Electron spin decoherence due to interaction with a nuclear spin bath

Size: px
Start display at page:

Download "Electron spin decoherence due to interaction with a nuclear spin bath"

Transcription

1 Electron spin decoherence due to interaction with a nuclear spin bath Center for Quantum Device Technology Clarkson University Presenter: Dr. Semion Saikin saikin@clarkson.edu

2 NSF-DMR , ITR/SY: Center for Modeling of Quantum Dynamics, Relaxation and Decoherence in Solid-State Physics for Information-Technology pplications PI: Vladimir Privman, Institution: Clarkson University Research Objectives The main objectives of our program have been to explore coherent quantum mechanical processes in novel solid-state semiconductor information processing devices with components of atomic dimensions. These include quantum computers, spintronic devices, and nanometer-scale logic gates. pproach Our approach has been truly interdisciplinary. For example, in developing new measures of decoherence for quantum computing, we have employed concepts from many-body quantum physics, computer error-correction algorithms, and nonequilibrium statistical mechanics. In our description of spintronic devices, we have utilized large-scale Monte Carlo simulations, knowledge from solid-state physics of semiconductors and from the microelectronics area of electrical engineering, as well as novel ideas of coherent control of quantum dynamics. Our approach has been to design and evaluate architectures that allow implementation of many gate cycles during the relaxation and decoherence times. This requires development of techniques to evaluate all the relevant time scales: single- and two-quantum-bit gate clock times, as well as time scales of relaxation processes owing to the quantum bit (e.g., spin) interactions with environment, such as phonons or surrounding spins. We have also studied spincontrol and charge carrier transport for spintronics and quantum measurement. gnificant Results Our achievements to date include: new measures of initial decoherence, and evaluation of decoherence for spins in semiconductors; evaluation of solid-state quantum computing designs; studies of transport associated with quantum measurement; investigation of spin-polarized devices and role of nuclear spins in spintronics and quantum computing; general contributions to quantum computing algorithms and to time-dependent and phase-related properties of open many-body quantum mechanical systems; novel analytical and numerical Monte Carlo approaches to studying spin-polarization control for spintronic device modeling; investigation of spin relaxation dynamics in two-dimensional semiconductor heterostructures. Broader Impact We have extensive research collaborations with leading experimental and theoretical groups. The educational impact has included training undergraduate and graduate students, postdoctoral researchers, and development of three new courses to introduce quantum device and quantum algorithmic concepts to graduate and undergraduate students. Our program has contributed to homeland security and received funding from the National Security gency. Our outreach program has included sponsoring presentation events, and an international workshop series Quantum Device Technology, held in May of 22 and May 24, and sponsored by the Nanotechnology Council of IEEE and NS (via RO). We have worked with the REU site for students at SUNY Potsdam to guide several undergraduate research projects in the topics of quantum computing and quantum algorithms.

3 Collaboration Experiment: Sean Barrett, Yale ong Wen Jiang, UCL Marco Fanciulli, MDM Laboratory, Milan, Italy Theory: Leonid Fedichkin, Clarkson University Boris Malkin, Kazan State University, Russia Dima Mozyrsky, LNL Vladimir Privman, Clarkson University Israel Vagner, olon Institute of technology, Israel 3

4 Structure Natural licon: atom (group-iv) 28 92% % I=1/ % 5.43Å Diamond crystal structure 31 P electron spin (T=4.2K) T 1 ~ min T 2 ~ msecs P atom (group-v) + = b 15 Å a 25 Å Natural Phosphorus: 31 P 1% I=1/2 In the effective mass approximation the electron wave function is s-like: F( r) 1 = π ab e ( x y ) / a + z 2 / b 4 2

5 n application for QC -gate J -gate Bohr Radius: : a 25 Å b 15 Å x Ge 1-x 1-x Ge x Ge: a 64 Å b 24 Å B.E.Kane, Nature (1998) 31 P donor Qubit nuclear spin Qubit-qubit interaction electron spin Ex S 1 J -gate S 2 R.Vrijen, E.Yablonovitch, K.Wang,.W.Jiang,.Balandin, V.Roychowdhury, T.Mor, D.DiVincenzo, Phys. Rev. 62, 1236 (2) 31 P donor Qubit electron spin Qubit-qubit interaction electron spin f -gate S 1 Ex S 2 I 1 I 2 Qubit 1 Qubit 2 Qubit 1 Qubit 2 5

6 Interaction with phonons Donor electron spin in :P Sources of decoherence D. Mozyrsky, Sh. Kogan, V. N. Gorshkov, G. P. Berman Phys. Rev. B 65, (22) Gate errors X. u, S. Das Sarma, cond-mat/27457 Interaction with 29 nuclear spins Theory I.. Merkulov, l. L. Efros, M. Rosen, Phys. Rev. B 65, 2539 (22) S. Saikin, D. Mozyrsky, V. Privman, Nano Letters 2, 651 (22) R. De Sousa, S. Das Sarma, Phys. Rev. B 68, (23) S. Saikin, L. Fedichkin, Phys. Rev. B 67, 16132(R) (23) J. Schliemann,. Khaetskii, D. Loss, J. Phys., Condens. Matter 15, R189 (23) Experiments. M. Tyryshkin, S.. Lyon,. V. stashkin,. M. Raitsimring, Phys. Rev. B 68, (23) M. Fanciulli, P. ofer,. Ponti, Physica B , 895 (23) E. be, K. M. Itoh, J. Isoya S. Yamasaki, cond-mat/42152 (24) 6

7 Spin amiltonian 28 e = + ( i, j) Spin Z i nucl Z ( i) + f ( i) + Dip i i j e P Effect of external field Electronnuclei interaction Nucleinuclei interaction Effective Bohr radius ~ 2-25 Å Lattice constant = 5.43 Å In a natural crystal the donor electron interacts with ~ 8 nuclei of 29 System of 29 nuclear spins can be considered as a spin bath Electron spin Zeeman term: Nuclear spin Zeeman term: e = Z nulc Z yperfine electron-nuclear spin interaction: gβs ( i) = γ i I f ( i) = S I i i Dipole-dipole nuclear spin interaction: Dip ( i, j) i = I D ij I j 7

8 yperfine interaction e - 29 Contact interaction: = Cont SI Dipole-dipole interaction: Dip µ µ = r e n 3 3( µ e r)( µ 5 r n r) yperfine interaction: f = ( S S S ) x y z xx yx zx xy yy zy xz yz zz I I I x y z Contact interaction only: pproximations: igh magnetic field Contact interaction igh magnetic field = xx yy zz = zx zy zz = zz 8

9 Energy level structure (high magnetic field) e Z = gβ z S z P P Z = γ P z I z - 31 P electron spin = P f P zz S z I P z - 31 P nuclear spin - 29 nuclear spin 1 Z 1 f 9

10 Effects of nuclear spin bath (low field) = xx yy zz gβδ ~ ( S+ I + S I + ) gβ P 2 15 e Z ~ z P = const 42Oe δ = const 3Oe 1/T [µs -1 ] 1 ρ = 1 e t/ T Magnetic field [Oe] S. Saikin, D. Mozyrsiky and V. Privman, Nano Lett. 2, (22) 1

11 (a) S= Donor electron spin in :P Effects of nuclear spin bath (high field) (b) S= = e - zx zy zz π -pulse e - + ~ ( t) x z Electron spin system Nuclear spin system z eff eff 28 I k z I k 31 P 31 P 11

12 yperfine modulations of an electron spin qubit.8.6 ρ ρ.4.2 Threshold value of the magnetic field for a fault tolerant 31 P electron spin qubit: ρ th max ~ 9T 2 S. Saikin and L. Fedichkin, Phys. Rev. B 67, article 16132(R), 1-4 (23) t t (µsec) 3.x x1-5 2.x x1-5 1.x1-5 5.x t (µsec) 4.x1-5 3.x1-5 2.x1-5 1.x t (µsec) 12

13 Spin echo modulations: Experiment x Spin echo: (τ) M x M. Fanciulli, P. ofer,. Ponti Physica B , 895 (23) τ 2τ t E. be, K. M. Itoh, J. Isoya S. Yamasaki, cond-mat/ nat T = 1 K [ 1] 13

14 Conclusions Effects of a nuclear spin bath on the decoherence of an electron spin qubit in a :P system has been studied. new measure of decoherence processes has been applied. In the low field regime the coherence of a qubit decays exponentially with a characteristic time, T ~.1 µsec. In the high magnetic field regime, quantum operations cause the qubit state to deviate from the ideal state. The characteristic time for these processes is on the order of.1 µsec. The threshold value of an external magnetic field required for fault-tolerant quantum computation is ext ~ 9 Tesla. S. Saikin, D. Mozyrsky, V. Privman, Nano Letters 2, 651 (22) S. Saikin, L. Fedichkin, Phys. Rev. B 67, 16132(R) (23) 14

15 Future prospects Spin diffusion Initial drop of spin coherence. M. Tyryshkin, S.. Lyon,. V. stashkin, and. M. Raitsimring Phys. Rev. B 68, (23) M. Fanciulli, P. ofer,. Ponti Physica B , 895 (23) Control for spin-spin coupling in solids S. Barrett s Group, Yale Development of error avoiding methods for spin qubits in solids. M. Fanciulli Group, MDM Laboratory, Italy 15

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego Michigan Quantum Summer School Ann Arbor, June 16-27, 2008. Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego 1. Motivation: Quantum superiority in superposition

More information

Long-lived spin echoes in magnetically diluted system: an NMR study of the Ge single crystals Alexander M. Panich,

Long-lived spin echoes in magnetically diluted system: an NMR study of the Ge single crystals Alexander M. Panich, Long-lived spin echoes in magnetically diluted system: an NMR study of the Ge single crystals Alexander M. Panich, Department of Physics, Ben-Gurion University of the Negev, Beer Sheva, Israel N. A. Sergeev,

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

Electron spin coherence exceeding seconds in high-purity silicon

Electron spin coherence exceeding seconds in high-purity silicon Electron spin coherence exceeding seconds in high-purity silicon Alexei M. Tyryshkin, Shinichi Tojo 2, John J. L. Morton 3, H. Riemann 4, N.V. Abrosimov 4, P. Becker 5, H.-J. Pohl 6, Thomas Schenkel 7,

More information

Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration

Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration Asilomar, CA, June 6 th, 2007 Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration Wang Yao Department of Physics, University of Texas, Austin Collaborated with: L. J. Sham

More information

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011 Coherence of nitrogen-vacancy electronic spin ensembles in diamond arxiv:006.49v [cond-mat.mes-hall] 4 Jan 0 P. L. Stanwix,, L. M. Pham, J. R. Maze, 4, 5 D. Le Sage, T. K. Yeung, P. Cappellaro, 6 P. R.

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

Understanding spin-qubit decoherence: From models to reality

Understanding spin-qubit decoherence: From models to reality Understanding spin-qubit decoherence: From models to reality Bill Coish IQC, University of Waterloo, Canada and (starting in Sept.) McGill University, Montreal, QC, Canada Collaborators: Basel: Jan Fischer,

More information

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots J. R. Petta 1, A. C. Johnson 1, J. M. Taylor 1, E. A. Laird 1, A. Yacoby, M. D. Lukin 1, C. M. Marcus 1, M. P. Hanson 3, A.

More information

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ.

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ. Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ. +Vasiliev(Turku) 31 P NMR at low temperatures ( down to

More information

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler Directions for simulation of beyond-cmos devices Dmitri Nikonov, George Bourianoff, Mark Stettler Outline Challenges and responses in nanoelectronic simulation Limits for electronic devices and motivation

More information

SHORT-TIME DECOHERENCE AND DEVIATION FROM PURE QUANTUM STATES

SHORT-TIME DECOHERENCE AND DEVIATION FROM PURE QUANTUM STATES E-print cond-mat/0203039 at www.arxiv.org Modern Physics Letters B, Vol. 16, No. 13 (2002) 459 465 c World Scientific Publishing Company SHORT-TIME DECOHERENCE AND DEVIATION FROM PURE QUANTUM STATES VLADIMIR

More information

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón Martes cuántico Zaragoza, 8 th October 2013 Atomic and molecular spin qubits Fernando LUIS Instituto de Ciencia de Materiales de Aragón Outline Quantum information with spins 1 0 Atomic defects in semiconductors

More information

arxiv:cond-mat/ v2 23 Jan 2007

arxiv:cond-mat/ v2 23 Jan 2007 Nuclear Spins as Quantum Memory in Semiconductor Nanostructures W. M. Witzel and S. Das Sarma Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, MD 20742-4111

More information

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 26 Feb 2004

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 26 Feb 2004 Voltage Control of Exchange Coupling in Phosphorus Doped Silicon arxiv:cond-mat/42642v1 [cond-mat.mtrl-sci] 26 Feb 24 C.J. Wellard a, L.C.L. Hollenberg a, L.M. Kettle b and H.-S. Goan c Centre for Quantum

More information

UTILIZATION of spin-dependent phenomena in electronic

UTILIZATION of spin-dependent phenomena in electronic IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 3, NO. 1, MARCH 2004 173 Study of Spin-Polarized Transport Properties for Spin-FET Design Optimization Semion Saikin, Min Shen, and Ming-C. Cheng, Member, IEEE

More information

Obituary for Professor Vladimir Privman

Obituary for Professor Vladimir Privman Int. Journ. of Unconventional Computing, Vol. 13, pp. 493 499 Reprints available directly from the publisher Photocopying permitted by license only 2018 Old City Publishing, Inc. Published by license under

More information

Electronic Structure of Nuclear-Spin-Polarization- Induced Quantum Dots

Electronic Structure of Nuclear-Spin-Polarization- Induced Quantum Dots University of South Carolina Scholar Commons Faculty Publications Physics and Astronomy, Department of 2-15-2004 Electronic Structure of Nuclear-Spin-Polarization- Induced Quantum Dots Yuriy V. Pershin

More information

arxiv:quant-ph/ v1 10 May 2004

arxiv:quant-ph/ v1 10 May 2004 Gates for the Kane Quantum Computer in the Presence of Dephasing Charles D. Hill 1, and Hsi-Sheng Goan 2, 1 Centre for Quantum Computer Technology, and Department of Physics, The University of Queensland,

More information

arxiv: v1 [cond-mat.mes-hall] 20 Sep 2013

arxiv: v1 [cond-mat.mes-hall] 20 Sep 2013 Interlayer Diffusion of Nuclear Spin Polarization in ν = 2/3 Quantum Hall States arxiv:1309.5185v1 [cond-mat.mes-hall] 20 Sep 2013 Minh-Hai Nguyen, 1, Shibun Tsuda, 1 Daiju Terasawa, 2 Akira Fukuda, 2

More information

All-Silicon Quantum Computer Phys. Rev. Lett. Vol. 89, (2002) Kohei M. Itoh. Dept. Applied Physics, Keio University

All-Silicon Quantum Computer Phys. Rev. Lett. Vol. 89, (2002) Kohei M. Itoh. Dept. Applied Physics, Keio University All-licon Quantum Computer Phys. Rev. Lett. Vol. 89, 017901(2002) Kohei M. Itoh Dept. Applied Physics, Keio University kitoh@appi.keio.ac.jp January 20, 2003 University of New South Wales Contents 1. Introduction

More information

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Nuclear spin spectroscopy for semiconductor hetero and nano structures (Interaction and Nanostructural Effects in Low-Dimensional Systems) November 16th, Kyoto, Japan Nuclear spin spectroscopy for semiconductor hetero and nano structures Yoshiro Hirayama Tohoku University

More information

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia Ultrafast optical rotations of electron spins in quantum dots A. Greilich 1*, Sophia E. Economou 2, S. Spatzek 1, D. R. Yakovlev 1,3, D. Reuter 4, A. D. Wieck 4, T. L. Reinecke 2, and M. Bayer 1 1 Experimentelle

More information

Isotopically engineered silicon nanostructures in quantum computation and communication

Isotopically engineered silicon nanostructures in quantum computation and communication HAIT Journal of Science and Engineering, Volume 1, Issue 1, pp. 196-206 Copyright C 2004 Holon Academic Institute of Technology Isotopically engineered silicon nanostructures in quantum computation and

More information

Decay of spin polarized hot carrier current in a quasi. one-dimensional spin valve structure arxiv:cond-mat/ v1 [cond-mat.mes-hall] 10 Oct 2003

Decay of spin polarized hot carrier current in a quasi. one-dimensional spin valve structure arxiv:cond-mat/ v1 [cond-mat.mes-hall] 10 Oct 2003 Decay of spin polarized hot carrier current in a quasi one-dimensional spin valve structure arxiv:cond-mat/0310245v1 [cond-mat.mes-hall] 10 Oct 2003 S. Pramanik and S. Bandyopadhyay Department of Electrical

More information

Spin Transport in III-V Semiconductor Structures

Spin Transport in III-V Semiconductor Structures Spin Transport in III-V Semiconductor Structures Ki Wook Kim, A. A. Kiselev, and P. H. Song Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911 We

More information

DNP in Quantum Computing Eisuke Abe Spintronics Research Center, Keio University

DNP in Quantum Computing Eisuke Abe Spintronics Research Center, Keio University DNP in Quantum Computing Eisuke Abe Spintronics Research Center, Keio University 207.08.25 Future of Hyper-Polarized Nuclear Spins @IPR, Osaka DNP in quantum computing Molecule Pseudo-pure state Algorithmic

More information

The Development of a Quantum Computer in Silicon

The Development of a Quantum Computer in Silicon The Development of a Quantum Computer in Silicon Professor Michelle Simmons Director, Centre of Excellence for Quantum Computation and Communication Technology, Sydney, Australia December 4th, 2013 Outline

More information

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0 (two-qubit gate): tools: optical dipole force P 3/2 P 1/2 F = -1.5 F n=3 n=3 n=0 S 1/2 n=0 optical dipole force is state dependent tools: optical dipole force (e.g two qubits) ω 2 k1 d ω 1 optical dipole

More information

arxiv: v1 [cond-mat.mes-hall] 13 Jul 2018

arxiv: v1 [cond-mat.mes-hall] 13 Jul 2018 Dynamical decoupling of interacting dipolar spin ensembles Evan S. Petersen, 1 A. M. Tyryshkin, 1 K. M. Itoh, 2 Joel W. Ager, 3 H. Riemann, 4 N. V. Abrosimov, 4 P. Becker, 5 H.-J. Pohl, 6 M. L. W. Thewalt,

More information

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy Nuclear spin dynamics in quantum regime of a single-molecule magnet Andrea Morello UBC Physics & Astronomy Kamerlingh Onnes Laboratory Leiden University Nuclear spins in SMMs Intrinsic source of decoherence

More information

Chem8028(1314) - Spin Dynamics: Spin Interactions

Chem8028(1314) - Spin Dynamics: Spin Interactions Chem8028(1314) - Spin Dynamics: Spin Interactions Malcolm Levitt see also IK m106 1 Nuclear spin interactions (diamagnetic materials) 2 Chemical Shift 3 Direct dipole-dipole coupling 4 J-coupling 5 Nuclear

More information

High Field Electron Nuclear Double Resonance and Dynamical Nuclear Polarization

High Field Electron Nuclear Double Resonance and Dynamical Nuclear Polarization High Field Electron Nuclear Double Resonance and Dynamical Nuclear Polarization Johan van Tol National High Magnetic Field Lab / Florida State University Overview Electron Nuclear Double Resonance Pulsed

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Quantum control of spin qubits in silicon

Quantum control of spin qubits in silicon Quantum control of spin qubits in silicon Belita Koiller Instituto de Física Universidade Federal do Rio de Janeiro Brazil II Quantum Information Workshop Paraty, 8-11 September 2009 Motivation B.E.Kane,

More information

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan Coherence and optical electron spin rotation in a quantum dot Sophia Economou Collaborators: NRL L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan T. L. Reinecke, Naval Research Lab Outline

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto Quantum error correction on a hybrid spin system Christoph Fischer, Andrea Rocchetto Christoph Fischer, Andrea Rocchetto 17/05/14 1 Outline Error correction: why we need it, how it works Experimental realization

More information

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Developing Quantum Logic Gates: Spin-Resonance-Transistors Developing Quantum Logic Gates: Spin-Resonance-Transistors H. W. Jiang (UCLA) SRT: a Field Effect Transistor in which the channel resistance monitors electron spin resonance, and the resonance frequency

More information

Pulse techniques for decoupling qubits

Pulse techniques for decoupling qubits Pulse techniques for decoupling qubits from noise: experimental tests Steve Lyon, Princeton EE Alexei Tyryshkin, Shyam Shankar, Forrest Bradbury, Jianhua He, John Morton Bang-bang decoupling 31 P nuclear

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Numerical study of hydrogenic effective mass theory for an impurity P donor in Si in the presence of an electric field and interfaces

Numerical study of hydrogenic effective mass theory for an impurity P donor in Si in the presence of an electric field and interfaces PHYSICAL REVIEW B 68, 075317 003 Numerical study of hydrogenic effective mass theory for an impurity P donor in Si in the presence of an electric field and interfaces L. M. Kettle, 1, H.-S. Goan, 3 Sean

More information

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York All optical quantum computation by engineering semiconductor macroatoms Irene D Amico Dept. of Physics, University of York (Institute for Scientific Interchange, Torino) GaAs/AlAs, GaN/AlN Eliana Biolatti

More information

Disordered Solids. real crystals spin glass. glasses. Grenoble

Disordered Solids. real crystals spin glass. glasses. Grenoble Disordered Solids real crystals spin glass glasses Grenoble 21.09.11-1 Tunneling of Atoms in Solids Grenoble 21.09.11-2 Tunneln Grenoble 21.09.11-3 KCl:Li Specific Heat specific heat roughly a factor of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fast spin information transfer between distant quantum dots using individual electrons B. Bertrand, S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A. Ludwig, A. D. Wieck, C. Bäuerle, T. Meunier* Content

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

Limitations in the Tunability of the Spin Resonance of 2D Electrons in Si by an Electric Current

Limitations in the Tunability of the Spin Resonance of 2D Electrons in Si by an Electric Current Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXVI International School of Semiconducting Compounds, Jaszowiec 2007 Limitations in the Tunability of the Spin Resonance of 2D Electrons

More information

arxiv: v1 [cond-mat.mes-hall] 18 May 2012

arxiv: v1 [cond-mat.mes-hall] 18 May 2012 Detection and control of individual nuclear spins using a weakly coupled electron spin T. H. Taminiau 1, J. J. T. Wagenaar 1, T. van der Sar 1, F. Jelezko 2, V. V. Dobrovitski 3, and R. Hanson 1 1 Kavli

More information

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1 Problem Set 2 Due Tuesday, September 27, 211 Problems from Carter: Chapter 2: 2a-d,g,h,j 2.6, 2.9; Chapter 3: 1a-d,f,g 3.3, 3.6, 3.7 Additional problems: (1) Consider the D 4 point group and use a coordinate

More information

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation QSIT09.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Spin relaxation of two-dimensional electrons with a hierarchy of spin orbit couplings

Spin relaxation of two-dimensional electrons with a hierarchy of spin orbit couplings IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 9 (007) 3463 (pp) doi:0.088/0953-8984/9/34/3463 Spin relaxation of two-dimensional electrons with a hierarchy of spin orbit

More information

Quantum Computing: From Science to Application Dr. Andreas Fuhrer Quantum technology, IBM Research - Zurich

Quantum Computing: From Science to Application Dr. Andreas Fuhrer Quantum technology, IBM Research - Zurich Quantum Computing: From Science to Application Dr. Andreas Fuhrer Quantum technology, IBM Research - Zurich IBM Research - Zurich Established in 1956 Focus: science & technology, systems research, computer

More information

Image courtesy of Keith Schwab http://www.lbl.gov/science-articles/archive/afrd Articles/Archive/AFRD-quantum-logic.html http://www.wmi.badw.de/sfb631/tps/dqd2.gif http://qist.lanl.gov/qcomp_map.shtml

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Optimizing a Dynamical Decoupling Protocol for Solid-State Electronic Spin Ensembles in Diamond

Optimizing a Dynamical Decoupling Protocol for Solid-State Electronic Spin Ensembles in Diamond Optimizing a Dynamical Decoupling Protocol for Solid-State Electronic Spin Ensembles in Diamond up to 600 ms have been demonstrated by performing Carr-Purcell-Meiboom-Gill (CPMG) DD sequences at lower

More information

Magnetic Resonance in Quantum Information

Magnetic Resonance in Quantum Information Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles. » ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z

More information

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical Physics Louisiana State University http://quantum.phys.lsu.edu

More information

Electron spin qubits in P donors in Silicon

Electron spin qubits in P donors in Silicon Electron spin qubits in P donors in Silicon IDEA League lectures on Quantum Information Processing 7 September 2015 Lieven Vandersypen http://vandersypenlab.tudelft.nl Slides with black background courtesy

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Quantum Computation with Spins and Excitons in Semiconductor Quantum Dots (Part III)

Quantum Computation with Spins and Excitons in Semiconductor Quantum Dots (Part III) Quantum Computation with Spins and Excitons in Semiconductor Quantum Dots (Part III) Carlo Piermarocchi Condensed Matter Theory Group Department of Physics and Astronomy Michigan State University, East

More information

Magnetic semiconductors. (Dilute) Magnetic semiconductors

Magnetic semiconductors. (Dilute) Magnetic semiconductors Magnetic semiconductors We saw last time that: We d like to do spintronics in semiconductors, because semiconductors have many nice properties (gateability, controllable spin-orbit effects, long spin lifetimes).

More information

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis: Problem Set 2 Due Thursday, October 1, 29 Problems from Cotton: Chapter 4: 4.6, 4.7; Chapter 6: 6.2, 6.4, 6.5 Additional problems: (1) Consider the D 3h point group and use a coordinate system wherein

More information

GaAs and InGaAs Single Electron Hex. Title. Author(s) Kasai, Seiya; Hasegawa, Hideki. Citation 13(2-4): Issue Date DOI

GaAs and InGaAs Single Electron Hex. Title. Author(s) Kasai, Seiya; Hasegawa, Hideki. Citation 13(2-4): Issue Date DOI Title GaAs and InGaAs Single Electron Hex Circuits Based on Binary Decision D Author(s) Kasai, Seiya; Hasegawa, Hideki Citation Physica E: Low-dimensional Systems 3(2-4): 925-929 Issue Date 2002-03 DOI

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Wave function engineering in quantum dot-ring structures

Wave function engineering in quantum dot-ring structures Wave function engineering in quantum dot-ring structures Nanostructures with highly controllable electronic properties E. Zipper, M. Kurpas, M. M. Maśka Instytut Fizyki, Uniwersytet Sląski w Katowicach,

More information

arxiv:quant-ph/ v1 14 Sep 2006

arxiv:quant-ph/ v1 14 Sep 2006 Influence of qubit displacements on quantum logic operations in a silicon-based quantum computer with constant interaction D. I. Kamenev 1, G. P. Berman 1, and V. I. Tsifrinovich 2 1 Theoretical Division,

More information

Supported by NSF and ARL

Supported by NSF and ARL Ultrafast Coherent Electron Spin Flip in a 2D Electron Gas Carey Phelps 1, Timothy Sweeney 1, Ronald T. Cox 2, Hailin Wang 1 1 Department of Physics, University of Oregon, Eugene, OR 97403 2 Nanophysics

More information

Supplementary Information

Supplementary Information Supplementary Information I. Sample details In the set of experiments described in the main body, we study an InAs/GaAs QDM in which the QDs are separated by 3 nm of GaAs, 3 nm of Al 0.3 Ga 0.7 As, and

More information

Quantum Computing. The Future of Advanced (Secure) Computing. Dr. Eric Dauler. MIT Lincoln Laboratory 5 March 2018

Quantum Computing. The Future of Advanced (Secure) Computing. Dr. Eric Dauler. MIT Lincoln Laboratory 5 March 2018 The Future of Advanced (Secure) Computing Quantum Computing This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering and the Office of the Director

More information

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012 Superoperators for NMR Quantum Information Processing Osama Usman June 15, 2012 Outline 1 Prerequisites 2 Relaxation and spin Echo 3 Spherical Tensor Operators 4 Superoperators 5 My research work 6 References.

More information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information QSIT09.L03 Page 1 2.0 Basic Elements of a Quantum Information Processor 2.1 Classical information processing 2.1.1 The carrier of information - binary representation of information as bits (Binary digits).

More information

High Field EPR at the National High. Johan van Tol. Magnetic Field Lab

High Field EPR at the National High. Johan van Tol. Magnetic Field Lab High Field EPR at the National High Johan van Tol Magnetic Field Lab Overview EPR Introduction High Field CW EPR typical examples ENDOR Pulsed EPR Relaxation rates Qubits Relaxation at high fields Outlook

More information

S.K. Saikin May 22, Lecture 13

S.K. Saikin May 22, Lecture 13 S.K. Saikin May, 007 13 Decoherence I Lecture 13 A physical qubit is never isolated from its environment completely. As a trivial example, as in the case of a solid state qubit implementation, the physical

More information

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical physics fails

More information

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station Topological Quantum Computation with Majorana Zero Modes Roman Lutchyn Microsoft Station IPAM, 08/28/2018 Outline Majorana zero modes in proximitized nanowires Experimental and material science progress

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

Classical behavior of magnetic dipole vector. P. J. Grandinetti

Classical behavior of magnetic dipole vector. P. J. Grandinetti Classical behavior of magnetic dipole vector Z μ Y X Z μ Y X Quantum behavior of magnetic dipole vector Random sample of spin 1/2 nuclei measure μ z μ z = + γ h/2 group μ z = γ h/2 group Quantum behavior

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

Magnetic Resonance in Quantum

Magnetic Resonance in Quantum Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Bellaterra: anuary 2011 Architecture & Design of Molecule Logic Gates and Atom Circuits Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Fernando LUIS Instituto de Ciencia de Materiales

More information

Quantum Dot Spin QuBits

Quantum Dot Spin QuBits QSIT Student Presentations Quantum Dot Spin QuBits Quantum Devices for Information Technology Outline I. Double Quantum Dot S II. The Logical Qubit T 0 III. Experiments I. Double Quantum Dot 1. Reminder

More information

Nano physics for semiconductors, great challenge

Nano physics for semiconductors, great challenge Nano physics for semiconductors, great challenge Oleksandr Voskoboynikov 霍斯科 Phone: ext. 54174 Office: 646 ED bld.4 E-mail: vam@faculty.nctu.edu.tw Web: http://www.cc.nctu.edu.tw/~vam In collaboration

More information

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII Prospects for Superconducting ubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII uantum error correction and the future of solid state qubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII

More information

Electrical control of spin relaxation in a quantum dot. S. Amasha et al., condmat/

Electrical control of spin relaxation in a quantum dot. S. Amasha et al., condmat/ Electrical control of spin relaxation in a quantum dot S. Amasha et al., condmat/07071656 Spin relaxation In a magnetic field, spin states are split b the Zeeman energ = g µ B B Provides a two-level sstem

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Spin electric coupling and coherent quantum control of molecular nanomagnets

Spin electric coupling and coherent quantum control of molecular nanomagnets Spin electric coupling and coherent quantum control of molecular nanomagnets Dimitrije Stepanenko Department of Physics University of Basel Institute of Physics, Belgrade February 15. 2010 Collaborators:

More information

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI Lecture 8 Analyzing the diffusion weighted signal Room CSB 272 this week! Please install AFNI http://afni.nimh.nih.gov/afni/ Next lecture, DTI For this lecture, think in terms of a single voxel We re still

More information

Quantum correlations and decoherence in systems of interest for the quantum information processing

Quantum correlations and decoherence in systems of interest for the quantum information processing Universita' degli Studi di Milano Physics, Astrophysics and Applied Physics PhD School: 1 st Year-Student Mini-Workshop Quantum correlations and decoherence in systems of interest for the quantum information

More information

Programming Project 2: Harmonic Vibrational Frequencies

Programming Project 2: Harmonic Vibrational Frequencies Programming Project 2: Harmonic Vibrational Frequencies Center for Computational Chemistry University of Georgia Athens, Georgia 30602 Summer 2012 1 Introduction This is the second programming project

More information

High-Temperature Criticality in Strongly Constrained Quantum Systems

High-Temperature Criticality in Strongly Constrained Quantum Systems High-Temperature Criticality in Strongly Constrained Quantum Systems Claudio Chamon Collaborators: Claudio Castelnovo - BU Christopher Mudry - PSI, Switzerland Pierre Pujol - ENS Lyon, France PRB 2006

More information