Understanding spin-qubit decoherence: From models to reality

Size: px
Start display at page:

Download "Understanding spin-qubit decoherence: From models to reality"

Transcription

1 Understanding spin-qubit decoherence: From models to reality Bill Coish IQC, University of Waterloo, Canada and (starting in Sept.) McGill University, Montreal, QC, Canada Collaborators: Basel: Jan Fischer, Daniel Klauser, Daniel Loss Waterloo: Farzad Qassemi, Frank Wilhelm, Jonathan Baugh Oslo: Joakim Bergli

2 Goal: Quantum Computation Initialization Arbitrary unitary Readout j0i 0 j0i 1 j0i N 1 j0i N U jªouti h0j ª out i = 0 1 h0j ª out i = 1 N h0j ª out i = 1

3 Goal: Quantum Computation Initialization Arbitrary unitary Readout j0i 0 j0i 1 j0i N 1 j0i N U jªouti h0j ª out i = 0 1 h0j ª out i = 1 N h0j ª out i = 1 Physical Implementation: ½ U = T exp i Z t 0 ¾ dt 0 H(t 0 ) H 2 H S

4 Reality: Imperfections Initialization Arbitrary unitary Readout j0i 0 j0i 1 j0i N 1 j0i N U jªouti h0j ª out i = 0 1 h0j ª out i = 1 N h0j ª out i = 1 ~U = T exp ½ i Z t 0 ¾ dt 0 (H(t 0 ) + ±H(t 0 )) ±H 2 H S H E

5 hsx(t)i Types of error In addition to initialization/readout error Gate error (free-induction decay)» t g =T FID 2 t=t hs x (t)i / e 2 FID Error-correction threshold < c» t g

6 hsx(t)i hsx(t)i Types of error In addition to initialization/readout error t g Gate error (free-induction decay)» t g =T FID 2 t=t hs x (t)i / e 2 FID Memory error (echo/dynamical decoupling) Error-correction threshold < c» » t=t2 ECHO ECHO t=t» e 2» T FID 2 t

7 hsx(t)i hsx(t)i Types of error In addition to initialization/readout error t g Gate error (free-induction decay)» t g =T FID 2 t=t hs x (t)i / e 2 FID Memory error (echo/dynamical decoupling) Error-correction threshold < c» » t=t2 ECHO ECHO t=t» e 2» T FID 2 Even for single spin: T2 ECHO 6= T2 FID 'Intrinsic' decay time is a myth! t

8 hsx(t)i Types of error In addition to initialization/readout error Gate error (free-induction decay)» t g =T FID 2 t=t hs x (t)i / e 2 FID Error-correction threshold < c» t g Focus on reducing gate error (increasing FID time): T FID 2 = T 2 Caveat: Gating and decay not always independent (should really determine the gate fidelity). e.g.: F = Tr n U y ~U o

9 Nuclear spins are (almost) everywhere NV centers in diamond Quantum dots 60 Phosphorus donors

10 Coherence Problem: One spin sees many N» 10 6 nuclei WAC and J. Baugh, `Nuclear spins in nanostructures', Phys. Stat. Solidi B (2009)

11 Theory of everything for spins in the solid state ~I H contact = 8¼ 3 S I ±(r)s I ~B ~E + H dip: = S I 3(n S)(n I) S I r 3 ~S - H LI = S I L I r 3

12 Confined electron H e ' hã 0 j H jã 0 i hr jã 0 i ' u(r)ã 0 (r)

13 Interactions: s vs. p s-state (electron) p-state (hole) u c (r) + Ze Z e + u v (r) hã s orbj H contact jã s orbi 6= 0 hã p orb j H contact jã p orb i = 0 hãs orbj H dip: jã s orbi = 0 hã p orb j H dip: jã p orb i 6= 0 hã s orbj H LI jã s orbi = 0 hã p orb j H LI jã p orb i 6= 0

14 Interactions: s vs. p s-state (electron) p-state (hole) u c (r) + Ze Z e + u v (r) hã s orbj H contact jã s orbi 6= 0 hã p orb j H contact jã p orb i = 0 hãs orbj H dip: jã s orbi = 0 hã p orb j H dip: jã p orb i 6= 0 hã s orbj H LI jã s orbi = 0 hã p orb j H LI jã p orb i 6= 0 Anything else: NV Center, Nanotubes, graphene,...combination

15 Interactions: s vs. p s-state p-state + Ze Z e + Project onto m J = 3 2 ) s z = 1 2 H e s = A s S I H e p = A p s z I z For 4s, 4p Hydrogen-like atomic orbitals (valence states of Ga, As): 3 A p A s = 1 5 µ Ze (4p) Z e (4s) The two coupling strengths are comparable!

16 In a 2D GaAs system A h A e ¼ 0:15 Large! H = (b + h z )s z Ising: no flip-flops Fischer, WAC, Bulaev, Loss, PRB (2008)

17 Hole-spin Decoherence H = h z s z + bs x z b ±h z Transverse fluctuations suppressed for large in-plane b hs z i t ' cos bt arctan (t= )» p 1 2 [1 + (t= ) 2 ] 1=4 t Predicted: = b (±h z ) 2 ' 1 ¹s D. Brunner et al., Science (2009) Measured: & 1 ¹s

18 Electrons: Hyperfine Hamiltonian H hf = bs z + h S +... h = X k A k I k Electron Zeeman energy A = X k A k Coupling to nuclear field Neglect: Nuclear dipole-dipole, Quadrupolar splitting, Spin-orbit, Phonons,...

19 Hyperfine Hamiltonian H hf = bs z + h S Electron Zeeman energy Coupling to nuclear field h = X k A = X k A k I k A k h S = h z S z S h + S + h S + I V does not conserve energy for large b S I

20 Hyperfine Hamiltonian H hf = bs z + h S Electron Zeeman energy Coupling to nuclear field h = X k A = X k A k I k A k h S = h z S z S h + S + h S + I V does not conserve energy for large b S I Perturbation theory in A b 1 b=g ¹ B & 3:5 T (GaAs)

21 Nuclear-spin bath preparation h z B h ) hs x i t / e (t= )2» ns measurement B h ) hs x i t / e i!t (narrowed state) Theory: WAC and Loss, PRB (2004), Klauser, WAC and Loss, PRB (2006,2008), Stepanenko et al., PRL (2006), Giedke et al., PRA (2006), Ribeiro and Burkard, PRL (2009), Expt.: Greilich et al., Science (2006), (2007), Reilly et al., Science (2008), Xu et al., Nature (2009), Vink et al., Nat. Phys. (2009), Latta et al., Nat. Phys. (2009)

22 After Narrowing... Dynamics in nuclear-spin system lead to decay B e» B + B N (t) B V V 2 hs x i t / e t=t 2

23 Nuclear-spin dynamics D. Klauser, WAC, D. Loss, PRB (2008) Short time: Ã hh z (t)i ' hh z (0)i 1 µ t n 2 + O(t 3 )! n» N 3=2 b A 2» 10 4 s b e» A 2 =N 3=2 b '

24 Nuclear-spin dynamics D. Klauser, WAC, D. Loss, PRB (2008) Short time: hh z (t)i ' hh z (0)i à 1 µ t Beyond short time (generalized master equation): n 2 + O(t 3 )! n» N 3=2 b A 2» 10 4 s hh z (t)i» 1 N hh z(0)i (nearly uniform polarization) c» N A» 10 6 s di & 1 10 s (Nuclear correlation time) (Dipolar spin diffusion)

25

26 Not an 'easy' problem!

27 New approach: A general theory of coherent quantum dynamics Relevant observables fo g All observables Von Neumann: _½ = i [H; ½] ho i t = Tr fo½(t)g

28 New approach: A general theory of coherent quantum dynamics Relevant observables fo g All observables Von Neumann: _½ = i [H; ½] ho i t = Tr fo½(t)g Nakajima-Zwanzig Generalized Master Equation D _ O E t = i X! ho i t i X Z t 0 dt 0 (t t 0 ) ho i t 0 H = H 0 + V (t) = X n (n) (t) (n) (t) = O (V n )

29 Free-induction decay: history Khaetskii, Loss, Glazman, PRL (2002), PRB (2003) WAC and Loss, PRB (2004) Exact solution for p=1, Generalized Master Equation for p<1.

30 Free-induction decay: history Equation-of-motion method. Deng and Hu, PRB (2006), (2008)

31 Free-induction decay: history Effective Hamiltonian, pair correlation approximation. Yao, Liu, Sham, PRB (2006), NJP (2007)

32 Free-induction decay: history Effective Hamiltonian, Born-Markov approximation. WAC, Fischer, Loss, PRB (2008)

33 Free-induction decay: history Effective Hamiltonian, High-order resummation, low b-field. Cywinski, Witzel, Das Sarma, PRL (2009), PRB (2009)

34 Free-induction decay: history Generalized Master Equation, Higher order. WAC, Fischer, Loss, PRB (2010)

35 Free-induction decay: history WAC, Fischer, Loss, PRB (2010) Envelope modulations

36 Free-induction decay: history WAC, Fischer, Loss, PRB (2010) Non-monotonic decay rate for p 1 1 T 2 b Envelope modulations

37 Solve the problem in two ways: hoi t = hã(0)j e iht Oe iht jã(0)i H = H 0 + V (1) Effective Hamiltonian ~Ã(0) E Expand in powers of ~H = e S He S = H 0 + V e + O V 3 = e S jã(0)i = jã(0)i + O (V ) V e» O µ V 2 A» O b neglected (2) Work directly with the 'real' Hamiltonian Expand in powers of V

38 Initial conditions Fast initialization: ½(0) = ½ S (0) ½ I (0) Sufficient condition: init. 1=A ' 50 ps Narrowed bath: ½ I (0) = X i ½ ii jn i i hn i j! jn i i =! n jn i i

39 Generalized Master Equation (GME) Rotating frame: x t = 2e i(! n+!)t hs + i t GME: _x t = i!x t i Z t 0 dt 0 ~ (t t 0 )x t 0 Lamb shift:! = Re Z 1 0 dt ~ (t) Markov: Z 1 1 = Im T 2 0 dt ~ (t) x t ' x 0 e t=t 2

40 Direct expansion vs. effective H Expanding in V (s) = ~ ' ~ (2) + ~ (4) + O V 6! ' Re~ (2) (s = 0 + ) = O(V 2 ) 1 T 2 ' Im ~ (4) (s = 0 + ) Z 1 0 e st (t) V e» V 2 ~ e = ~ (2) e + O V 8 Expanding in! e ' Re~ (2) e (s = 0+ ) = O(V 4 ) 1 T 2 ' Im~ (2) e (s = 0+ ) For one isotope: Multiple isotopes: ~ (4) = ~ (2) e ~ (4) 6= ~ (2) e (with 1/N corrections)

41 Non-monotonic decay rate 1 ' Im T ~ (4) (s = 0 + ) / 1 X 2 b 2 k;k 0 A 2 ka 2 k 0 ±(A k A k 0!)! / 1 b A k A=N Qualitative behavior (maximum) is controlled by 1 p 2 A b < 1

42 Full Non-Markovian time dependence x(s) = x 0 s i! i ~ (s) 1 x t = lim!0 2¼i Z +i1 i1 e st x(s) = X i Res[e st x(s); x = s i ] X (t) Exponential decay or sustained oscillations Power-law decay

43 Envelope Modulations t À 1! Re [x t ]» C cos (!t + Á) t 2 Higher-order corrections needed

44 Envelope modulations: A collective quantum effect z Conventional envelope modulations (semiclassical); the spin remains on the surface of the Bloch sphere. x y z New quantum modulations due to collective excitations of the nuclear spin bath. x y

45 Initialization and readout Spin Charge

46 Spin dynamics in transport Ono and Tarucha, PRL (2004) Koppens et al., PRL (2007) Reilly et al., Science (2008) Foletti et al., Nature Phys. (2009)

47 The problem: Identify multiple relaxation rates F. Qassemi, WAC, J. Bergli, F. K. Wilhelm (in preparation) E E ? I(t)

48 Solution?: Frequency-dependent current noise S II (!) = 1 2 Z 1 1 dte i!t hf±i(t); ±I(0)gi ±I(t) = I(t) hii I(t) 2 >! > 1 : I(t) 3 >! > 2 : ¹ne» 1= 1 t t I(t)! > j :» 1= 2 e t

49 Dynamical Channel Blockade W. Belzig, PRB (2005) F. Qassemi, ¹n = 1 WAC, J. Bergli, F. K. Wilhelm (in preparation) F (0) = 2¹n 1 F (!) = S II(!) P B e hii Probability to be blocked

50 Dynamical Channel Blockade W. Belzig, PRB (2005) F. Qassemi, WAC, J. Bergli, F. K. Wilhelm (in preparation) ¹n = 1 P B F (0) = 2¹n 1 F (!) = S II(!) e hii Probability to be blocked Spin diode: _½ = M½ F (!) = 1 + X j j : Eigenvalues of M 2j F j! 2 + 2j F j : From right/left eigenvectors

51 Pauli spin blockade Blocked jt + i = j""i jt 0 i = 1 p 2 (j"#i + j#"i) jt i = j##i jsi = 1 p 2 (j"#i j#"i)

52 Fano factor W T+ W T0 jt + i W T+ W T0 jt 0 i jsi jt i F = 2¹n 1 ¹n = 1 P B F (!) ' W 2 T + 4! 2 + W 2 T W 2 T 0 3(9! 2 + 4W 2 T 0 )! <<

53 Conclusions Electron spin dynamics depend on the nuclear environment (new quantum effects); Gate errors. Frequency-dependent noise as a probe of spin relaxation; Initialization and readout.

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego Michigan Quantum Summer School Ann Arbor, June 16-27, 2008. Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego 1. Motivation: Quantum superiority in superposition

More information

Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration

Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration Asilomar, CA, June 6 th, 2007 Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration Wang Yao Department of Physics, University of Texas, Austin Collaborated with: L. J. Sham

More information

Electron spin coherence exceeding seconds in high-purity silicon

Electron spin coherence exceeding seconds in high-purity silicon Electron spin coherence exceeding seconds in high-purity silicon Alexei M. Tyryshkin, Shinichi Tojo 2, John J. L. Morton 3, H. Riemann 4, N.V. Abrosimov 4, P. Becker 5, H.-J. Pohl 6, Thomas Schenkel 7,

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan Coherence and optical electron spin rotation in a quantum dot Sophia Economou Collaborators: NRL L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan T. L. Reinecke, Naval Research Lab Outline

More information

arxiv:cond-mat/ v2 23 Jan 2007

arxiv:cond-mat/ v2 23 Jan 2007 Nuclear Spins as Quantum Memory in Semiconductor Nanostructures W. M. Witzel and S. Das Sarma Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, MD 20742-4111

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Semiclassical limit and longtime asymptotics of the central spin problem. Gang Chen Doron Bergman Leon Balents

Semiclassical limit and longtime asymptotics of the central spin problem. Gang Chen Doron Bergman Leon Balents Semiclassical limit and longtime asymptotics of the central spin problem Gang Chen Doron Bergman Leon Balents Trieste, June 2007 Outline The problem electron-nuclear interactions in a quantum dot Experiments

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots International School of Physics "Enrico Fermi : Quantum Spintronics and Related Phenomena June 22-23, 2012 Varenna, Italy Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots Seigo Tarucha

More information

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia Ultrafast optical rotations of electron spins in quantum dots A. Greilich 1*, Sophia E. Economou 2, S. Spatzek 1, D. R. Yakovlev 1,3, D. Reuter 4, A. D. Wieck 4, T. L. Reinecke 2, and M. Bayer 1 1 Experimentelle

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Supported by NSF and ARL

Supported by NSF and ARL Ultrafast Coherent Electron Spin Flip in a 2D Electron Gas Carey Phelps 1, Timothy Sweeney 1, Ronald T. Cox 2, Hailin Wang 1 1 Department of Physics, University of Oregon, Eugene, OR 97403 2 Nanophysics

More information

Decoherence in Josephson and Spin Qubits. Lecture 3: 1/f noise, two-level systems

Decoherence in Josephson and Spin Qubits. Lecture 3: 1/f noise, two-level systems Decoherence in Josephson and Spin Qubits Alexander Shnirman University of Innsbruck Lecture 3: 1/f noise, two-level systems 1. Phenomenology of 1/f noise 2. Microscopic models 3. Relation between T1 relaxation

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

S.K. Saikin May 22, Lecture 13

S.K. Saikin May 22, Lecture 13 S.K. Saikin May, 007 13 Decoherence I Lecture 13 A physical qubit is never isolated from its environment completely. As a trivial example, as in the case of a solid state qubit implementation, the physical

More information

Qubit Protection in Nuclear-Spin Quantum Dot Memories

Qubit Protection in Nuclear-Spin Quantum Dot Memories Qubit rotection in Nuclear-Spin Quantum Dot Memories The MIT Faculty has made this article openly available. lease share how this access benefits you. Your story matters. Citation As ublished ublisher

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto Quantum error correction on a hybrid spin system Christoph Fischer, Andrea Rocchetto Christoph Fischer, Andrea Rocchetto 17/05/14 1 Outline Error correction: why we need it, how it works Experimental realization

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Ultrafast Universal Quantum Control of a Quantum Dot Charge Qubit Using Landau-Zener-Stückelberg Interference Gang Cao, Hai-Ou Li, Tao Tu, Li Wang, Cheng Zhou, Ming Xiao,

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations CONTENTS Preface Acknowledgements Symbols Abbreviations 1 INTRODUCTION 1.1 Scope of pulse EPR 1.2 A short history of pulse EPR 1.3 Examples of Applications 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon

More information

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots Introduction Resonant Cooling of Nuclear Spins in Quantum Dots Mark Rudner Massachusetts Institute of Technology For related details see: M. S. Rudner and L. S. Levitov, Phys. Rev. Lett. 99, 036602 (2007);

More information

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012 Spin-Boson Model A simple Open Quantum System M. Miller F. Tschirsich Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012 Outline 1 Bloch-Equations 2 Classical Dissipations 3 Spin-Boson

More information

Quantum manipulation of NV centers in diamond

Quantum manipulation of NV centers in diamond Quantum manipulation of NV centers in diamond 12.09.2014 The University of Virginia Physics Colloquium Alex Retzker Jianming Cai, Andreas Albrect, M. B. Plenio,Fedor Jelezko, P. London, R. Fisher,B. Nayedonov,

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011 Coherence of nitrogen-vacancy electronic spin ensembles in diamond arxiv:006.49v [cond-mat.mes-hall] 4 Jan 0 P. L. Stanwix,, L. M. Pham, J. R. Maze, 4, 5 D. Le Sage, T. K. Yeung, P. Cappellaro, 6 P. R.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

Long-lived spin echoes in magnetically diluted system: an NMR study of the Ge single crystals Alexander M. Panich,

Long-lived spin echoes in magnetically diluted system: an NMR study of the Ge single crystals Alexander M. Panich, Long-lived spin echoes in magnetically diluted system: an NMR study of the Ge single crystals Alexander M. Panich, Department of Physics, Ben-Gurion University of the Negev, Beer Sheva, Israel N. A. Sergeev,

More information

arxiv: v1 [cond-mat.mes-hall] 6 May 2014

arxiv: v1 [cond-mat.mes-hall] 6 May 2014 Influence of Nuclear Quadrupole Moments on Electron Spin Coherence in Semiconductor Quantum Dots Erik Welander, Evgeny Chekhovich, Alexander Tartakovskii, and Guido Burkard Department of Physics, University

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Quantum versus classical hyperfine-induced dynamics in a quantum dot*

Quantum versus classical hyperfine-induced dynamics in a quantum dot* JOURNAL OF APPLIED PHYSICS 101, 081715 2007 Quantum versus classical hyperfine-induced dynamics in a quantum dot* W. A. Coish a and Daniel Loss Department of Physics and Astronomy, University of Basel,

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

arxiv: v3 [cond-mat.mes-hall] 29 May 2009

arxiv: v3 [cond-mat.mes-hall] 29 May 2009 Pure quantum dephasing of a solid state electron spin qubit in a large nuclear spin bath coupled by long-range hyperfine-mediated interactions arxiv:0903.2256v3 [cond-mat.mes-hall] 29 May 2009 Lukasz Cywiński,

More information

Magnetic Resonance in Quantum Information

Magnetic Resonance in Quantum Information Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

arxiv: v1 [cond-mat.mes-hall] 26 Aug 2010

arxiv: v1 [cond-mat.mes-hall] 26 Aug 2010 Direct measurement of the hole-nuclear spin interaction in single quantum dots E. A. Chekhovich 1, A. B. Krysa 2, M. S. Skolnick 1, A. I. Tartakovskii 1 1 Department of Physics and Astronomy, University

More information

Electron spin decoherence due to interaction with a nuclear spin bath

Electron spin decoherence due to interaction with a nuclear spin bath Electron spin decoherence due to interaction with a nuclear spin bath Center for Quantum Device Technology Clarkson University Presenter: Dr. Semion Saikin email: saikin@clarkson.edu NSF-DMR-121146, ITR/SY:

More information

Supplementary Information

Supplementary Information Supplementary Information I. Sample details In the set of experiments described in the main body, we study an InAs/GaAs QDM in which the QDs are separated by 3 nm of GaAs, 3 nm of Al 0.3 Ga 0.7 As, and

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Quantum Information Processing and Nuclear Spins in Nanostructures

Quantum Information Processing and Nuclear Spins in Nanostructures Habilitationsschrift Quantum Information Processing and Nuclear Spins in Nanostructures Géza Giedke 213 Physik-Department, Technische Universtität München und Max-Planck Institut für Quantenoptik, Garching

More information

Quantum Simulation with Rydberg Atoms

Quantum Simulation with Rydberg Atoms Hendrik Weimer Institute for Theoretical Physics, Leibniz University Hannover Blaubeuren, 23 July 2014 Outline Dissipative quantum state engineering Rydberg atoms Mesoscopic Rydberg gates A Rydberg Quantum

More information

Disordered Solids. real crystals spin glass. glasses. Grenoble

Disordered Solids. real crystals spin glass. glasses. Grenoble Disordered Solids real crystals spin glass glasses Grenoble 21.09.11-1 Tunneling of Atoms in Solids Grenoble 21.09.11-2 Tunneln Grenoble 21.09.11-3 KCl:Li Specific Heat specific heat roughly a factor of

More information

Hyperfine interaction and spin decoherence in quantum dots

Hyperfine interaction and spin decoherence in quantum dots Hyperfine interaction and spin decoherence in quantum dots Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität

More information

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy Nuclear spin dynamics in quantum regime of a single-molecule magnet Andrea Morello UBC Physics & Astronomy Kamerlingh Onnes Laboratory Leiden University Nuclear spins in SMMs Intrinsic source of decoherence

More information

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Gloria Platero Instituto de Ciencia de Materiales (ICMM), CSIC, Madrid, Spain María Busl (ICMM), Rafael Sánchez,Université de Genève Toulouse,

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature177 In this supplemental information, we detail experimental methods and describe some of the physics of the Si/SiGe-based double quantum dots (QDs). Basic experimental methods are further

More information

Coherence and Control of Quantum Registers Based on Electronic Spin in a Nuclear Spin Bath

Coherence and Control of Quantum Registers Based on Electronic Spin in a Nuclear Spin Bath Coherence and Control of Quantum Registers Based on Electronic Spin in a Nuclear Spin Bath The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

Spin Relaxation and NOEs BCMB/CHEM 8190

Spin Relaxation and NOEs BCMB/CHEM 8190 Spin Relaxation and NOEs BCMB/CHEM 8190 T 1, T 2 (reminder), NOE T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations

More information

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots J. R. Petta 1, A. C. Johnson 1, J. M. Taylor 1, E. A. Laird 1, A. Yacoby, M. D. Lukin 1, C. M. Marcus 1, M. P. Hanson 3, A.

More information

Concepts in Spin Electronics

Concepts in Spin Electronics Concepts in Spin Electronics Edited by Sadamichi Maekawa Institutefor Materials Research, Tohoku University, Japan OXFORD UNIVERSITY PRESS Contents List of Contributors xiii 1 Optical phenomena in magnetic

More information

Spin Qubits in Semiconductor and Graphene Quantum Dots

Spin Qubits in Semiconductor and Graphene Quantum Dots ICQFT, Shanghai, 18 July 2009 Spin Qubits in Semiconductor and Graphene Quantum Dots Guido Burkard University of Konstanz, Germany!! Spin Qubits qubit natural realization: electron spin 1/2 = = spins localized

More information

Cristaux dopés terres rares pour les mémoires quantiques

Cristaux dopés terres rares pour les mémoires quantiques Cristaux dopés terres rares pour les mémoires quantiques A. Ferrier, M. Lovric, Ph. Goldner D. Suter M.F. Pascual-Winter, R. Cristopher Tongning, Th. Chanelière et J.-L. Le Gouët Quantum Memory? Storage

More information

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Nuclear spin spectroscopy for semiconductor hetero and nano structures (Interaction and Nanostructural Effects in Low-Dimensional Systems) November 16th, Kyoto, Japan Nuclear spin spectroscopy for semiconductor hetero and nano structures Yoshiro Hirayama Tohoku University

More information

Optically-controlled controlled quantum dot spins for quantum computers

Optically-controlled controlled quantum dot spins for quantum computers Optically-controlled controlled quantum dot spins for quantum computers David Press Yamamoto Group Applied Physics Department Ph.D. Oral Examination April 28, 2010 1 What could a Quantum Computer do? Simulating

More information

Weak-measurement theory of quantum-dot spin qubits

Weak-measurement theory of quantum-dot spin qubits Weak-measurement theory of quantum-dot spin qubits Andrew N. Jordan, 1 Björn Trauzettel, 2 and Guido Burkard 2,3 1 Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627,

More information

Non-Markovian Quantum Dynamics of Open Systems: Foundations and Perspectives

Non-Markovian Quantum Dynamics of Open Systems: Foundations and Perspectives Non-Markovian Quantum Dynamics of Open Systems: Foundations and Perspectives Heinz-Peter Breuer Universität Freiburg QCCC Workshop, Aschau, October 2007 Contents Quantum Markov processes Non-Markovian

More information

Quantum control of spin qubits in silicon

Quantum control of spin qubits in silicon Quantum control of spin qubits in silicon Belita Koiller Instituto de Física Universidade Federal do Rio de Janeiro Brazil II Quantum Information Workshop Paraty, 8-11 September 2009 Motivation B.E.Kane,

More information

Quantum Optics with Mesoscopic Systems II

Quantum Optics with Mesoscopic Systems II Quantum Optics with Mesoscopic Systems II A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich Outline 1) Cavity-QED with a single quantum dot 2) Optical pumping of quantum dot spins 3)

More information

INTRODUCTION TO NMR and NMR QIP

INTRODUCTION TO NMR and NMR QIP Books (NMR): Spin dynamics: basics of nuclear magnetic resonance, M. H. Levitt, Wiley, 2001. The principles of nuclear magnetism, A. Abragam, Oxford, 1961. Principles of magnetic resonance, C. P. Slichter,

More information

Magnetic Resonance in Quantum

Magnetic Resonance in Quantum Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay 400 nm Solid State Qubits (1) S D Daniel Esteve QUAN UM ELECT RONICS GROUP SPEC, CEA-Saclay From the Copenhagen school (1937) Max Planck front row, L to R : Bohr, Heisenberg, Pauli,Stern, Meitner, Ladenburg,

More information

High-Temperature Criticality in Strongly Constrained Quantum Systems

High-Temperature Criticality in Strongly Constrained Quantum Systems High-Temperature Criticality in Strongly Constrained Quantum Systems Claudio Chamon Collaborators: Claudio Castelnovo - BU Christopher Mudry - PSI, Switzerland Pierre Pujol - ENS Lyon, France PRB 2006

More information

Thermodynamical cost of accuracy and stability of information processing

Thermodynamical cost of accuracy and stability of information processing Thermodynamical cost of accuracy and stability of information processing Robert Alicki Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet Gdański, Poland e-mail: fizra@univ.gda.pl Fields Institute,

More information

Storage of Quantum Information in Topological Systems with Majorana Fermions

Storage of Quantum Information in Topological Systems with Majorana Fermions Storage of Quantum Information in Topological Systems with Majorana Fermions Leonardo Mazza Scuola Normale Superiore, Pisa Mainz September 26th, 2013 Leonardo Mazza (SNS) Storage of Information & Majorana

More information

A General Transfer-Function Approach to Noise Filtering in Open-Loop Quantum Control

A General Transfer-Function Approach to Noise Filtering in Open-Loop Quantum Control Isaac Newton Institute for Mathematical Sciences Principles & Applications of Control to Quantum Systems 4-8 August 2014 A General Transfer-Function Approach to Noise Filtering in Open-Loop Quantum Control

More information

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt Spin Dynamics Basics of Nuclear Magnetic Resonance Second edition Malcolm H. Levitt The University of Southampton, UK John Wiley &. Sons, Ltd Preface xxi Preface to the First Edition xxiii Introduction

More information

Quantum Feedback Stabilized Solid-State Emitters

Quantum Feedback Stabilized Solid-State Emitters FOPS 2015 Breckenridge, Colorado Quantum Feedback Stabilized Solid-State Emitters Alexander Carmele, Julia Kabuss, Sven Hein, Franz Schulze, and Andreas Knorr Technische Universität Berlin August 7, 2015

More information

Splitting of a Cooper pair by a pair of Majorana bound states

Splitting of a Cooper pair by a pair of Majorana bound states Chapter 7 Splitting of a Cooper pair by a pair of Majorana bound states 7.1 Introduction Majorana bound states are coherent superpositions of electron and hole excitations of zero energy, trapped in the

More information

Principles of Nuclear Magnetic Resonance in One and Two Dimensions

Principles of Nuclear Magnetic Resonance in One and Two Dimensions Principles of Nuclear Magnetic Resonance in One and Two Dimensions Richard R. Ernst, Geoffrey Bodenhausen, and Alexander Wokaun Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule

More information

arxiv: v1 [cond-mat.mes-hall] 18 May 2012

arxiv: v1 [cond-mat.mes-hall] 18 May 2012 Detection and control of individual nuclear spins using a weakly coupled electron spin T. H. Taminiau 1, J. J. T. Wagenaar 1, T. van der Sar 1, F. Jelezko 2, V. V. Dobrovitski 3, and R. Hanson 1 1 Kavli

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

What is it all about?

What is it all about? Dephasing, decoherence,... What is it all about? Consider a spinor (total phase is irrelevant) Ê Y = y eij ˆ Á Ë y Ø e -ij Average components of the spin can be expressed through the absolute values of

More information

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station Topological Quantum Computation with Majorana Zero Modes Roman Lutchyn Microsoft Station IPAM, 08/28/2018 Outline Majorana zero modes in proximitized nanowires Experimental and material science progress

More information

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei : An introduction to Solid State NMR spectroscopy Dr. Susanne Causemann (Solid State NMR specialist/ researcher) Interaction between nuclear spins and applied magnetic fields B 0 application of a static

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York All optical quantum computation by engineering semiconductor macroatoms Irene D Amico Dept. of Physics, University of York (Institute for Scientific Interchange, Torino) GaAs/AlAs, GaN/AlN Eliana Biolatti

More information

Quantum correlations and decoherence in systems of interest for the quantum information processing

Quantum correlations and decoherence in systems of interest for the quantum information processing Universita' degli Studi di Milano Physics, Astrophysics and Applied Physics PhD School: 1 st Year-Student Mini-Workshop Quantum correlations and decoherence in systems of interest for the quantum information

More information

A single-atom electron spin qubit in silicon

A single-atom electron spin qubit in silicon 1 A single-atom electron spin qubit in silicon Jarryd J. Pla 1,2, Kuan Y. Tan 1,2, Juan P. Dehollain 1,2, Wee H. Lim 1,2, John J. L. Morton 3, David N. Jamieson 1,4, Andrew S. Dzurak 1,2, Andrea Morello

More information

Towards quantum simulator based on nuclear spins at room temperature

Towards quantum simulator based on nuclear spins at room temperature Towards quantum simulator based on nuclear spins at room temperature B. Naydenov and F. Jelezko C. Müller, Xi Kong, T. Unden, L. McGuinness J.-M. Cai and M.B. Plenio Institute of Theoretical Physics, Uni

More information

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 16 Sep 2005

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 16 Sep 2005 Spin relaxation and decoherence of two-level systems X R Wang Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China arxiv:cond-mat/0509395v2 [cond-matmes-hall]

More information

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Theory for strongly coupled quantum dot cavity quantum electrodynamics Folie: 1 Theory for strongly coupled quantum dot cavity quantum electrodynamics Alexander Carmele OUTLINE Folie: 2 I: Introduction and Motivation 1.) Atom quantum optics and advantages of semiconductor

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

Quantum Computing with Semiconductor Quantum Dots

Quantum Computing with Semiconductor Quantum Dots X 5 Quantum Computing with Semiconductor Quantum Dots Carola Meyer Institut für Festkörperforschung (IFF-9) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 The Loss-DiVincenzo proposal 2 3 Read-out

More information

Principles of Magnetic Resonance

Principles of Magnetic Resonance С. Р. Slichter Principles of Magnetic Resonance Third Enlarged and Updated Edition With 185 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Contents 1. Elements of Resonance

More information

Nuclear spin control in diamond. Lily Childress Bates College

Nuclear spin control in diamond. Lily Childress Bates College Nuclear spin control in diamond Lily Childress Bates College nanomri 2010 Hyperfine structure of the NV center: Excited state? Ground state m s = ±1 m s = 0 H = S + gµ S 2 z B z r s r r + S A N I N + S

More information

Quantum Computation With Spins In Quantum Dots. Fikeraddis Damtie

Quantum Computation With Spins In Quantum Dots. Fikeraddis Damtie Quantum Computation With Spins In Quantum Dots Fikeraddis Damtie June 10, 2013 1 Introduction Physical implementation of quantum computating has been an active area of research since the last couple of

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

Michael Mehring Physikalisches Institut, Univ. Stuttgart, Germany. Coworkers. A. Heidebrecht, J. Mende, W. Scherer

Michael Mehring Physikalisches Institut, Univ. Stuttgart, Germany. Coworkers. A. Heidebrecht, J. Mende, W. Scherer Decoherence and Entanglement Tomography in Solids Michael Mehring Physikalisches Institut, Univ. Stuttgart, Germany Coworkers A. Heidebrecht, J. Mende, W. Scherer 5 N@C 60 and 3 P@C 60 Cooperation Boris

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma sensarma@theory.tifr.res.in Quantum Dynamics Lecture #2 Recap of Last Class Schrodinger and Heisenberg Picture Time Evolution operator/ Propagator : Retarded

More information

Pulse techniques for decoupling qubits

Pulse techniques for decoupling qubits Pulse techniques for decoupling qubits from noise: experimental tests Steve Lyon, Princeton EE Alexei Tyryshkin, Shyam Shankar, Forrest Bradbury, Jianhua He, John Morton Bang-bang decoupling 31 P nuclear

More information

Experimental state and process reconstruction. Philipp Schindler + Thomas Monz Institute of Experimental Physics University of Innsbruck, Austria

Experimental state and process reconstruction. Philipp Schindler + Thomas Monz Institute of Experimental Physics University of Innsbruck, Austria Experimental state and process reconstruction Philipp Schindler + Thomas Monz Institute of Experimental Physics University of Innsbruck, Austria What do we want to do? Debug and characterize a quantum

More information

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains .. Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains Vladimir M. Stojanović Condensed Matter Theory Group HARVARD UNIVERSITY September 16, 2014 V. M. Stojanović (Harvard)

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots

Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots S. Spatzek, 1 A. Greilich, 1, * Sophia E. Economou, 2 S. Varwig, 1 A. Schwan, 1 D. R. Yakovlev, 1,3 D. Reuter, 4 A.

More information