Q B (pk, sk) Gen x u M pk y Map pk (x) return [B(pk, y)? = x]. (m, s) A O h

Size: px
Start display at page:

Download "Q B (pk, sk) Gen x u M pk y Map pk (x) return [B(pk, y)? = x]. (m, s) A O h"

Transcription

1 MTAT Cryptology II Spring 2012 / Exercise session?? / Example Solution Exercise (FRH in RO model). Show that the full domain hash signature is secure against existential forgeries in the random oracle model. Establish security bounds under the assumption that the scheme uses (t, ε)-secure collection of trapdoor permutations and Map pk ( ) is always τ-time computable. Solution. To show how such proofs are constructed, we construct the proof in three steps. First, we consider a very specific key only attack. Then we generalise the proof for all key only attacks. Finally we show how to convert an attack with uses signing oracle to an attack without the oracle while preserving success. For the proof, recall that a collection of trapdoor permutations is determined by three algorithms (Gen, Map, Inv) such that, m M pk : Inv sk (Map pk (m)) = m and both algorithms Map pk ( ) and Inv sk ( ) are deterministic. The security of the permutation collection is defined through the success Adv inv-cpa (B) against the following game: x u M pk y Map pk (x) return [B(pk, y)? = x]. A collection of trapdoor permutations is (t, ε)-secure if for any t-time adversary B the success probability Adv inv-cpa (B) is upper bounded by ε. A very specific key only attack. Let us first consider an attack, where the adversary makes q h queries to the random oracle O h to forge a signature (m, s) such that h(m) is computed as the 1 st query to O h and all q h hash queries are made on distinct inputs. We start by defining the security game, where the adversary is able to forge one more signature while having access to a random oracle O h : h u H all (m, s) A O h (pk) y h(m) return [Map pk (s)? = y]. As we consider a restricted class of adversaries that forge the signature for the first query m 1 to the hash oracle O h, we can rewrite the security game in more explicit manner: G 2 h u H all m 1 A(pk) y h(m 1 ) s A O h (y) return [Map pk (s)? = y]. The game makes the first query m 1 to the oracle explicit. Formally, the adversary A for the game is not compatible with the game G 2. However, there is a straightforward wrapper construction with constant overhead that makes the conversion without changing the success probability. 1

2 For constructing the inverter for any input y, we need to trick the adversary into believing that y is the output of h(m 1 ). For this, we replace the initial oracle with a slightly modified one which outputs y if he is queried for m 1 and O h (m) otherwise: O h(m) [ if m? = m 1 then return y else return O h (m) To be punctual, m 1 and y are hidden parameters of O h which must be initialised by the inverter B A,O h (pk, y) m 1 A(pk) s A O h (y) return s before calling O h. Note that if we use this inverter B in game QB, then we get x u M pk y Map pk (x) h u H all m 1 A(pk) s A O h (y) return [s? = x]. Now note that the condition s = x is equivalent to the condition that Map pk (s) = y and we can inverse the choices of m and y in Q by firstly taking y M pk and then x Inv sk (y) without changing the output of the game. As a result, we obtain that the game is equivalent to the following game: G 3 h u H all y u M pk x Inv pk (m) m 1 A(pk) s A O h (y) return [Map pk (s) =? y]. Now the only difference between G 2 and G 3 is in the way y is computed. If h is chosen uniformly from H all, then y h(m 1 ) is also uniform in M pk and thus the games are identical. Thus, we have formally proved Adv win (A) = Adv inv-cpa (B O h ). However, the latter is not sufficient for the proof, since B must have an oracle access to O h to run, whereas the security of is defined in terms of algorithms that make no oracle calls. Fortunately, we can remove the oracle O h from the construction of B. As A makes distinct calls to O h so does the O h. Consequently, we can replace all replies by randomly sampled elements, which leads to the 2

3 following simplification: O h(m) if m =? m 1 then y y else y u M pk return y. Since O h makes no calls to oracles, the algorithm BA,O h is in the valid form. As the running time of B A,O h is O(q h ) steps slower than A, we get the desired upper bound: Adv win (A) = Adv inv-cpa (B O h ) = Adv inv-cpa (B O h ) ε whenever the running time of A is t O(q). Similar construction could be given for another restricted case when h(m) is the i th query. We modify the oracle such that it returns random value for all j th query for j i and outputs y when j = i: O h(m) count count + 1 if count =? i then y y else y u M pk return y where the global variable count is initially set to zero. Further details are left as an exercise. A constructive reduction for a key only attack. Next, let us consider a general attack where the adversary makes q h queries to the random oracle O h to forge a signature (m, s). W.l.o.g. we can assume that A queries the hash value for the forged signature. If not then we can write a wrapper that queries h(m) as the last step. It can increase the number of queries to q h + 1. Secondly, we can assume that A makes exactly q h + 1 distinct oracle queries. Overhead of the corresponding wrapper is O(q h log q h ). As a result, we can model the attack through the following game: G A y i h(m i ) (m, s) A(h qh +1) return [h(m) =? Map pk (s)], 3

4 which itself can be simplified due to the properties of the random function family H all : G A 1 y i M pk (m, s) A(h qh +1) Choose k such that m = m k return [h k = Map pk (s)] without changing the success probability nor the semantics of the game. Now it is straightforward to construct the inverter B by planting the value y to be inverted as the k th reply. Clearly for some k, the probability that the adversary A is successful and m is submitted as the k th is not smaller than the average success: k : Pr [ G A 1 = 1 m = m k ] 1 q h + 1 Advwin (A). However, there is no evident way to determine k efficiently by looking at the code of A. Hence, the only sensible alternative is to choose k randomly. The latter leads to the following inverter construction: B A (pk, y) if i =? k then y i y else y i M pk (m, s) A if m =? m k then return s else return There are many way how to estimate the success of the inverter. Here, we choose the most explicit way. We just inline the construction of B into the game Q and manipulate the game further without changing its semantics: x u M pk y Map pk (x) if i =? k then y i y else y i M pk (m, s) A if m? = m k then return [s? = x] else return 0 4

5 Note that the last line captures the condition that B does not halt with only if m = m k. Since Map pk is the permutation we can rewrite the input generation and output verification phase: y u M pk if i =? k then y i y else y i M pk (m, s) A if m m k then return 0 return [Map pk (s)? = y]. Since the challenge y is chosen uniformly from M pk, the difference between if and else branches in the cycle body vanishes and we can further simplify the game: y i M pk (m, s) A if m m k then return 0 return [Map pk (s)? = y k ], which can be further describe in terms of random function sampling: y i h(m i ) (m, s) A if m m k then return 0 return [Map pk (s) =? h(m)]. As A is guaranteed to produce m {m 1,..., m qh +1} by our assumptions, we can formally derive Pr [ = 1 ] = q h +1 i=1 Pr [ q ] h +1 = 1 m = m i = i=1 Pr [ Map pk (s) = h(m) m = m k m = m i ]. 5

6 As the term under the sum can be expressed as Pr [ Map pk (s) = h(m) m = m k m = m i ] = Pr [ Mappk (s) = h(m) m = m i ] Pr [mi = m k ] and the condition m i = m k holds with uniform probability we get the desired lower bound i : Pr [m i = m k ] = 1 q h + 1, Adv inv-cpa (B) = Pr [ = 1 ] = 1 q h +1 q h + 1 Pr [ ] Adv win Map pk (s) = h(m) m = m i = (A) q h + 1 Another way to prove this bound is to reorder the checks in the game: i=1. y i h(m i ) (m, s) A if Map pk (s) h(m) then return 0 return [m = m k ]. and then note that the first part of the game is identical to G A 1 m : Pr [m = m k ] = 1 q h + 1. To summarise, we have obtained a direct reduction with Adv inv-cpa (B) = Advwin (A) q h + 1 and the final test succeeds with the probability where the running time of B is O(q h log q h ) time steps longer than the running time of A that is not guaranteed to query distinct inputs. Therefore, if is a (t, ε)-secure collection of trapdoor permutations, the full domain hash signature is ((q h +1)ε, t O(q h log q h ))-secure against key-only attacks where adversary make q h queries. A general constructive reduction. Finally, let us consider a general attack where the adversary makes q h queries to the random oracle O h and q s queries to the signing oracle O Sign to forge a new signature (m, s) that is not in the list of replies. Let S[ ] denote the array of queried signatures, i.e., S[m] means that the signature has been queried form the oracle. Then we can formalise the security game as follows: (m, s) A O h,o Sign (pk) if S[m] return 0 return [h(m) =? Map pk (s)]. 6

7 As before, let q h denote the maximal number of hash queries and q s the maximal number of signing queries the adversary can make. Also, let H[ ] denote array of queried hashes. First, note that by the construction H[m] = Map pk (S[m]) for all messages m that are submitted to the signing oracle. Moreover, by the properties of H all all values H[m] are uniformly distributed over M pk. As Map pk is a permtation, we can sample uniform values from M pk by first sampling s and then computing Map pk (s). This way we can escape the hard inversion problem. Formally, we define two new oracles O h(m) if H[m] = [ S[m] u M H[m] Map pk (S[m]) return H[m] O Sign(m) if S[m] = [ S[m] u M H[m] Map pk (S[m]) return S[m]. For the correctness, note that the construction guarantees that elements S[m] and H[m] are either simultaneously undefined or defined and there can be no redefinitions of undefined variables. For the reasons explained above, the behaviour of the oracle pair O h and O Sign is indistinguishable form the oracle pair O h and O Sign. Consequently, the game is equivalent to the game G 2 (m, s) A O h,o Sign (pk) if S[m] return 0 return [h(m)? = Map pk (s)]. Note that the new game G 2 is not equivalent to the key-only attack in the random oracle model. Although the oracle O h is indistinguishable form the random oracle O h, the construction is different. Nevertheless, we can use the idea as before to build the inverter algorithm. Let us start from nonconstructive analysis. Clearly, q h +q s+1 Adv win (A) = Pr [ G2 A = 1 i th query corresponds to the signature ] i=1 where A is such that it is quarantined to query the hash of the message m. Now there must exist k such that Pr [ G A 2 = 1 k th query corresponds to the signature ] Advwin (A) q h + q s + 1. Now for this k, we can construct an inverter B by modifying the pair of oracles so that they H[m k ] = y. The simulation can fail only if the adversary A queries O Sign (m k) but then (m k, s) is not a valid forgery. We leave the formal construction of the inverter and its analysis to the reader. For the constructive reduction, we just give the construction of B together with modified oracles: B O h,o Sign (pk, y) count 0 k u {1,..., q h + q s + 1} (m, s) A O h,o Sign (pk) if S[m] return 0 if m m k then return 0 else return s O h(m) count count + 1 if H[m] = if count =? k then [ H[m] y else [ S[m] u M H[m] Map pk (S[m]) return H[m] O Sign(m) count count + 1 if S[m] = if count =? k then [ H[m] y else [ S[m] u M H[m] Map pk (S[m]) return S[m]. 7

8 For the analysis note that B O h,o Sign provides a perfect simulation of G2 for A unless the k th query is a signing query. However, the B O h,o Sign would halt even if the signature would be correct. Hence, it is straightforward to show by direct inlining that Adv inv-cpa Adv win (B O h,o Sign ) = (A) q h + q s + 1. The reduction overhead is q s + q h + 1 calls to one of O h and O Sign, but both of these have time dominated by the Map pk ( ) operation, hence there is a (q s + q h + 1)τ overhead. So if the scheme uses (t, ε)-secure collection of trapdoor permutations, then the full domain hash is (t (q s + q h + 1)τ, (q s + q h + 1)ε)-secure in the random oracle model. 8

Lecture 16 Chiu Yuen Koo Nikolai Yakovenko. 1 Digital Signature Schemes. CMSC 858K Advanced Topics in Cryptography March 18, 2004

Lecture 16 Chiu Yuen Koo Nikolai Yakovenko. 1 Digital Signature Schemes. CMSC 858K Advanced Topics in Cryptography March 18, 2004 CMSC 858K Advanced Topics in Cryptography March 18, 2004 Lecturer: Jonathan Katz Lecture 16 Scribe(s): Chiu Yuen Koo Nikolai Yakovenko Jeffrey Blank 1 Digital Signature Schemes In this lecture, we introduce

More information

The Random Oracle Paradigm. Mike Reiter. Random oracle is a formalism to model such uses of hash functions that abound in practical cryptography

The Random Oracle Paradigm. Mike Reiter. Random oracle is a formalism to model such uses of hash functions that abound in practical cryptography 1 The Random Oracle Paradigm Mike Reiter Based on Random Oracles are Practical: A Paradigm for Designing Efficient Protocols by M. Bellare and P. Rogaway Random Oracles 2 Random oracle is a formalism to

More information

Outline. Provable Security in the Computational Model. III Signatures. Public-Key Encryption. Outline. David Pointcheval.

Outline. Provable Security in the Computational Model. III Signatures. Public-Key Encryption. Outline. David Pointcheval. Provable Security in the Computational Model III Signatures David Pointcheval Ecole normale supérieure, CNRS & INRI Public-Key Encryption Signatures 2 dvanced Security for Signature dvanced Security Notions

More information

Schnorr Signature. Schnorr Signature. October 31, 2012

Schnorr Signature. Schnorr Signature. October 31, 2012 . October 31, 2012 Table of contents Salient Features Preliminaries Security Proofs Random Oracle Heuristic PKS and its Security Models Hardness Assumption The Construction Oracle Replay Attack Security

More information

Digital Signatures. Adam O Neill based on

Digital Signatures. Adam O Neill based on Digital Signatures Adam O Neill based on http://cseweb.ucsd.edu/~mihir/cse207/ Signing by hand COSMO ALICE ALICE Pay Bob $100 Cosmo Alice Alice Bank =? no Don t yes pay Bob Signing electronically SIGFILE

More information

Digital Signature Schemes and the Random Oracle Model. A. Hülsing

Digital Signature Schemes and the Random Oracle Model. A. Hülsing Digital Signature Schemes and the Random Oracle Model A. Hülsing Today s goal Review provable security of in use signature schemes. (PKCS #1 v2.x) PAGE 1 Digital Signature Source: http://hari-cio-8a.blog.ugm.ac.id/files/2013/03/dsa.jpg

More information

John Hancock enters the 21th century Digital signature schemes. Table of contents

John Hancock enters the 21th century Digital signature schemes. Table of contents John Hancock enters the 21th century Digital signature schemes Foundations of Cryptography Computer Science Department Wellesley College Fall 2016 Table of contents From last time: Good news and bad There

More information

Lecture 18: Message Authentication Codes & Digital Signa

Lecture 18: Message Authentication Codes & Digital Signa Lecture 18: Message Authentication Codes & Digital Signatures MACs and Signatures Both are used to assert that a message has indeed been generated by a party MAC is the private-key version and Signatures

More information

Lecture 15 & 16: Trapdoor Permutations, RSA, Signatures

Lecture 15 & 16: Trapdoor Permutations, RSA, Signatures CS 7810 Graduate Cryptography October 30, 2017 Lecture 15 & 16: Trapdoor Permutations, RSA, Signatures Lecturer: Daniel Wichs Scribe: Willy Quach & Giorgos Zirdelis 1 Topic Covered. Trapdoor Permutations.

More information

CPA-Security. Definition: A private-key encryption scheme

CPA-Security. Definition: A private-key encryption scheme CPA-Security The CPA Indistinguishability Experiment PrivK cpa A,Π n : 1. A key k is generated by running Gen 1 n. 2. The adversary A is given input 1 n and oracle access to Enc k, and outputs a pair of

More information

Authentication. Chapter Message Authentication

Authentication. Chapter Message Authentication Chapter 5 Authentication 5.1 Message Authentication Suppose Bob receives a message addressed from Alice. How does Bob ensure that the message received is the same as the message sent by Alice? For example,

More information

Provable Security Proofs and their Interpretation in the Real World

Provable Security Proofs and their Interpretation in the Real World Provable Security Proofs and their Interpretation in the Real World Vikram Singh Abstract This paper analyses provable security proofs, using the EDL signature scheme as its case study, and interprets

More information

10 Concrete candidates for public key crypto

10 Concrete candidates for public key crypto 10 Concrete candidates for public key crypto In the previous lecture we talked about public key cryptography and saw the Diffie Hellman system and the DSA signature scheme. In this lecture, we will see

More information

Katz, Lindell Introduction to Modern Cryptrography

Katz, Lindell Introduction to Modern Cryptrography Katz, Lindell Introduction to Modern Cryptrography Slides Chapter 12 Markus Bläser, Saarland University Digital signature schemes Goal: integrity of messages Signer signs a message using a private key

More information

Entity Authentication

Entity Authentication Entity Authentication Sven Laur swen@math.ut.ee University of Tartu Formal Syntax Entity authentication pk (sk, pk) Gen α 1 β 1 β i V pk (α 1,...,α i 1 ) α i P sk (β 1,...,β i 1 ) Is it Charlie? α k The

More information

SIS-based Signatures

SIS-based Signatures Lattices and Homomorphic Encryption, Spring 2013 Instructors: Shai Halevi, Tal Malkin February 26, 2013 Basics We will use the following parameters: n, the security parameter. =poly(n). m 2n log s 2 n

More information

Block Ciphers/Pseudorandom Permutations

Block Ciphers/Pseudorandom Permutations Block Ciphers/Pseudorandom Permutations Definition: Pseudorandom Permutation is exactly the same as a Pseudorandom Function, except for every key k, F k must be a permutation and it must be indistinguishable

More information

From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes

From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes [Published in D. Naccache, Ed., Topics in Cryptology CT-RSA 2001, vol. 2020 of Lecture Notes in Computer

More information

1 Number Theory Basics

1 Number Theory Basics ECS 289M (Franklin), Winter 2010, Crypto Review 1 Number Theory Basics This section has some basic facts about number theory, mostly taken (or adapted) from Dan Boneh s number theory fact sheets for his

More information

A Security Proof of KCDSA using an extended Random Oracle Model

A Security Proof of KCDSA using an extended Random Oracle Model A Security Proof of KCDSA using an extended Random Oracle Model Vikram Singh Abstract We describe a tight security reduction to the discrete logarithm problem for KCDSA under an extended Random Oracle

More information

Optimal Security Reductions for Unique Signatures: Bypassing Impossibilities with A Counterexample

Optimal Security Reductions for Unique Signatures: Bypassing Impossibilities with A Counterexample Optimal Security Reductions for Unique Signatures: Bypassing Impossibilities with A Counterexample Fuchun Guo 1, Rongmao Chen 2, Willy Susilo 1, Jianchang Lai 1, Guomin Yang 1, and Yi Mu 1 1 Institute

More information

Transitive Signatures Based on Non-adaptive Standard Signatures

Transitive Signatures Based on Non-adaptive Standard Signatures Transitive Signatures Based on Non-adaptive Standard Signatures Zhou Sujing Nanyang Technological University, Singapore, zhousujing@pmail.ntu.edu.sg Abstract. Transitive signature, motivated by signing

More information

Lecture 8 Alvaro A. Cardenas Nicholas Sze Yinian Mao Kavitha Swaminathan. 1 Introduction. 2 The Dolev-Dwork-Naor (DDN) Scheme [1]

Lecture 8 Alvaro A. Cardenas Nicholas Sze Yinian Mao Kavitha Swaminathan. 1 Introduction. 2 The Dolev-Dwork-Naor (DDN) Scheme [1] CMSC 858K Advanced Topics in Cryptography February 19, 2004 Lecturer: Jonathan Katz Lecture 8 Scribe(s): Alvaro A. Cardenas Nicholas Sze Yinian Mao Kavitha Swaminathan 1 Introduction Last time we introduced

More information

Introduction to Cryptography

Introduction to Cryptography B504 / I538: Introduction to Cryptography Spring 2017 Lecture 12 Recall: MAC existential forgery game 1 n Challenger (C) k Gen(1 n ) Forger (A) 1 n m 1 m 1 M {m} t 1 MAC k (m 1 ) t 1 m 2 m 2 M {m} t 2

More information

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Stamp / Signature of the Invigilator

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Stamp / Signature of the Invigilator INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Stamp / Signature of the Invigilator EXAMINATION ( End Semester ) SEMESTER ( Spring ) Roll Number Section Name Subject Number C S 6 0 0 8 8 Subject Name Foundations

More information

Semantic Security of RSA. Semantic Security

Semantic Security of RSA. Semantic Security Semantic Security of RSA Murat Kantarcioglu Semantic Security As before our goal is to come up with a public key system that protects against more than total break We want our system to be secure against

More information

Uninstantiability of Full-Domain Hash

Uninstantiability of Full-Domain Hash Uninstantiability of based on On the Generic Insecurity of, Crypto 05, joint work with Y.Dodis and R.Oliveira Krzysztof Pietrzak CWI Amsterdam June 3, 2008 Why talk about this old stuff? Why talk about

More information

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited Julien Cathalo 1, Jean-Sébastien Coron 2, and David Naccache 2,3 1 UCL Crypto Group Place du Levant 3, Louvain-la-Neuve, B-1348, Belgium

More information

Foundations of Cryptography

Foundations of Cryptography - 111 - Foundations of Cryptography Notes of lecture No. 10B & 11 (given on June 11 & 18, 1989) taken by Sergio Rajsbaum Summary In this lecture we define unforgeable digital signatures and present such

More information

2 Message authentication codes (MACs)

2 Message authentication codes (MACs) CS276: Cryptography October 1, 2015 Message Authentication Codes and CCA2 Instructor: Alessandro Chiesa Scribe: David Field 1 Previous lecture Last time we: Constructed a CPA-secure encryption scheme from

More information

Lecture 9 Julie Staub Avi Dalal Abheek Anand Gelareh Taban. 1 Introduction. 2 Background. CMSC 858K Advanced Topics in Cryptography February 24, 2004

Lecture 9 Julie Staub Avi Dalal Abheek Anand Gelareh Taban. 1 Introduction. 2 Background. CMSC 858K Advanced Topics in Cryptography February 24, 2004 CMSC 858K Advanced Topics in Cryptography February 24, 2004 Lecturer: Jonathan Katz Lecture 9 Scribe(s): Julie Staub Avi Dalal Abheek Anand Gelareh Taban 1 Introduction In previous lectures, we constructed

More information

Technische Universität München (I7) Winter 2013/14 Dr. M. Luttenberger / M. Schlund SOLUTION. Cryptography Endterm

Technische Universität München (I7) Winter 2013/14 Dr. M. Luttenberger / M. Schlund SOLUTION. Cryptography Endterm Technische Universität München (I7) Winter 2013/14 Dr. M. Luttenberger / M. Schlund SOLUTION Cryptography Endterm Exercise 1 One Liners 1.5P each = 12P For each of the following statements, state if it

More information

MTAT Cryptology II. Zero-knowledge Proofs. Sven Laur University of Tartu

MTAT Cryptology II. Zero-knowledge Proofs. Sven Laur University of Tartu MTAT.07.003 Cryptology II Zero-knowledge Proofs Sven Laur University of Tartu Formal Syntax Zero-knowledge proofs pk (pk, sk) Gen α 1 β 1 β i V pk (α 1,...,α i 1 ) α i P sk (β 1,...,β i 1 ) (pk,sk)? R

More information

Short Signatures Without Random Oracles

Short Signatures Without Random Oracles Short Signatures Without Random Oracles Dan Boneh and Xavier Boyen (presented by Aleksandr Yampolskiy) Outline Motivation Preliminaries Secure short signature Extensions Conclusion Why signatures without

More information

Lecture 11: Non-Interactive Zero-Knowledge II. 1 Non-Interactive Zero-Knowledge in the Hidden-Bits Model for the Graph Hamiltonian problem

Lecture 11: Non-Interactive Zero-Knowledge II. 1 Non-Interactive Zero-Knowledge in the Hidden-Bits Model for the Graph Hamiltonian problem CS 276 Cryptography Oct 8, 2014 Lecture 11: Non-Interactive Zero-Knowledge II Instructor: Sanjam Garg Scribe: Rafael Dutra 1 Non-Interactive Zero-Knowledge in the Hidden-Bits Model for the Graph Hamiltonian

More information

SECURE IDENTITY-BASED ENCRYPTION IN THE QUANTUM RANDOM ORACLE MODEL. Mark Zhandry Stanford University

SECURE IDENTITY-BASED ENCRYPTION IN THE QUANTUM RANDOM ORACLE MODEL. Mark Zhandry Stanford University SECURE IDENTITY-BASED ENCRYPTION IN THE QUANTUM RANDOM ORACLE MODEL Mark Zhandry Stanford University Random Oracle Model (ROM) Sometimes, we can t prove a scheme secure in the standard model. Instead,

More information

CTR mode of operation

CTR mode of operation CSA E0 235: Cryptography 13 March, 2015 Dr Arpita Patra CTR mode of operation Divya and Sabareesh 1 Overview In this lecture, we formally prove that the counter mode of operation is secure against chosen-plaintext

More information

Lecture 14 More on Digital Signatures and Variants. COSC-260 Codes and Ciphers Adam O Neill Adapted from

Lecture 14 More on Digital Signatures and Variants. COSC-260 Codes and Ciphers Adam O Neill Adapted from Lecture 14 More on Digital Signatures and Variants COSC-260 Codes and Ciphers Adam O Neill Adapted from http://cseweb.ucsd.edu/~mihir/cse107/ Setting the Stage We will cover in more depth some issues for

More information

Chosen Ciphertext Security with Optimal Ciphertext Overhead

Chosen Ciphertext Security with Optimal Ciphertext Overhead Chosen Ciphertext Security with Optimal Ciphertext Overhead Masayuki Abe 1, Eike Kiltz 2 and Tatsuaki Okamoto 1 1 NTT Information Sharing Platform Laboratories, NTT Corporation, Japan 2 CWI Amsterdam,

More information

Notes for Lecture Decision Diffie Hellman and Quadratic Residues

Notes for Lecture Decision Diffie Hellman and Quadratic Residues U.C. Berkeley CS276: Cryptography Handout N19 Luca Trevisan March 31, 2009 Notes for Lecture 19 Scribed by Cynthia Sturton, posted May 1, 2009 Summary Today we continue to discuss number-theoretic constructions

More information

Constructing Provably-Secure Identity-Based Signature Schemes

Constructing Provably-Secure Identity-Based Signature Schemes Constructing Provably-Secure Identity-Based Signature Schemes Chethan Kamath Indian Institute of Science, Bangalore November 23, 2013 Overview Table of contents Background Formal Definitions Schnorr Signature

More information

Efficient Constructions of Deterministic Encryption from Hybrid Encryption and Code-Based PKE

Efficient Constructions of Deterministic Encryption from Hybrid Encryption and Code-Based PKE Efficient Constructions of Deterministic Encryption from Hybrid Encryption and Code-Based PKE Yang Cui 1,2, Kirill Morozov 1, Kazukuni Kobara 1,2, and Hideki Imai 1,2 1 Research Center for Information

More information

ASYMMETRIC ENCRYPTION

ASYMMETRIC ENCRYPTION ASYMMETRIC ENCRYPTION 1 / 1 Recommended Book Steven Levy. Crypto. Penguin books. 2001. A non-technical account of the history of public-key cryptography and the colorful characters involved. 2 / 1 Recall

More information

Lecture 1. 1 Introduction to These Notes. 2 Trapdoor Permutations. CMSC 858K Advanced Topics in Cryptography January 27, 2004

Lecture 1. 1 Introduction to These Notes. 2 Trapdoor Permutations. CMSC 858K Advanced Topics in Cryptography January 27, 2004 CMSC 858K Advanced Topics in Cryptography January 27, 2004 Lecturer: Jonathan Katz Lecture 1 Scribe(s): Jonathan Katz 1 Introduction to These Notes These notes are intended to supplement, not replace,

More information

Random Oracles in a Quantum World

Random Oracles in a Quantum World Dan Boneh 1 Özgür Dagdelen 2 Marc Fischlin 2 Anja Lehmann 3 Christian Schaffner 4 Mark Zhandry 1 1 Stanford University, USA 2 CASED & Darmstadt University of Technology, Germany 3 IBM Research Zurich,

More information

Memory Lower Bounds of Reductions Revisited

Memory Lower Bounds of Reductions Revisited Memory Lower Bounds of Reductions Revisited Yuyu Wang 1,2,3, Takahiro Matsuda 2, Goichiro Hanaoka 2, and Keisuke Tanaka 1 1 Tokyo Institute of Technology, Tokyo, Japan wang.y.ar@m.titech.ac.jp, keisuke@is.titech.ac.jp

More information

Lectures 2+3: Provable Security

Lectures 2+3: Provable Security Lectures 2+3: Provable Security Contents 1 Motivation 1 2 Syntax 3 3 Correctness 5 4 Security Definitions 6 5 Important Cryptographic Primitives 8 6 Proofs of Security 10 7 Limitations of Provable Security

More information

III. Pseudorandom functions & encryption

III. Pseudorandom functions & encryption III. Pseudorandom functions & encryption Eavesdropping attacks not satisfactory security model - no security for multiple encryptions - does not cover practical attacks new and stronger security notion:

More information

Lecture Summary. 2 Simplified Cramer-Shoup. CMSC 858K Advanced Topics in Cryptography February 26, Chiu Yuen Koo Nikolai Yakovenko

Lecture Summary. 2 Simplified Cramer-Shoup. CMSC 858K Advanced Topics in Cryptography February 26, Chiu Yuen Koo Nikolai Yakovenko CMSC 858K Advanced Topics in Cryptography February 26, 2004 Lecturer: Jonathan Katz Lecture 10 Scribe(s): Jeffrey Blank Chiu Yuen Koo Nikolai Yakovenko 1 Summary We had previously begun to analyze the

More information

Constructing secure MACs Message authentication in action. Table of contents

Constructing secure MACs Message authentication in action. Table of contents Constructing secure MACs Message authentication in action Foundations of Cryptography Computer Science Department Wellesley College Fall 2016 Table of contents From last time Recall the definition of message

More information

II. Digital signatures

II. Digital signatures II. Digital signatures Alice m Bob Eve 1. Did Bob send message m, or was it Eve? 2. Did Eve modify the message m, that was sent by Bob? 1 Digital signatures Digital signature - are equivalent of handwritten

More information

Digital signature schemes

Digital signature schemes Digital signature schemes Martin Stanek Department of Computer Science Comenius University stanek@dcs.fmph.uniba.sk Cryptology 1 (2017/18) Content Introduction digital signature scheme security of digital

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Previously Digital Signatures Algorithms: Gen() à (sk,pk) Sign(sk,m) à σ Ver(pk,m,σ) à 0/1 Correctness: Pr[Ver(pk,m,Sign(sk,m))=1:

More information

Notes on Property-Preserving Encryption

Notes on Property-Preserving Encryption Notes on Property-Preserving Encryption The first type of specialized encryption scheme that can be used in secure outsourced storage we will look at is property-preserving encryption. This is encryption

More information

Short Unique Signatures from RSA with a Tight Security Reduction (in the Random Oracle Model)

Short Unique Signatures from RSA with a Tight Security Reduction (in the Random Oracle Model) Short Unique Signatures from RSA with a Tight Security Reduction (in the Random Oracle Model) Hovav Shacham UC San Diego and UT Austin Abstract. A signature scheme is unique if for every public key and

More information

Lecture 6. 2 Adaptively-Secure Non-Interactive Zero-Knowledge

Lecture 6. 2 Adaptively-Secure Non-Interactive Zero-Knowledge CMSC 858K Advanced Topics in Cryptography February 12, 2004 Lecturer: Jonathan Katz Lecture 6 Scribe(s): Omer Horvitz John Trafton Zhongchao Yu Akhil Gupta 1 Introduction In this lecture, we show how to

More information

Lecture 4: Perfect Secrecy: Several Equivalent Formulations

Lecture 4: Perfect Secrecy: Several Equivalent Formulations Cryptology 18 th August 015 Lecture 4: Perfect Secrecy: Several Equivalent Formulations Instructor: Goutam Paul Scribe: Arka Rai Choudhuri 1 Notation We shall be using the following notation for this lecture,

More information

ECS 189A Final Cryptography Spring 2011

ECS 189A Final Cryptography Spring 2011 ECS 127: Cryptography Handout F UC Davis Phillip Rogaway June 9, 2011 ECS 189A Final Cryptography Spring 2011 Hints for success: Good luck on the exam. I don t think it s all that hard (I do believe I

More information

CS 6260 Applied Cryptography

CS 6260 Applied Cryptography CS 6260 Applied Cryptography Symmetric encryption schemes A scheme is specified by a key generation algorithm K, an encryption algorithm E, and a decryption algorithm D. K K =(K,E,D) MsgSp-message space

More information

Provable Security for Public-Key Schemes. Outline. I Basics. Secrecy of Communications. Outline. David Pointcheval

Provable Security for Public-Key Schemes. Outline. I Basics. Secrecy of Communications. Outline. David Pointcheval Provable Security for Public-Key Schemes I Basics David Pointcheval Ecole normale supérieure, CNRS & INRIA IACR-SEAMS School Cryptographie: Foundations and New Directions November 2016 Hanoi Vietnam Introduction

More information

VI. The Fiat-Shamir Heuristic

VI. The Fiat-Shamir Heuristic VI. The Fiat-Shamir Heuristic - as already seen signatures can be used and are used in practice to design identification protocols - next we show how we can obtain signatures schemes from - protocols using

More information

Lecture 2: Perfect Secrecy and its Limitations

Lecture 2: Perfect Secrecy and its Limitations CS 4501-6501 Topics in Cryptography 26 Jan 2018 Lecture 2: Perfect Secrecy and its Limitations Lecturer: Mohammad Mahmoody Scribe: Mohammad Mahmoody 1 Introduction Last time, we informally defined encryption

More information

Building Quantum-One-Way Functions from Block Ciphers: Davies-Meyer and Merkle-Damgård Constructions

Building Quantum-One-Way Functions from Block Ciphers: Davies-Meyer and Merkle-Damgård Constructions Building Quantum-One-Way Functions from Block Ciphers: Davies-Meyer and Merkle-Damgård Constructions Akinori Hosoyamada and Kan Yasuda NTT Secure Platform Laboratories, 3-9-, Midori-cho Musashino-shi,

More information

1 Cryptographic hash functions

1 Cryptographic hash functions CSCI 5440: Cryptography Lecture 6 The Chinese University of Hong Kong 24 October 2012 1 Cryptographic hash functions Last time we saw a construction of message authentication codes (MACs) for fixed-length

More information

New Proofs for NMAC and HMAC: Security without Collision-Resistance

New Proofs for NMAC and HMAC: Security without Collision-Resistance A preliminary version of this paper appears in Advances in Cryptology CRYPTO 06, Lecture Notes in Computer Science Vol. 4117, C. Dwork ed., Springer-Verlag, 2006. This is the full version. New Proofs for

More information

Lecture 14: Cryptographic Hash Functions

Lecture 14: Cryptographic Hash Functions CSE 599b: Cryptography (Winter 2006) Lecture 14: Cryptographic Hash Functions 17 February 2006 Lecturer: Paul Beame Scribe: Paul Beame 1 Hash Function Properties A hash function family H = {H K } K K is

More information

Lecture 7: CPA Security, MACs, OWFs

Lecture 7: CPA Security, MACs, OWFs CS 7810 Graduate Cryptography September 27, 2017 Lecturer: Daniel Wichs Lecture 7: CPA Security, MACs, OWFs Scribe: Eysa Lee 1 Topic Covered Chosen Plaintext Attack (CPA) MACs One Way Functions (OWFs)

More information

Digital Signatures. p1.

Digital Signatures. p1. Digital Signatures p1. Digital Signatures Digital signature is the same as MAC except that the tag (signature) is produced using the secret key of a public-key cryptosystem. Message m MAC k (m) Message

More information

Cryptography: The Landscape, Fundamental Primitives, and Security. David Brumley Carnegie Mellon University

Cryptography: The Landscape, Fundamental Primitives, and Security. David Brumley Carnegie Mellon University Cryptography: The Landscape, Fundamental Primitives, and Security David Brumley dbrumley@cmu.edu Carnegie Mellon University The Landscape Jargon in Cryptography 2 Good News: OTP has perfect secrecy Thm:

More information

Improved Security for Linearly Homomorphic Signatures: A Generic Framework

Improved Security for Linearly Homomorphic Signatures: A Generic Framework Improved Security for Linearly Homomorphic Signatures: A Generic Framework Stanford University, USA PKC 2012 Darmstadt, Germany 23 May 2012 Problem: Computing on Authenticated Data Q: How do we delegate

More information

Standard Security Does Not Imply Indistinguishability Under Selective Opening

Standard Security Does Not Imply Indistinguishability Under Selective Opening Standard Security Does Not Imply Indistinguishability Under Selective Opening Dennis Hofheinz 1, Vanishree Rao 2, and Daniel Wichs 3 1 Karlsruhe Institute of Technology, Germany, dennis.hofheinz@kit.edu

More information

Limitations of the Meta-Reduction Technique: The Case of Schnorr Signatures

Limitations of the Meta-Reduction Technique: The Case of Schnorr Signatures An extended abstract of this paper appears at Eurocrypt 2013. Limitations of the Meta-Reduction Technique: The Case of Schnorr Signatures Marc Fischlin 1 Nils Fleischhacker 2 1 Technische Universität Darmstadt

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018 Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018 Name : TU/e student number : Exercise 1 2 3 4 5 total points Notes: Please hand in all sheets at the end of the exam.

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 11 October 7, 2015 CPSC 467, Lecture 11 1/37 Digital Signature Algorithms Signatures from commutative cryptosystems Signatures from

More information

Lecture 4 Chiu Yuen Koo Nikolai Yakovenko. 1 Summary. 2 Hybrid Encryption. CMSC 858K Advanced Topics in Cryptography February 5, 2004

Lecture 4 Chiu Yuen Koo Nikolai Yakovenko. 1 Summary. 2 Hybrid Encryption. CMSC 858K Advanced Topics in Cryptography February 5, 2004 CMSC 858K Advanced Topics in Cryptography February 5, 2004 Lecturer: Jonathan Katz Lecture 4 Scribe(s): Chiu Yuen Koo Nikolai Yakovenko Jeffrey Blank 1 Summary The focus of this lecture is efficient public-key

More information

Modern symmetric-key Encryption

Modern symmetric-key Encryption Modern symmetric-key Encryption Citation I would like to thank Claude Crepeau for allowing me to use his slide from his crypto course to mount my course. Some of these slides are taken directly from his

More information

A survey on quantum-secure cryptographic systems

A survey on quantum-secure cryptographic systems A survey on quantum-secure cryptographic systems Tomoka Kan May 24, 2018 1 Abstract Post-quantum cryptography refers to the search for classical cryptosystems which remain secure in the presence of a quantum

More information

Lecture 24: Goldreich-Levin Hardcore Predicate. Goldreich-Levin Hardcore Predicate

Lecture 24: Goldreich-Levin Hardcore Predicate. Goldreich-Levin Hardcore Predicate Lecture 24: : Intuition A One-way Function: A function that is easy to compute but hard to invert (efficiently) Hardcore-Predicate: A secret bit that is hard to compute Theorem (Goldreich-Levin) If f :

More information

Chapter 11. Asymmetric Encryption Asymmetric encryption schemes

Chapter 11. Asymmetric Encryption Asymmetric encryption schemes Chapter 11 Asymmetric Encryption The setting of public-key cryptography is also called the asymmetric setting due to the asymmetry in key information held by the parties. Namely one party has a secret

More information

Non-Adaptive Programmability of Random Oracle

Non-Adaptive Programmability of Random Oracle Non-Adaptive Programmability of Random Oracle Rishiraj Bhattacharyya Pratyay Mukherjee Abstract Random Oracles serve as an important heuristic for proving security of many popular and important cryptographic

More information

A note on the equivalence of IND-CCA & INT-PTXT and IND-CCA & INT-CTXT

A note on the equivalence of IND-CCA & INT-PTXT and IND-CCA & INT-CTXT A note on the equivalence of IND-CCA & INT-PTXT and IND-CCA & INT-CTXT Daniel Jost, Christian Badertscher, Fabio Banfi Department of Computer Science, ETH Zurich, Switzerland daniel.jost@inf.ethz.ch christian.badertscher@inf.ethz.ch

More information

5.4 ElGamal - definition

5.4 ElGamal - definition 5.4 ElGamal - definition In this section we define the ElGamal encryption scheme. Next to RSA it is the most important asymmetric encryption scheme. Recall that for a cyclic group G, an element g G is

More information

Provable Security in Symmetric Key Cryptography

Provable Security in Symmetric Key Cryptography Provable Security in Symmetric Key Cryptography Jooyoung Lee Faculty of Mathematics and Statistics, Sejong University July 5, 2012 Outline 1. Security Proof of Blockcipher-based Hash Functions K i E X

More information

Security Analysis of an Identity-Based Strongly Unforgeable Signature Scheme

Security Analysis of an Identity-Based Strongly Unforgeable Signature Scheme Security Analysis of an Identity-Based Strongly Unforgeable Signature Scheme Kwangsu Lee Dong Hoon Lee Abstract Identity-based signature (IBS) is a specific type of public-key signature (PKS) where any

More information

PSS Is Secure against Random Fault Attacks

PSS Is Secure against Random Fault Attacks PSS Is Secure against Random Fault Attacks Jean-Sébastien Coron and Avradip Mandal University of Luxembourg Abstract. A fault attack consists in inducing hardware malfunctions in order to recover secrets

More information

5199/IOC5063 Theory of Cryptology, 2014 Fall

5199/IOC5063 Theory of Cryptology, 2014 Fall 5199/IOC5063 Theory of Cryptology, 2014 Fall Homework 2 Reference Solution 1. This is about the RSA common modulus problem. Consider that two users A and B use the same modulus n = 146171 for the RSA encryption.

More information

Searchable encryption & Anonymous encryption

Searchable encryption & Anonymous encryption Searchable encryption & Anonymous encryption Michel Abdalla ENS & CNS February 17, 2014 MPI - Course 2-12-1 Michel Abdalla (ENS & CNS) Searchable encryption & Anonymous encryption February 17, 2014 1 /

More information

An Uninstantiable Random-Oracle-Model Scheme for a Hybrid-Encryption Problem

An Uninstantiable Random-Oracle-Model Scheme for a Hybrid-Encryption Problem An extended abstract of this paper appears in Advances in Cryptology EUROCRYPT 04, Lecture Notes in Computer Science Vol., C. Cachin and J. Camenisch ed., Springer-Verlag, 2004. This is the full version.

More information

Pr[C = c M = m] = Pr[C = c] Pr[M = m] Pr[M = m C = c] = Pr[M = m]

Pr[C = c M = m] = Pr[C = c] Pr[M = m] Pr[M = m C = c] = Pr[M = m] Midterm Review Sheet The definition of a private-key encryption scheme. It s a tuple Π = ((K n,m n,c n ) n=1,gen,enc,dec) where - for each n N, K n,m n,c n are sets of bitstrings; [for a given value of

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Friday 25 January 2019

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Friday 25 January 2019 Faculty of Mathematics and Computer Science Exam Cryptology, Friday 25 January 2019 Name : TU/e student number : Exercise 1 2 3 4 5 total points Notes: Please hand in all sheets at the end of the exam.

More information

Evaluation Report on the ECDSA signature scheme

Evaluation Report on the ECDSA signature scheme Evaluation Report on the ECDSA signature scheme Jacques Stern 1 Introduction This document is an evaluation of the ECDSA signature scheme. Our work is based on the analysis of various documents [1, 32,

More information

Provable security. Michel Abdalla

Provable security. Michel Abdalla Lecture 1: Provable security Michel Abdalla École normale supérieure & CNRS Cryptography Main goal: Enable secure communication in the presence of adversaries Adversary Sender 10110 10110 Receiver Only

More information

CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols

CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols Bruno Blanchet CNRS, École Normale Supérieure, INRIA, Paris March 2009 Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif March

More information

Introduction to Pairing-Based Cryptography

Introduction to Pairing-Based Cryptography Introduction to Pairing-Based Cryptography Mihir Bellare April, 2006 Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093, USA. mihir@cs.ucsd.edu, http://www-cse.ucsd.edu/users/mihir

More information

Outline. The Game-based Methodology for Computational Security Proofs. Public-Key Cryptography. Outline. Introduction Provable Security

Outline. The Game-based Methodology for Computational Security Proofs. Public-Key Cryptography. Outline. Introduction Provable Security The Game-based Methodology for Computational s David Pointcheval Ecole normale supérieure, CNRS & INRIA Computational and Symbolic Proofs of Security Atagawa Heights Japan April 6th, 2009 1/39 2/39 Public-Key

More information

Lecture 5, CPA Secure Encryption from PRFs

Lecture 5, CPA Secure Encryption from PRFs CS 4501-6501 Topics in Cryptography 16 Feb 2018 Lecture 5, CPA Secure Encryption from PRFs Lecturer: Mohammad Mahmoody Scribe: J. Fu, D. Anderson, W. Chao, and Y. Yu 1 Review Ralling: CPA Security and

More information

Digital Signatures from Strong RSA without Prime Genera7on. David Cash Rafael Dowsley Eike Kiltz

Digital Signatures from Strong RSA without Prime Genera7on. David Cash Rafael Dowsley Eike Kiltz Digital Signatures from Strong RSA without Prime Genera7on David Cash Rafael Dowsley Eike Kiltz Digital Signatures Digital signatures are one of mostly deployed cryptographic primi7ves. Digital Signatures

More information

Post-quantum security models for authenticated encryption

Post-quantum security models for authenticated encryption Post-quantum security models for authenticated encryption Vladimir Soukharev David R. Cheriton School of Computer Science February 24, 2016 Introduction Bellare and Namprempre in 2008, have shown that

More information

Notes for Lecture A can repeat step 3 as many times as it wishes. We will charge A one unit of time for every time it repeats step 3.

Notes for Lecture A can repeat step 3 as many times as it wishes. We will charge A one unit of time for every time it repeats step 3. COS 533: Advanced Cryptography Lecture 2 (September 18, 2017) Lecturer: Mark Zhandry Princeton University Scribe: Mark Zhandry Notes for Lecture 2 1 Last Time Last time, we defined formally what an encryption

More information

Symmetric Encryption

Symmetric Encryption 1 Symmetric Encryption Mike Reiter Based on Chapter 5 of Bellare and Rogaway, Introduction to Modern Cryptography. Symmetric Encryption 2 A symmetric encryption scheme is a triple SE = K, E, D of efficiently

More information