Zero-knowledge proof Fiat-Shamir protocol Schnorr protocol Commitment schemes

More information

Lecture 10: Zero-Knowledge Proofs

Lecture 10: Zero-Knowledge Proofs Lecture 10: Zero-Knowledge Proofs Introduction to Modern Cryptography Benny Applebaum Tel-Aviv University Fall Semester, 2011 12 Some of these slides are based on note by Boaz Barak. Quo vadis? Eo Romam

More information

George Danezis Microsoft Research, Cambridge, UK

George Danezis Microsoft Research, Cambridge, UK George Danezis Microsoft Research, Cambridge, UK Identity as a proxy to check credentials Username decides access in Access Control Matrix Sometime it leaks too much information Real world examples Tickets

More information

III. Authentication - identification protocols

III. Authentication - identification protocols III. Authentication - identification protocols Definition 3.1 A cryptographic protocol is a distributed algorithm describing precisely the interaction between two or more parties, achieving certain security

More information

From Identification to Signatures, Tightly: A Framework and Generic Transforms

From Identification to Signatures, Tightly: A Framework and Generic Transforms From Identification to Signatures, Tightly: A Framework and Generic Transforms Mihir Bellare 1 Bertram Poettering 2 Douglas Stebila 3 February 2016 Abstract This paper provides a framework to treat the

More information

Security Proofs for Identity-Based Identification and Signature Schemes

Security Proofs for Identity-Based Identification and Signature Schemes A preliminary version of this paper appears in Advances in Cryptology EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, C. Cachin and J. Camenisch ed., Springer-Verlag, 2004. This is the

More information

Homework 3 Solutions

Homework 3 Solutions 5233/IOC5063 Theory of Cryptology, Fall 205 Instructor Prof. Wen-Guey Tzeng Homework 3 Solutions 7-Dec-205 Scribe Amir Rezapour. Consider an unfair coin with head probability 0.5. Assume that the coin

More information

Outline. Provable Security in the Computational Model. III Signatures. Public-Key Encryption. Outline. David Pointcheval.

Outline. Provable Security in the Computational Model. III Signatures. Public-Key Encryption. Outline. David Pointcheval. Provable Security in the Computational Model III Signatures David Pointcheval Ecole normale supérieure, CNRS & INRI Public-Key Encryption Signatures 2 dvanced Security for Signature dvanced Security Notions

More information

Universal Designated Verifier Signature Proof (or How to Efficiently Prove Knowledge of a Signature)

Universal Designated Verifier Signature Proof (or How to Efficiently Prove Knowledge of a Signature) Universal Designated Verifier Signature Proof (or How to Efficiently Prove Knowledge of a Signature) Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo Centre for Information Security, School of Information

More information

ON DEFINING PROOFS OF KNOWLEDGE IN THE BARE PUBLIC-KEY MODEL

ON DEFINING PROOFS OF KNOWLEDGE IN THE BARE PUBLIC-KEY MODEL 1 ON DEFINING PROOFS OF KNOWLEDGE IN THE BARE PUBLIC-KEY MODEL GIOVANNI DI CRESCENZO Telcordia Technologies, Piscataway, NJ, USA. E-mail: giovanni@research.telcordia.com IVAN VISCONTI Dipartimento di Informatica

More information

Lecture 10. Public Key Cryptography: Encryption + Signatures. Identification

Lecture 10. Public Key Cryptography: Encryption + Signatures. Identification Lecture 10 Public Key Cryptography: Encryption + Signatures 1 Identification Public key cryptography can be also used for IDENTIFICATION Identification is an interactive protocol whereby one party: prover

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Friday 25 January 2019

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Friday 25 January 2019 Faculty of Mathematics and Computer Science Exam Cryptology, Friday 25 January 2019 Name : TU/e student number : Exercise 1 2 3 4 5 total points Notes: Please hand in all sheets at the end of the exam.

More information

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited Julien Cathalo 1, Jean-Sébastien Coron 2, and David Naccache 2,3 1 UCL Crypto Group Place du Levant 3, Louvain-la-Neuve, B-1348, Belgium

More information

On the Security of Classic Protocols for Unique Witness Relations

On the Security of Classic Protocols for Unique Witness Relations On the Security of Classic Protocols for Unique Witness Relations Yi Deng 1,2, Xuyang Song 1,2, Jingyue Yu 1,2, and Yu Chen 1,2 1 State Key Laboratory of Information Security, Institute of Information

More information

3-Move Undeniable Signature Scheme

3-Move Undeniable Signature Scheme 3-Move Undeniable Signature Scheme Kaoru Kurosawa 1 and Swee-Huay Heng 2 1 Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan kurosawa@cis.ibaraki.ac.jp 2 Multimedia University,

More information

Dr George Danezis University College London, UK

Dr George Danezis University College London, UK Dr George Danezis University College London, UK Identity as a proxy to check credentials Username decides access in Access Control Matrix Sometime it leaks too much information Real world examples Tickets

More information

Digital Signatures. Adam O Neill based on

Digital Signatures. Adam O Neill based on Digital Signatures Adam O Neill based on http://cseweb.ucsd.edu/~mihir/cse207/ Signing by hand COSMO ALICE ALICE Pay Bob $100 Cosmo Alice Alice Bank =? no Don t yes pay Bob Signing electronically SIGFILE

More information

Constructing Provably-Secure Identity-Based Signature Schemes

Constructing Provably-Secure Identity-Based Signature Schemes Constructing Provably-Secure Identity-Based Signature Schemes Chethan Kamath Indian Institute of Science, Bangalore November 23, 2013 Overview Table of contents Background Formal Definitions Schnorr Signature

More information

Interactive protocols & zero-knowledge

Interactive protocols & zero-knowledge Interactive protocols & zero-knowledge - interactive protocols formalize what can be recognized by polynomial time restricted verifiers in arbitrary protocols - generalizes NP - zero-knowledge formalizes

More information

Digital Signatures from Challenge-Divided Σ-Protocols

Digital Signatures from Challenge-Divided Σ-Protocols Digital Signatures from Challenge-Divided Σ-Protocols Andrew C. Yao Yunlei Zhao Abstract Digital signature is one of the basic primitives in cryptography. A common paradigm of obtaining signatures, known

More information

Lecture 15 & 16: Trapdoor Permutations, RSA, Signatures

Lecture 15 & 16: Trapdoor Permutations, RSA, Signatures CS 7810 Graduate Cryptography October 30, 2017 Lecture 15 & 16: Trapdoor Permutations, RSA, Signatures Lecturer: Daniel Wichs Scribe: Willy Quach & Giorgos Zirdelis 1 Topic Covered. Trapdoor Permutations.

More information

Research Article Efficient and Provable Secure Pairing-Free Security-Mediated Identity-Based Identification Schemes

Research Article Efficient and Provable Secure Pairing-Free Security-Mediated Identity-Based Identification Schemes e Scientific World Journal Article ID 170906 14 pages http://dx.doi.org/10.1155/2014/170906 Research Article Efficient and Provable Secure Pairing-Free Security-Mediated Identity-Based Identification Schemes

More information

Tighter Reductions for Forward-Secure Signature Schemes

Tighter Reductions for Forward-Secure Signature Schemes This is the Full Version of the Extended Abstract that appears in the Proceedings of the 16th International Conference on Practice and Theory in Public-Key Cryptography (PKC 13) (26 February 1 March 2013,

More information

Resettable Zero-Knowledge in the Weak Public-Key Model

Resettable Zero-Knowledge in the Weak Public-Key Model Resettable Zero-Knowledge in the Weak Public-Key Model Yunlei Zhao 1,3, Xiaotie Deng 2, C.H. Lee 2, and Hong Zhu 3 1 Software School Fudan University, Shanghai, China csylzhao@cityu.edu.hk 2 Department

More information

Constant-Round Concurrently-Secure rzk in the (Real) Bare Public-Key Model

Constant-Round Concurrently-Secure rzk in the (Real) Bare Public-Key Model Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 48 (2005) Constant-Round Concurrently-Secure rzk in the (Real) Bare Public-Key Model Moti Yung Yunlei Zhao Abstract We present

More information

Outline. The Game-based Methodology for Computational Security Proofs. Public-Key Cryptography. Outline. Introduction Provable Security

Outline. The Game-based Methodology for Computational Security Proofs. Public-Key Cryptography. Outline. Introduction Provable Security The Game-based Methodology for Computational s David Pointcheval Ecole normale supérieure, CNRS & INRIA Computational and Symbolic Proofs of Security Atagawa Heights Japan April 6th, 2009 1/39 2/39 Public-Key

More information

Cryptanalysis of a Zero-Knowledge Identification Protocol of Eurocrypt 95

Cryptanalysis of a Zero-Knowledge Identification Protocol of Eurocrypt 95 Cryptanalysis of a Zero-Knowledge Identification Protocol of Eurocrypt 95 Jean-Sébastien Coron and David Naccache Gemplus Card International 34 rue Guynemer, 92447 Issy-les-Moulineaux, France {jean-sebastien.coron,

More information

ENEE 457: Computer Systems Security 10/3/16. Lecture 9 RSA Encryption and Diffie-Helmann Key Exchange

ENEE 457: Computer Systems Security 10/3/16. Lecture 9 RSA Encryption and Diffie-Helmann Key Exchange ENEE 457: Computer Systems Security 10/3/16 Lecture 9 RSA Encryption and Diffie-Helmann Key Exchange Charalampos (Babis) Papamanthou Department of Electrical and Computer Engineering University of Maryland,

More information

Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log

Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log Pascal Paillier, Damien Vergnaud To cite this version: Pascal Paillier, Damien Vergnaud. Discrete-Log-Based Signatures May Not Be Equivalent

More information

Transitive Signatures Based on Non-adaptive Standard Signatures

Transitive Signatures Based on Non-adaptive Standard Signatures Transitive Signatures Based on Non-adaptive Standard Signatures Zhou Sujing Nanyang Technological University, Singapore, zhousujing@pmail.ntu.edu.sg Abstract. Transitive signature, motivated by signing

More information

Applied cryptography

Applied cryptography Applied cryptography Identity-based Cryptography Andreas Hülsing 19 November 2015 1 / 37 The public key problem How to obtain the correct public key of a user? How to check its authenticity? General answer:

More information

A Fair and Efficient Solution to the Socialist Millionaires Problem

A Fair and Efficient Solution to the Socialist Millionaires Problem In Discrete Applied Mathematics, 111 (2001) 23 36. (Special issue on coding and cryptology) A Fair and Efficient Solution to the Socialist Millionaires Problem Fabrice Boudot a Berry Schoenmakers b Jacques

More information

Interactive Zero-Knowledge with Restricted Random Oracles

Interactive Zero-Knowledge with Restricted Random Oracles Interactive Zero-Knowledge with Restricted Random Oracles Moti Yung 1 and Yunlei Zhao 2 1 RSA Laboratories and Department of Computer Science, Columbia University, New York, NY, USA. moti@cs.columbia.edu

More information

Cryptographic e-cash. Jan Camenisch. IBM Research ibm.biz/jancamenisch. IACR Summerschool Blockchain Technologies

Cryptographic e-cash. Jan Camenisch. IBM Research ibm.biz/jancamenisch. IACR Summerschool Blockchain Technologies IACR Summerschool Blockchain Technologies Cryptographic e-cash Jan Camenisch IBM Research Zurich @JanCamenisch ibm.biz/jancamenisch ecash scenario & requirements Bank Withdrawal User Spend Deposit Merchant

More information

The Random Oracle Paradigm. Mike Reiter. Random oracle is a formalism to model such uses of hash functions that abound in practical cryptography

The Random Oracle Paradigm. Mike Reiter. Random oracle is a formalism to model such uses of hash functions that abound in practical cryptography 1 The Random Oracle Paradigm Mike Reiter Based on Random Oracles are Practical: A Paradigm for Designing Efficient Protocols by M. Bellare and P. Rogaway Random Oracles 2 Random oracle is a formalism to

More information

Lecture 13: Seed-Dependent Key Derivation

Lecture 13: Seed-Dependent Key Derivation Randomness in Cryptography April 11, 2013 Lecture 13: Seed-Dependent Key Derivation Lecturer: Yevgeniy Dodis Scribe: Eric Miles In today s lecture, we study seeded key-derivation functions (KDFs) in the

More information

Security Analysis of an Identity-Based Strongly Unforgeable Signature Scheme

Security Analysis of an Identity-Based Strongly Unforgeable Signature Scheme Security Analysis of an Identity-Based Strongly Unforgeable Signature Scheme Kwangsu Lee Dong Hoon Lee Abstract Identity-based signature (IBS) is a specific type of public-key signature (PKS) where any

More information

Limitations of the Meta-Reduction Technique: The Case of Schnorr Signatures

Limitations of the Meta-Reduction Technique: The Case of Schnorr Signatures An extended abstract of this paper appears at Eurocrypt 2013. Limitations of the Meta-Reduction Technique: The Case of Schnorr Signatures Marc Fischlin 1 Nils Fleischhacker 2 1 Technische Universität Darmstadt

More information

The Representation Problem Based on Factoring

The Representation Problem Based on Factoring The Representation Problem Based on Factoring Marc Fischlin and Roger Fischlin Fachbereich Mathematik (AG 7.2) Johann Wolfgang Goethe-Universität Frankfurt am Main Postfach 111932 60054 Frankfurt/Main,

More information

On the (In)security of the Fiat-Shamir Paradigm

On the (In)security of the Fiat-Shamir Paradigm On the (In)security of the Fiat-Shamir Paradigm Shafi Goldwasser Yael Tauman February 2, 2004 Abstract In 1986, Fiat and Shamir proposed a general method for transforming secure 3-round public-coin identification

More information

Communication-Efficient Non-Interactive Proofs of Knowledge with Online Extractors

Communication-Efficient Non-Interactive Proofs of Knowledge with Online Extractors Communication-Efficient Non-Interactive Proofs of Knowledge with Online Extractors Marc Fischlin Institute for Theoretical Computer Science, ETH Zürich, Switzerland marc.fischlin @ inf.ethz.ch http://www.fischlin.de/

More information

Proofs of Storage from Homomorphic Identification Protocols

Proofs of Storage from Homomorphic Identification Protocols Proofs of Storage from Homomorphic Identification Protocols Giuseppe Ateniese The Johns Hopkins University ateniese@cs.jhu.edu Seny Kamara Microsoft Research senyk@microsoft.com Jonathan Katz University

More information

On The Security of The ElGamal Encryption Scheme and Damgård s Variant

On The Security of The ElGamal Encryption Scheme and Damgård s Variant On The Security of The ElGamal Encryption Scheme and Damgård s Variant J. Wu and D.R. Stinson David R. Cheriton School of Computer Science University of Waterloo Waterloo, ON, Canada {j32wu,dstinson}@uwaterloo.ca

More information

Some Security Comparisons of GOST R and ECDSA Signature Schemes

Some Security Comparisons of GOST R and ECDSA Signature Schemes Some Security Comparisons of GOST R 34.10-2012 and ECDSA Signature Schemes Trieu Quang Phong Nguyen Quoc Toan Institute of Cryptography Science and Technology Gover. Info. Security Committee, Viet Nam

More information

II. Digital signatures

II. Digital signatures II. Digital signatures Alice m Bob Eve 1. Did Bob send message m, or was it Eve? 2. Did Eve modify the message m, that was sent by Bob? 1 Digital signatures Digital signature - are equivalent of handwritten

More information

Anonymous Credentials Light

Anonymous Credentials Light Anonymous Credentials Light Foteini Baldimtsi, Anna Lysyanskaya foteini,anna@cs.brown.edu Computer Science Department, Brown University Abstract. We define and propose an efficient and provably secure

More information

Certificateless Signcryption without Pairing

Certificateless Signcryption without Pairing Certificateless Signcryption without Pairing Wenjian Xie Zhang Zhang College of Mathematics and Computer Science Guangxi University for Nationalities, Nanning 530006, China Abstract. Certificateless public

More information

ASYMMETRIC ENCRYPTION

ASYMMETRIC ENCRYPTION ASYMMETRIC ENCRYPTION 1 / 1 Recommended Book Steven Levy. Crypto. Penguin books. 2001. A non-technical account of the history of public-key cryptography and the colorful characters involved. 2 / 1 Recall

More information

Zero-Knowledge Proofs and Applications

Zero-Knowledge Proofs and Applications Tecniche di Sicurezza Informatica dei Dati e delle Reti May 21, 2015 Zero-Knowledge Proofs and Applications Guest Lecturer: Daniele Venturi Lecturer: Antonio Villani Abstract The material below covers

More information

Cryptanalysis and improvement of an ID-based ad-hoc anonymous identification scheme at CT-RSA 05

Cryptanalysis and improvement of an ID-based ad-hoc anonymous identification scheme at CT-RSA 05 Cryptanalysis and improvement of an ID-based ad-hoc anonymous identification scheme at CT-RSA 05 Fangguo Zhang 1 and Xiaofeng Chen 2 1 Department of Electronics and Communication Engineering, Sun Yat-sen

More information

Constant-Round Concurrently-Secure rzk in the (Real) Bare Public-Key Model

Constant-Round Concurrently-Secure rzk in the (Real) Bare Public-Key Model Electronic Colloquium on Computational Complexity, Report No. 48 (2005) Constant-Round Concurrently-Secure rzk in the (Real) Bare Public-Key Model Moti Yung Yunlei Zhao Abstract We present constant-round

More information

Deterring Certificate Subversion: Efficient Double-Authentication-Preventing Signatures

Deterring Certificate Subversion: Efficient Double-Authentication-Preventing Signatures Deterring Certificate Subversion: Efficient Double-Authentication-Preventing Signatures Mihir Bellare 1 Bertram Poettering 2 Douglas Stebila 3 October 2016 Abstract This paper presents highly efficient

More information

Security Proofs for Signature Schemes. Ecole Normale Superieure. 45, rue d'ulm Paris Cedex 05

Security Proofs for Signature Schemes. Ecole Normale Superieure. 45, rue d'ulm Paris Cedex 05 Security Proofs for Signature Schemes David Pointcheval David.Pointcheval@ens.fr Jacques Stern Jacques.Stern@ens.fr Ecole Normale Superieure Laboratoire d'informatique 45, rue d'ulm 75230 Paris Cedex 05

More information

5.4 ElGamal - definition

5.4 ElGamal - definition 5.4 ElGamal - definition In this section we define the ElGamal encryption scheme. Next to RSA it is the most important asymmetric encryption scheme. Recall that for a cyclic group G, an element g G is

More information

Simple SK-ID-KEM 1. 1 Introduction

Simple SK-ID-KEM 1. 1 Introduction 1 Simple SK-ID-KEM 1 Zhaohui Cheng School of Computing Science, Middlesex University The Burroughs, Hendon, London, NW4 4BT, United Kingdom. m.z.cheng@mdx.ac.uk Abstract. In 2001, Boneh and Franklin presented

More information

Some Comments on the Security of RSA. Debdeep Mukhopadhyay

Some Comments on the Security of RSA. Debdeep Mukhopadhyay Some Comments on the Security of RSA Debdeep Mukhopadhyay Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302 Objectives Computing

More information

18734: Foundations of Privacy. Anonymous Cash. Anupam Datta. CMU Fall 2018

18734: Foundations of Privacy. Anonymous Cash. Anupam Datta. CMU Fall 2018 18734: Foundations of Privacy Anonymous Cash Anupam Datta CMU Fall 2018 Today: Electronic Cash Goals Alice can ask for Bank to issue coins from her account. Alice can spend coins. Bank cannot track what

More information

5199/IOC5063 Theory of Cryptology, 2014 Fall

5199/IOC5063 Theory of Cryptology, 2014 Fall 5199/IOC5063 Theory of Cryptology, 2014 Fall Homework 2 Reference Solution 1. This is about the RSA common modulus problem. Consider that two users A and B use the same modulus n = 146171 for the RSA encryption.

More information

From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes

From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes [Published in D. Naccache, Ed., Topics in Cryptology CT-RSA 2001, vol. 2020 of Lecture Notes in Computer

More information

Uninstantiability of Full-Domain Hash

Uninstantiability of Full-Domain Hash Uninstantiability of based on On the Generic Insecurity of, Crypto 05, joint work with Y.Dodis and R.Oliveira Krzysztof Pietrzak CWI Amsterdam June 3, 2008 Why talk about this old stuff? Why talk about

More information

From 5-pass MQ-based identification to MQ-based signatures

From 5-pass MQ-based identification to MQ-based signatures From 5-pass MQ-based identification to MQ-based signatures Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe 30 June 2016 1 / 31 Our take on PQ-Crypto Prepare for actual use Reliable

More information

Notes on Zero Knowledge

Notes on Zero Knowledge U.C. Berkeley CS172: Automata, Computability and Complexity Handout 9 Professor Luca Trevisan 4/21/2015 Notes on Zero Knowledge These notes on zero knowledge protocols for quadratic residuosity are based

More information

Cryptographical Security in the Quantum Random Oracle Model

Cryptographical Security in the Quantum Random Oracle Model Cryptographical Security in the Quantum Random Oracle Model Center for Advanced Security Research Darmstadt (CASED) - TU Darmstadt, Germany June, 21st, 2012 This work is licensed under a Creative Commons

More information

Lecture 16 Chiu Yuen Koo Nikolai Yakovenko. 1 Digital Signature Schemes. CMSC 858K Advanced Topics in Cryptography March 18, 2004

Lecture 16 Chiu Yuen Koo Nikolai Yakovenko. 1 Digital Signature Schemes. CMSC 858K Advanced Topics in Cryptography March 18, 2004 CMSC 858K Advanced Topics in Cryptography March 18, 2004 Lecturer: Jonathan Katz Lecture 16 Scribe(s): Chiu Yuen Koo Nikolai Yakovenko Jeffrey Blank 1 Digital Signature Schemes In this lecture, we introduce

More information

Advanced Cryptography 1st Semester Public Encryption

Advanced Cryptography 1st Semester Public Encryption Advanced Cryptography 1st Semester 2007-2008 Pascal Lafourcade Université Joseph Fourrier, Verimag Master: October 1st 2007 1 / 64 Last Time (I) Indistinguishability Negligible function Probabilities Indistinguishability

More information

Digital Signatures. p1.

Digital Signatures. p1. Digital Signatures p1. Digital Signatures Digital signature is the same as MAC except that the tag (signature) is produced using the secret key of a public-key cryptosystem. Message m MAC k (m) Message

More information

A Novel Strong Designated Verifier Signature Scheme without Random Oracles

A Novel Strong Designated Verifier Signature Scheme without Random Oracles 1 A Novel Strong Designated Verifier Signature Scheme without Random Oracles Maryam Rajabzadeh Asaar 1, Mahmoud Salmasizadeh 2 1 Department of Electrical Engineering, 2 Electronics Research Institute (Center),

More information

On the CCA1-Security of Elgamal and Damgård s Elgamal

On the CCA1-Security of Elgamal and Damgård s Elgamal On the CCA1-Security of Elgamal and Damgård s Elgamal Cybernetica AS, Estonia Tallinn University, Estonia October 21, 2010 Outline I Motivation 1 Motivation 2 3 Motivation Three well-known security requirements

More information

A New Identification Scheme Based on the Perceptrons Problem

A New Identification Scheme Based on the Perceptrons Problem Advances in Cryptology Proceedings of EUROCRYPT 95 (may 21 25, 1995, Saint-Malo, France) L.C. Guillou and J.-J. Quisquater, Eds. Springer-Verlag, LNCS 921, pages 319 328. A New Identification Scheme Based

More information

Comparing With RSA. 1 ucl Crypto Group

Comparing With RSA. 1 ucl Crypto Group Comparing With RSA Julien Cathalo 1, David Naccache 2, and Jean-Jacques Quisquater 1 1 ucl Crypto Group Place du Levant 3, Louvain-la-Neuve, b-1348, Belgium julien.cathalo@uclouvain.be, jean-jacques.quisquater@uclouvain.be

More information

1 Number Theory Basics

1 Number Theory Basics ECS 289M (Franklin), Winter 2010, Crypto Review 1 Number Theory Basics This section has some basic facts about number theory, mostly taken (or adapted) from Dan Boneh s number theory fact sheets for his

More information

Zero-knowledge proofs of knowledge for group homomorphisms

Zero-knowledge proofs of knowledge for group homomorphisms Des. Codes Cryptogr. (2015) 77:663 676 DOI 10.1007/s10623-015-0103-5 Zero-knowledge proofs of knowledge for group homomorphisms Ueli Maurer 1 Received: 13 October 2014 / Revised: 23 May 2015 / Accepted:

More information

Statistically Secure Sigma Protocols with Abort

Statistically Secure Sigma Protocols with Abort AARHUS UNIVERSITY COMPUTER SCIENCE MASTER S THESIS Statistically Secure Sigma Protocols with Abort Author: Anders Fog BUNZEL (20112293) Supervisor: Ivan Bjerre DAMGÅRD September 2016 AARHUS AU UNIVERSITY

More information

Q B (pk, sk) Gen x u M pk y Map pk (x) return [B(pk, y)? = x]. (m, s) A O h

Q B (pk, sk) Gen x u M pk y Map pk (x) return [B(pk, y)? = x]. (m, s) A O h MTAT.07.003 Cryptology II Spring 2012 / Exercise session?? / Example Solution Exercise (FRH in RO model). Show that the full domain hash signature is secure against existential forgeries in the random

More information

Efficient Identity-based Encryption Without Random Oracles

Efficient Identity-based Encryption Without Random Oracles Efficient Identity-based Encryption Without Random Oracles Brent Waters Weiwei Liu School of Computer Science and Software Engineering 1/32 Weiwei Liu Efficient Identity-based Encryption Without Random

More information

EXAM IN. TDA352 (Chalmers) - DIT250 (GU) 18 January 2019, 08:

EXAM IN. TDA352 (Chalmers) - DIT250 (GU) 18 January 2019, 08: CHALMERS GÖTEBORGS UNIVERSITET EXAM IN CRYPTOGRAPHY TDA352 (Chalmers) - DIT250 (GU) 18 January 2019, 08:30 12.30 Tillåtna hjälpmedel: Typgodkänd räknare. Annan minnestömd räknare får användas efter godkännande

More information

A New NP-Complete Problem and Public-Key Identification

A New NP-Complete Problem and Public-Key Identification C Designs, Codes and Cryptography, 28, 5 31, 2003 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. A New NP-Complete Problem and Public-Key Identification DAVID POINTCHEVAL Département

More information

Strongly Unforgeable Signatures Based on Computational Diffie-Hellman

Strongly Unforgeable Signatures Based on Computational Diffie-Hellman Strongly Unforgeable Signatures Based on Computational Diffie-Hellman Dan Boneh 1, Emily Shen 1, and Brent Waters 2 1 Computer Science Department, Stanford University, Stanford, CA {dabo,emily}@cs.stanford.edu

More information

(Convertible) Undeniable Signatures without Random Oracles

(Convertible) Undeniable Signatures without Random Oracles Convertible) Undeniable Signatures without Random Oracles Tsz Hon Yuen 1, Man Ho Au 1, Joseph K. Liu 2, and Willy Susilo 1 1 Centre for Computer and Information Security Research School of Computer Science

More information