Spin Qubits in Silicon

Size: px
Start display at page:

Download "Spin Qubits in Silicon"

Transcription

1 Spin Qubits in Silicon Andrew Dzurak University of New South Wales Australian National Fabrication Facility Spin-based Quantum Information Processing Spin Qubits 2 Konstanz, Germany, 18 August 2014

2 Please Note: Some slides have been deleted from the presentation given at the conference because the data is pre-publication

3

4 Co-Workers & Sponsors UNSW A/Prof Andrea Morello Henry Yang Jason Hwang Jason Cheng Juan-Pablo Dehollain Fahd Mohiyaddin Rachpon Kalra Dr Juha Muhonen Dr Arne Laucht Dr Menno Veldhorst Dr Fay Hudson Dr Alessandro Rossi University of Melbourne David Jamieson, Jeff McCallum, Lloyd Hollenberg Jarryd Pla, John Morton UCL, UK Malcolm Carroll Sandia National Lab Gerhard Klimeck, Rajib Rahman Purdue Charles Tahan, Rusko Ruskov LPS, USA Kohei Itoh Keio University, Japan Mikko Möttönen, Kuan Yen Tan Aalto, Finland Floris Zwanenburg Twente, Netherlands

5 Spin Qubits in Semiconductors

6 Spin Qubits in Silicon Long Coherence Times in Silicon at 1K: Nuclear mins Electron ms-s Scalable Industry Compatible B=2T Intel 300 mm Si Wafer 22nm Gate Length

7 DiVincenzo Criteria for Quantum Computing 1. A scalable physical system with well characterized qubits 2. The ability to initialize the state of the qubits to a simple fiducial state, such as Long relevant decoherence times, much longer than the gate operation time 4. A universal set of quantum gates (qnot, CNOT, etc) 5. A qubit-specific measurement capability Plus two additional criteria 6. The ability to interconvert stationary and flying qubits 7. The ability faithfully to transmit flying qubits between specified locations D.P. DiVincenzo, The physical implementation of quantum computation, Fortschr. Phys. 48, (2000); arxiv:quant-ph/

8 Scalable + Fault-tolerant Architecture Spin transport rails Classical CMOS circuitry 1-qubit & 2-qubit Gates L. Hollenberg et al., PRB 74, (2006) Spin Readout & Initialization (spin charge conversion)

9 Single Atom Nanotechnologies: Top-Down & Bottom-Up Jamieson, Yang, Hopf, Hearne, Pakes, Prawer, Mitic, Gauja, Andresen, Hudson, ASD and Clark, Appl. Phys. Lett. 86, (2005). O'Brien, Schofield, Simmons, Clark, ASD, Curson, Kane, McAlpine, Hawley and Brown, Phys.Rev. B 64, R (2001) 1 nm

10 Progress in Atomically Precise STM Devices I SET (pa) Nature Nanotechnology 9, 430 (2014) Nano Letters 14, 1830 (2014) Nature Materials 13, 605 (2014) Simmons Group UNSW Time (ms) Nature Communications 4, 2017 (2013) 0 Nature Nanotechnology 7, 242 (2012) Science (2012) Nature Nanotechnology 5, 502 (2010) Nano Letters 11, 4376 (2011)

11 Ion Implanted Qubits in Silicon Jamieson, Yang, Hopf, Hearne, Pakes, Prawer, Mitic, Gauja, Andresen, Hudson, ASD and Clark, Appl. Phys. Lett. 86, (2005).

12 Ion-Implanted Counted Atom Devices 2 DP3 Chip Map mm Fabrication Pathway 2 2 mm Detector fabrication Atom implantation Complete measurement

13 Single Atom Nanoelectronics : Top Down UNSW U Melbourne

14 S.J. Angus et al., Nano Letters 7, 2051 (2007) Readout Device: Si-MOS SET

15 Device Fabrication TEM n ++ n ++ Al top gate source Al Al x O y 100 nm 20 nm SiO 2 Silicon plunger 10 mm n ++ drain n ++

16 Charge Sensing: 100% Contrast donor I SET N-1 N N+1 Electron on P-donor I SET = 0 (Coulomb blockade) P-donor Empty I SET > 0 V top gate I SET V top gate V plunger A. Morello et al., Phys. Rev. B 80, (R) (2009)

17 P-donor Electron Spin: Single-Shot Readout A. Morello et al., Nature 467, 687 (2010) Andrea Morello et al. Phys. Rev. B 80, R (2009) Hans Huebl et al., Phys. Rev B 81, (2010) Andrea Morello et al., Nature 467, 687 (2010) T 1e = 6s (at 1.5T) Fidelity > 90%

18 Summary

19 Qubit Gate Operations: P-Donor ESR & NMR On-chip microwave transmission line: J.P. Dehollain et al., Nanotechnology 24, (2013) 31 P:Si P-Donor Electron/Nuclear Spin Levels B 0 Bac H = gm B B 0 S z n B 0 I z + A I S = Electron Spin, S = Nuclear Spin, I

20

21 Coherent Control: Electron Spin Qubit Rabi Oscillations T ~ 150 ns; -pulse Fidelity = 57% Measurement Fidelity = 77% J.J. Pla et al., Nature 489, 541 (2012)

22 Electron Spin Qubit: Hahn Echo, XYXY Dynamical Dec. Single P Donor: T 2e = 206 µs Cf. Bulk: T 2e = 240 µs XYXY DD: T 2e = 410 µs J.J. Pla et al., Nature 489, 541 (2012) Gordon and Bowers, PRL 1, 368 (1958)

23 J.J. Pla et al., Nature 496, 334 (2013) 18 April 2013

24 31 P Nuclear Spin Qubit: Single-Shot Readout J.J. Pla et al., Nature 496, 334 (2013)

25 electron spin-up counts 31 P Nuclear Spin Qubit: Single-Shot Readout Pulse Sequence: 256 repetitions 260 ms per measurement Readout Fidelity > 99.8% > 7 hours Cross-Relaxation Process mw1 mw Time (min) J.J. Pla et al., Nature 496, 334 (2013) T 1n ~ mins (cf. hrs in bulk)

26 31 P Nuclear Spin Qubit: Rabi Coherent Control Neutral Donor J.J. Pla et al., Nature 496, 334 (2013) Ionized Donor Rabi (Ionised Donor) Gate Fidelity > 98% & T ~ 30 µs

27 Spectral Diffusion in nat Si 28 Si, 30 Si Lattice o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 31 P 29 Si (~5%) o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o T 2e > 1 s in 28 Si [A.M. Tyryshkin et al., Nature Materials 11, 143 (2011)]

28 Ultra-Long Coherence: Avogadro Project 28 Si Redefine kilogram based on lattice constant and density of 28 Si 5 kg crystal Enrichment: % Dislocation free Image courtesy of Mike Thewalt, Simon Fraser University 31 P Nuclear Spin - in % 28 Si wafer - optical readout via electron spin (bound exciton) 13 C Nuclear Spin - in 99.99% 12 C diamond - optical readout via NV centre

29 Single 31 P Qubit in 28 Si Isotopically Purified 28 Si Epilayer < 0.1% residual 29 Si - via Kohei Itoh (Keio U.) J. Muhonen et al., arxiv: ; to appear in Nature Nanotechnology

30 Spin-up Proportion Implanted 31 P Electron Spin Qubit in 28 Si P-atom Implanted Electron Spin Qubit Natural Silicon, 5% 29 Si Pla et al, Nature (2012) Rabi oscillations T 2 * = 55 ns P-atom Implanted Electron Spin Qubit 28 Si Epilayer Enriched to 99.9% - Via Kohei Itoh, Keio University, Japan 1 Electron Spin Rabi Oscillations - 28 Si-enriched Qubit Microwave Pulse Length (µs) J. Muhonen et al., arxiv: ; to appear in Nature Nanotechnology

31 Spin-up Fraction 31 P: 28 Si Electron Spin Qubit High-Fidelity Rabi Oscillations -pulse Fidelity: F c > -10 dbm e Read Error, α Load Error, β μ DOT Read Fidelity: F M = 97% Donor μ DOT Dot Rabi Pulse Length (ms)

32 Single 31 P Qubit in 28 Si: Electron Coherence Benchmarks Ramsey Hahn echo e ESR Linewidth 1.8 khz Linewidth T 2e * = 270 ms FWHM < 2 khz Crucial for multi-qubit coupling T 2e = 0.95 ms Indicates extra source of decoherence (not 29 Si nuclei) J. Muhonen et al., arxiv: ; to appear in Nature Nanotechnology

33 Single 31 P Qubit in 28 Si: Electron Noise Spectroscopy Coloured low-frequency noise 1/f 2.5 Unrelated to any electrical or charge noise at the Si/SiO 2 interface - measured 1/f 0.5 Suspected origin: Superconducting magnet White noise background caused by the magnetic field of room-t thermal radiation from a 50 load Reduced by adding cold attenuation J. Muhonen et al., arxiv: ; to appear in Nature Nanotechnology

34 Single 31 P Qubit in 28 Si: Fidelities > 99%; Very Long T 2 Fidelities Electron Neutral Nucleus Ionized Nucleus All F C > 99% Coherence Times Electron: T 2e > 0.5 s Nuclear: T 2n > 30 s - with CPMG DD Electron Ionized Nucleus J. Muhonen et al., arxiv: ; to appear in Nature Nanotechnology

35 Scalable + Fault-tolerant Architecture Spin transport rails Classical CMOS circuitry 1- and 2-qubit gates L. Hollenberg et al., PRB 74, (2006) Spin readout (spin charge conversion)

36 Future Vision for Spin-based QIP

37 C. Yin et al., Nature 497, 91 (2013) 2 May 2013

38 Electron Transport via Quantum Dots N e SET 1 e Dot 1 e Dot N e SET Rossi et al., Nano Letters 14, 3405 (2014) I. LOAD (SPIN DOWN) II. ROTATE (ESR PULSE) III. SHUTTLE IV. READ SPIN Uncertainty < 30 ppm at f = 0.5 GHz

39 Electron Spin Qubits based on Quantum Dots Coherence times in GaAs limited by nuclear spin bath: Bluhm et al., PRL (2010) & Nature Phys. (2011) T 2 * = ~ 100 ns; T 2 = 30 ms (Hahn); T 2 = 200 ms (CPMG)

40 Silicon Quantum Dots: Many Different Flavours SOI Nanowire Dots H. W. Liu et al., Phys. Rev. B 77, (2008). H. W. Liu et al., Appl. Phys. Lett. 92, (2008). Polysilicon-gated Si-MOS E. P. Nordberg et al., Phys. Rev. B 80, (2009). E. P. Nordberg et al., Appl. Phys. Lett. 95, (2009). Si/SiGe Heterostructures C. B. Simmons, Appl. Phys. Lett. 91, (2007). N. Shaji et al., Nat. Phys. 4, 540 (2008).

41 Si Q-Dot Qubits in Si/SiGe Heterostructures T 2 * = 360 ns arxiv: ; Nature - July 2014 T 2 * = 2-10 ns; T ~ 50 ps; F C = 85-94% arxiv: ; Nature Nanotechnology Aug 2014 T 2 * = 1 ms; T 2 = 37 ms

42 S.J. Angus et al., Nano Letters 7, 2051 (2007) Readout Device for P-donor qubits: Si-MOS SET

43 Commercial Si-MOS Devices & Charge Noise Pentium MOSFET (2005) 65nm Node Zimmerman et al., arxiv: to appear in Nanotechnology

44 UNSW 3 x EBL Systems (Raith, FEI...) Highest Concentration in Australia Sub-10nm Features Silicon MOS Process Line TiAuPd

45 Si-MOS Quantum Dots: Pauli Spin Blockade N.S. Lai et al., Scientific Reports. 1, 110 (2011)

46 Si p-mos Dots: for Hole-based Spin Qubits R. Li et al., Appl. Phys. Lett. 103, (2013) See also: P. Spruijtenberg et al., Appl. Phys. Lett. (2013)

47 Si-MOS Quantum Dot: Spin and Valley Level Spectra 100 nm

48 Si-MOS Quantum Dot: Spin and Valley Level Spectra 100 nm

49 Si-MOS Quantum Dot: Tuneable Valley Splitting, E v 100 nm

50 Si-MOS Dot: 1e Spin Lifetimes & Spin-Valley Mixing C.H. Yang et al., Nature Comms. 4, 2069 (2013) Single-shot readout of spin-up spin-down lifetime T 1 Longest lifetime: T 1 = 2.6 B = 1.25 T By tuning valley splitting we study two regimes: E z < E vs & E z > E vs E vs = 0.33 mev E vs = 0.75 mev When E z = E vs we see a relaxation hot spot First exptl. observation Interface disorder permits mixing between spin & valley states via SOC

51 Si-MOS Dot ESR Spectroscopy of Spin-Valley States Nature Communications (2014); arxiv:

52 Si-MOS Quantum Dot Qubit in 28 Si Isotopically Purified 28 Si Epilayer 800 ppm residual 29 Si M. Veldhorst et al., arxiv: , to appear in Nature Nanotechnology (2014)

53 Silicon MOS Dots: Electron Spin Qubit in 28 Si M. Veldhorst et al., arxiv: , to appear in Nature Nanotechnology (2014)

54 28 Si-MOS Dot: e Spin Qubit Coherent Control f = Ω 2 / Ω R2 sin 2 (Ω R τ/2) M. Veldhorst et al., arxiv: , to appear in Nature Nanotechnology (2014)

55 28 Si-MOS Dot: e Spin Qubit Long Coherence Times Ramsey: T 2 * 120 ms Hahn: T ms CPMG 500 : T 2 28 ms M. Veldhorst et al., arxiv: , to appear in Nature Nanotechnology (2014)

56 28 Si-MOS Dot e Spin Qubit: Gate-Addressable f ESR Tunabilty = 8 MHz Cf. 2.4 khz Linewidth M. Veldhorst et al., arxiv: , to appear in Nature Nanotechnology (2014)

57 Microwave 39, ,045+ (Mhz) (Mhz) Microwave 39, ,045+ (Mhz) (Mhz) Microwave 39,045+ (Mhz) Microwave 39,045+ (Mhz) Microwave Microwave 39, ,170+ (Mhz) (Mhz) Microwave Microwave 39, ,170+ (Mhz) (Mhz) Microwave 39,170+ (Mhz) Microwave 39,170+ (Mhz) (Mhz) 28 Si-MOS Dot Qubit: 3e Occupancy Qubit -1-1 N e = 2 state forms singlet in valley V - 3 rd electron has unpaired spin with s = ½ Rabi Control Experiment Model Experimental Experimental Simulation, Simulation, f=300khz, f=300khz, Visibilty=0.7, Visibilty=0.7, T2=200us T2=200us -1 Experimental Experimental Simulation, f=300khz, Visibilty=0.7, T2=200us -1-1 Simulation, f=300khz, Visibilty=0.7, T2=200us electron state Pulse Pulse Width Width (us) (us) Pulse Pulse Width Width (us) (us) Pulse Width Pulse (us) Width (us) Pulse Pulse Width Width (us) (us) [ν -, 1e] Qubit Experimental Experimental Experimental Experimental Simulation, Simulation, f=174khz, f=174khz, Visibilty=0.73, Visibilty=0.73, T2=50us T2=50us Simulation, Simulation, f=174khz, f=174khz, Visibilty=0.73, Visibilty=0.73, T2=50us T2=50us Pulse Width (us) Pulse Pulse Pulse Width Width Width (us) (us) (us) Pulse Width (us) Pulse Pulse Width Pulse Width (us) Width (us) (us) [ν +, 3e] Qubit

58 28 Si-MOS Dot Qubit: Fidelities via Randomized Benchmarking We apply randomized benchmarking (RBM) protocol to assess single-qubit gate fidelities - see, e.g.: NMR Qubit: C.A. Ryan, M. Laforest & R. Laflamme, New J. Phys. 11, (2009); Superconducting Qubit: R. Barends et al., arxiv/ ALL 1-electron 1-qubit gate operations are > 99% surface code threshold for F-T QC 1-Electron Qubit 1-Electron Qubit 3-Electron Qubit

59 28 Si-MOS Dots: Multi-Qubit Devices

60 28 Si-MOS Dots: Multi-Qubit Device Reservoir G1 G2 ESR Drive Q C Q B Q A Confinement G3 G4 x SET Sensor AlO x Aluminium 28 Si x 1 Gate 1 Qubit

61 28 Si-MOS Dots: Multi-Qubit Device Reservoir G1 G2 ESR Drive Q C Q B Q A Confinement G3 G4 x SET Sensor Qubit Q A (Dot-A; 3e ): Rabi Control Qubit Q C (Dot-C; 3e ): Rabi Control

62 28 Si-MOS Double Dots: Charge State Hysteresis Yang et al., arxiv:

63 28 Si-MOS Dots: Devices for 2-qubit Tomography

64 28 Si-MOS Dot Qubits: S-T Qubit & Dispersive Readout Jason Cheng, Henry Yang, Alex Hamilton

65 28 Si-MOS Dot Qubits: Scaling Up Error Threshold for Fault-Tolerant QC as high as 1%

66 Experimental Postdoctoral Positions Available

67 Silicon-based Spin Qubits: Summary Phosphorus Donors: Kane Concept Qubit: Donor Electron in nat Si (ESR) T 1 ~ secs; T 2 ~ 0.2 ms; Fidelity ~ 50% Qubit: 31 P Nuclear Spin in nat Si (NMR) T 1 ~ mins; T 2 ~ 60 ms; Fidelity > 98% Qubit: Donor Electron in 28 Si T 1 ~ s; T 2 ~ 0.5 s; T * 2 ~ 0.3 ms; Fidelity > 99% Qubit: 31 P Nuclear Spin in 28 Si T 1 ~ hrs; T 2 ~ 30 s; T * 2 ~ 0.3 s; Fidelity > 99.9% Si/SiGe Quantum Dots: Singlet-Triplet; Loss-DiVincenzo; Hybrid Qubit: 2-electron Singlet-Triplet T 1 ~ s; T * 2 ~ 400 ns Qubit: 1-electron Spin-Charge Hybrid T * 2 ~ 10 ns; Fidelity = 85% 95% Qubit: 1-electron ESR Control T 2 ~ 30 ms; T * 2 ~ 1 ms; Si-MOS Quantum Dots: Loss-DiVincenzo (so far ) Qubit: 1-electron ESR Control in 28 Si T 1 ~ s; T 2 ~ 30 ms; Fidelity > 99% Qubit: Electron-Electron Exchange Coupling CNOT Gate Demonstrated

Silicon-based Quantum Computing:

Silicon-based Quantum Computing: Silicon-based Quantum Computing: The path from the laboratory to industrial manufacture Australian National Fabrication Facility Andrew Dzurak UNSW - Sydney a.dzurak@unsw.edu.au Leti Innovation Days, Grenoble,

More information

Electron spin qubits in P donors in Silicon

Electron spin qubits in P donors in Silicon Electron spin qubits in P donors in Silicon IDEA League lectures on Quantum Information Processing 7 September 2015 Lieven Vandersypen http://vandersypenlab.tudelft.nl Slides with black background courtesy

More information

The Development of a Quantum Computer in Silicon

The Development of a Quantum Computer in Silicon The Development of a Quantum Computer in Silicon Professor Michelle Simmons Director, Centre of Excellence for Quantum Computation and Communication Technology, Sydney, Australia December 4th, 2013 Outline

More information

A Two Qubit Logic Gate in Silicon

A Two Qubit Logic Gate in Silicon A Two Qubit Logic Gate in Silicon M. Veldhorst, 1 C.H. Yang, 1 J.C.C. Hwang, 1 W. Huang, 1 J.P. Dehollain, 1 J.T. Muhonen, 1 S. Simmons, 1 A. Laucht, 1 F.E. Hudson, 1 K.M. Itoh, 2 A. Morello, 1 and A.S.

More information

Electron spin coherence exceeding seconds in high-purity silicon

Electron spin coherence exceeding seconds in high-purity silicon Electron spin coherence exceeding seconds in high-purity silicon Alexei M. Tyryshkin, Shinichi Tojo 2, John J. L. Morton 3, H. Riemann 4, N.V. Abrosimov 4, P. Becker 5, H.-J. Pohl 6, Thomas Schenkel 7,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI:.38/NNANO.25.262 Bell s inequality violation with spins in silicon Juan P. Dehollain, Stephanie Simmons, Juha T. Muhonen, Rachpon Kalra, Arne Laucht, Fay Hudson, Kohei M. Itoh, David N. Jamieson, Jeffrey

More information

Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University

Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University Review of quantum dots (mostly GaAs/AlGaAs), with many references: Hanson, Kouwenhoven, Petta, Tarucha, Vandersypen,

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Solid-State Spin Quantum Computers

Solid-State Spin Quantum Computers Solid-State Spin Quantum Computers 1 NV-Centers in Diamond P Donors in Silicon Kane s Computer (1998) P- doped silicon with metal gates Silicon host crystal + 31 P donor atoms + Addressing gates + J- coupling

More information

A single-atom electron spin qubit in silicon

A single-atom electron spin qubit in silicon 1 A single-atom electron spin qubit in silicon Jarryd J. Pla 1,2, Kuan Y. Tan 1,2, Juan P. Dehollain 1,2, Wee H. Lim 1,2, John J. L. Morton 3, David N. Jamieson 1,4, Andrew S. Dzurak 1,2, Andrea Morello

More information

DNP in Quantum Computing Eisuke Abe Spintronics Research Center, Keio University

DNP in Quantum Computing Eisuke Abe Spintronics Research Center, Keio University DNP in Quantum Computing Eisuke Abe Spintronics Research Center, Keio University 207.08.25 Future of Hyper-Polarized Nuclear Spins @IPR, Osaka DNP in quantum computing Molecule Pseudo-pure state Algorithmic

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP Manipulating and characterizing spin qubits based on donors

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Highly tunable exchange in donor qubits in silicon

Highly tunable exchange in donor qubits in silicon www.nature.com/npjqi All rights reserved 2056-6387/16 ARTICLE OPEN Yu Wang 1, Archana Tankasala 1, Lloyd CL Hollenberg 2, Gerhard Klimeck 1, Michelle Y Simmons 3 and Rajib Rahman 1 In this article we have

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11449 1 Fabrication and measurement methods The device was fabricated on a high-purity, near-intrinsic, natural-isotope [100] silicon substrate, with n + ohmic source/drain contacts obtained

More information

Image courtesy of Keith Schwab http://www.lbl.gov/science-articles/archive/afrd Articles/Archive/AFRD-quantum-logic.html http://www.wmi.badw.de/sfb631/tps/dqd2.gif http://qist.lanl.gov/qcomp_map.shtml

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

arxiv: v1 [cond-mat.mes-hall] 13 Jul 2018

arxiv: v1 [cond-mat.mes-hall] 13 Jul 2018 Dynamical decoupling of interacting dipolar spin ensembles Evan S. Petersen, 1 A. M. Tyryshkin, 1 K. M. Itoh, 2 Joel W. Ager, 3 H. Riemann, 4 N. V. Abrosimov, 4 P. Becker, 5 H.-J. Pohl, 6 M. L. W. Thewalt,

More information

Quantum manipulation of NV centers in diamond

Quantum manipulation of NV centers in diamond Quantum manipulation of NV centers in diamond 12.09.2014 The University of Virginia Physics Colloquium Alex Retzker Jianming Cai, Andreas Albrect, M. B. Plenio,Fedor Jelezko, P. London, R. Fisher,B. Nayedonov,

More information

Semiconductor qubits for adiabatic quantum computing

Semiconductor qubits for adiabatic quantum computing Silicon P donor qubit structure Spin read-out & Rabi oscillations Adiabatic inversion DQD qubits for QA ~10 P Local ESR P Ramp time [us] Semiconductor qubits for adiabatic quantum computing Malcolm Carroll

More information

Photoelectric readout of electron spin qubits in diamond at room temperature

Photoelectric readout of electron spin qubits in diamond at room temperature Photoelectric readout of electron spin qubits in diamond at room temperature. Bourgeois,, M. Gulka, J. Hruby, M. Nesladek, Institute for Materials Research (IMO), Hasselt University, Belgium IMOMC division,

More information

Quantum Information NV Centers in Diamond General Introduction. Zlatko Minev & Nate Earnest April 2011

Quantum Information NV Centers in Diamond General Introduction. Zlatko Minev & Nate Earnest April 2011 Quantum Information NV Centers in Diamond General Introduction Zlatko Minev & Nate Earnest April 2011 QIP & QM & NVD Outline Interest in Qubits. Why? Quantum Information Motivation Qubit vs Bit Sqrt(Not)

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 26 Feb 2004

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 26 Feb 2004 Voltage Control of Exchange Coupling in Phosphorus Doped Silicon arxiv:cond-mat/42642v1 [cond-mat.mtrl-sci] 26 Feb 24 C.J. Wellard a, L.C.L. Hollenberg a, L.M. Kettle b and H.-S. Goan c Centre for Quantum

More information

Nano and Biological Technology Panel: Quantum Information Science

Nano and Biological Technology Panel: Quantum Information Science 26 th US Army Science Conference, Orlando 3 December 2008 Nano and Biological Technology Panel: Quantum Information Science Professor Andrew Dzurak NSW Manager, Centre for Quantum Computer Technology NSW

More information

arxiv: v2 [quant-ph] 6 Sep 2016

arxiv: v2 [quant-ph] 6 Sep 2016 A single-atom quantum memory in silicon arxiv:1608.07109v2 [quant-ph] 6 Sep 2016 Solomon Freer 1, Stephanie Simmons 1, Arne Laucht 1, Juha T Muhonen 1, Juan P Dehollain 1, Rachpon Kalra 1, Fahd A Mohiyaddin

More information

Magnetic Resonance in Quantum Information

Magnetic Resonance in Quantum Information Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

Pulse techniques for decoupling qubits

Pulse techniques for decoupling qubits Pulse techniques for decoupling qubits from noise: experimental tests Steve Lyon, Princeton EE Alexei Tyryshkin, Shyam Shankar, Forrest Bradbury, Jianhua He, John Morton Bang-bang decoupling 31 P nuclear

More information

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor Hendrik Bluhm Andre Kruth Lotte Geck Carsten Degenhardt 1 0 Ψ 1 Quantum Computing

More information

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Developing Quantum Logic Gates: Spin-Resonance-Transistors Developing Quantum Logic Gates: Spin-Resonance-Transistors H. W. Jiang (UCLA) SRT: a Field Effect Transistor in which the channel resistance monitors electron spin resonance, and the resonance frequency

More information

Quantum Optics in Wavelength Scale Structures

Quantum Optics in Wavelength Scale Structures Quantum Optics in Wavelength Scale Structures SFB Summer School Blaubeuren July 2012 J. G. Rarity University of Bristol john.rarity@bristol.ac.uk Confining light: periodic dielectric structures Photonic

More information

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay 400 nm Solid State Qubits (1) S D Daniel Esteve QUAN UM ELECT RONICS GROUP SPEC, CEA-Saclay From the Copenhagen school (1937) Max Planck front row, L to R : Bohr, Heisenberg, Pauli,Stern, Meitner, Ladenburg,

More information

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón Martes cuántico Zaragoza, 8 th October 2013 Atomic and molecular spin qubits Fernando LUIS Instituto de Ciencia de Materiales de Aragón Outline Quantum information with spins 1 0 Atomic defects in semiconductors

More information

Electrically controlling single spin qubits in a continuous microwave field

Electrically controlling single spin qubits in a continuous microwave field arxiv:1503.05985v1 [cond-mat.mes-hall] 20 Mar 2015 Electrically controlling single spin qubits in a continuous microwave field Arne Laucht, 1, Juha T. Muhonen, 1 Fahd A. Mohiyaddin, 1 Rachpon Kalra, 1

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011 Coherence of nitrogen-vacancy electronic spin ensembles in diamond arxiv:006.49v [cond-mat.mes-hall] 4 Jan 0 P. L. Stanwix,, L. M. Pham, J. R. Maze, 4, 5 D. Le Sage, T. K. Yeung, P. Cappellaro, 6 P. R.

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots International School of Physics "Enrico Fermi : Quantum Spintronics and Related Phenomena June 22-23, 2012 Varenna, Italy Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots Seigo Tarucha

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Lecture 2, March 2, 2017

Lecture 2, March 2, 2017 Lecture 2, March 2, 2017 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII Prospects for Superconducting ubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII uantum error correction and the future of solid state qubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Spin dependent recombination an electronic readout mechanism for solid state quantum computers

Spin dependent recombination an electronic readout mechanism for solid state quantum computers Spin dependent recombination an electronic readout mechanism for solid state quantum computers Christoph Boehme, Klaus Lips Hahn Meitner Institut Berlin, Kekuléstr. 5, D-12489 Berlin, Germany August 7,

More information

Precision sensing using quantum defects

Precision sensing using quantum defects Precision sensing using quantum defects Sang-Yun Lee 3rd Institute of Physics, University of Stuttgart, Germany Quantum and Nano Control, IMA at University of Minnesota April 14, 2016 Single spin probes

More information

Silicon-based Quantum Computation. Thomas Schenkel

Silicon-based Quantum Computation. Thomas Schenkel Silicon-based Quantum Computation Thomas Schenkel E. O. Lawrence Berkeley National Laboratory T_Schenkel@LBL.gov http://www-ebit.lbl.gov/ Thomas Schenkel, Accelerator and Fusion Research Superconductors

More information

Lecture 2, March 1, 2018

Lecture 2, March 1, 2018 Lecture 2, March 1, 2018 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Quantum Information Science (QIS)

Quantum Information Science (QIS) Quantum Information Science (QIS) combination of three different fields: Quantum Physics QIS Computer Science Information Theory Lecture 1 - Outline 1. Quantum Mechanics 2. Computer Science History 3.

More information

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation QSIT09.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical

More information

Optically-controlled controlled quantum dot spins for quantum computers

Optically-controlled controlled quantum dot spins for quantum computers Optically-controlled controlled quantum dot spins for quantum computers David Press Yamamoto Group Applied Physics Department Ph.D. Oral Examination April 28, 2010 1 What could a Quantum Computer do? Simulating

More information

Numerical study of hydrogenic effective mass theory for an impurity P donor in Si in the presence of an electric field and interfaces

Numerical study of hydrogenic effective mass theory for an impurity P donor in Si in the presence of an electric field and interfaces PHYSICAL REVIEW B 68, 075317 003 Numerical study of hydrogenic effective mass theory for an impurity P donor in Si in the presence of an electric field and interfaces L. M. Kettle, 1, H.-S. Goan, 3 Sean

More information

Electron spin decoherence due to interaction with a nuclear spin bath

Electron spin decoherence due to interaction with a nuclear spin bath Electron spin decoherence due to interaction with a nuclear spin bath Center for Quantum Device Technology Clarkson University Presenter: Dr. Semion Saikin email: saikin@clarkson.edu NSF-DMR-121146, ITR/SY:

More information

Towards quantum simulator based on nuclear spins at room temperature

Towards quantum simulator based on nuclear spins at room temperature Towards quantum simulator based on nuclear spins at room temperature B. Naydenov and F. Jelezko C. Müller, Xi Kong, T. Unden, L. McGuinness J.-M. Cai and M.B. Plenio Institute of Theoretical Physics, Uni

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical physics fails

More information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information QSIT09.L03 Page 1 2.0 Basic Elements of a Quantum Information Processor 2.1 Classical information processing 2.1.1 The carrier of information - binary representation of information as bits (Binary digits).

More information

Quantum control of spin qubits in silicon

Quantum control of spin qubits in silicon Quantum control of spin qubits in silicon Belita Koiller Instituto de Física Universidade Federal do Rio de Janeiro Brazil II Quantum Information Workshop Paraty, 8-11 September 2009 Motivation B.E.Kane,

More information

Quantum Computation with Spins and Excitons in Semiconductor Quantum Dots (Part III)

Quantum Computation with Spins and Excitons in Semiconductor Quantum Dots (Part III) Quantum Computation with Spins and Excitons in Semiconductor Quantum Dots (Part III) Carlo Piermarocchi Condensed Matter Theory Group Department of Physics and Astronomy Michigan State University, East

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

How a single defect can affect silicon nano-devices. Ted Thorbeck

How a single defect can affect silicon nano-devices. Ted Thorbeck How a single defect can affect silicon nano-devices Ted Thorbeck tedt@nist.gov The Big Idea As MOS-FETs continue to shrink, single atomic scale defects are beginning to affect device performance Gate Source

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Brussels 26.03.2013 The R-ION Consortium Ferdinand Schmidt-Kaler University of Mainz/Germany Trapped ions Experiment Jochen

More information

IBM Systems for Cognitive Solutions

IBM Systems for Cognitive Solutions IBM Q Quantum Computing IBM Systems for Cognitive Solutions Ehningen 12 th of July 2017 Albert Frisch, PhD - albert.frisch@de.ibm.com 2017 IBM 1 st wave of Quantum Revolution lasers atomic clocks GPS sensors

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical Physics Louisiana State University http://quantum.phys.lsu.edu

More information

Quantum information processing in semiconductors

Quantum information processing in semiconductors FIRST 2012.8.14 Quantum information processing in semiconductors Yasuhiro Tokura (University of Tsukuba, NTT BRL) Part I August 14, afternoon I Part II August 15, morning I Part III August 15, morning

More information

Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot

Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot R. Brunner 1,2, Y.-S. Shin 1, T. Obata 1,3, M. Pioro-Ladrière 4, T. Kubo 5, K. Yoshida 1, T. Taniyama

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York All optical quantum computation by engineering semiconductor macroatoms Irene D Amico Dept. of Physics, University of York (Institute for Scientific Interchange, Torino) GaAs/AlAs, GaN/AlN Eliana Biolatti

More information

Magnetic Resonance in Quantum

Magnetic Resonance in Quantum Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

Magnetic semiconductors. (Dilute) Magnetic semiconductors

Magnetic semiconductors. (Dilute) Magnetic semiconductors Magnetic semiconductors We saw last time that: We d like to do spintronics in semiconductors, because semiconductors have many nice properties (gateability, controllable spin-orbit effects, long spin lifetimes).

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology 3 E 532 nm 1 2δω 1 Δ ESR 0 1 A 1 3 A 2 Microwaves 532 nm polarization Pulse sequence detection

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

Electrically Protected Valley-Orbit Qubit in Silicon

Electrically Protected Valley-Orbit Qubit in Silicon Quantum Coherence Lab Zumbühl Group Electrically Protected Valley-Orbit Qubit in Silicon - FAM talk - Florian Froning 21.09.2018 1 Motivation I [1] Zehnder, L., Zeitschrift für Instrumentenkunde. 11: 275

More information

Quantum Dot Spin QuBits

Quantum Dot Spin QuBits QSIT Student Presentations Quantum Dot Spin QuBits Quantum Devices for Information Technology Outline I. Double Quantum Dot S II. The Logical Qubit T 0 III. Experiments I. Double Quantum Dot 1. Reminder

More information

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto Quantum error correction on a hybrid spin system Christoph Fischer, Andrea Rocchetto Christoph Fischer, Andrea Rocchetto 17/05/14 1 Outline Error correction: why we need it, how it works Experimental realization

More information

Supplementary Information

Supplementary Information Supplementary Information I. Sample details In the set of experiments described in the main body, we study an InAs/GaAs QDM in which the QDs are separated by 3 nm of GaAs, 3 nm of Al 0.3 Ga 0.7 As, and

More information

arxiv: v1 [cond-mat.mes-hall] 20 Dec 2018

arxiv: v1 [cond-mat.mes-hall] 20 Dec 2018 Coherent single-spin control with high-fidelity singlet-triplet readout in silicon arxiv:8.8347v [cond-mat.mes-hall] Dec 8 R. Zhao,. anttu, K. Y. an, B. Hensen, K. W. Chan,, J. C. C. Hwang,, R. C. C. Leon,

More information

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler Directions for simulation of beyond-cmos devices Dmitri Nikonov, George Bourianoff, Mark Stettler Outline Challenges and responses in nanoelectronic simulation Limits for electronic devices and motivation

More information

Lawrence Berkeley National Laboratory Recent Work

Lawrence Berkeley National Laboratory Recent Work Lawrence Berkeley National Laboratory Recent Work Title Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings Permalink https://escholarship.org/uc/item/6g170h5

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Nuclear spin spectroscopy for semiconductor hetero and nano structures (Interaction and Nanostructural Effects in Low-Dimensional Systems) November 16th, Kyoto, Japan Nuclear spin spectroscopy for semiconductor hetero and nano structures Yoshiro Hirayama Tohoku University

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Implantation of labelled single nitrogen vacancy centers in diamond using 15 N

Implantation of labelled single nitrogen vacancy centers in diamond using 15 N Implantation of labelled single nitrogen vacancy centers in diamond using 15 N J. R. Rabeau *, P. Reichart School of Physics, Microanalytical Research Centre, The University of Melbourne, Parkville, Victoria

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Title: Quantum CNOT Gate for Spins in Silicon

Title: Quantum CNOT Gate for Spins in Silicon Title: Quantum CNOT Gate for Spins in Silicon Authors: D. M. Zajac 1, A. J. Sigillito 1, M. Russ 2, F. Borjans 1, J. M. Taylor 3, G. Burkard 2, and J. R. Petta 1* Affiliations: 1 Department of Physics,

More information

Spin-orbit qubit in a semiconductor nanowire

Spin-orbit qubit in a semiconductor nanowire 1 Spin-orbit qubit in a semiconductor nanowire S. Nadj-Perge 1*, S. M. Frolov 1*, E. P. A. M. Bakkers 1,2 and L. P. Kouwenhoven 1 1 Kavli Institute of Nanoscience, Delft University of Technology, 2600

More information

Physical implementations of quantum computing

Physical implementations of quantum computing Physical implementations of quantum computing Andrew Daley Department of Physics and Astronomy University of Pittsburgh Overview Introduction DiVincenzo Criteria Characterising coherence times Survey of

More information